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1. Introduction 

Mechanical vibrations cause undesirable effects such as noise and acoustic signature and 

consequences of severe vibrations may lead to a decrease in service life of machines, or even 

cause damages on the components. In order to reduce vibration levels in ground, marine 

and aerospace applications as well as nano and micro devices, active control methods for 

vibration and noise reduction has been proposed in the last decade. 

In 1980s, the usages of large structures as the components of the space vehicles were 

resulted in new challenges in vibration control since these structures are lightly damped and 

have long decay times. Researchers were motivated to design and implement active 

vibration control to these lightly damped structures with piezoelectric materials. In one of 

the first research studies relevant to this area, Bailey and Hubbard [1] designed an active 

damper system by using piezoelectric material as distributed actuator for the vibration 

suppression of a cantilever beam. Subsequently, Crawley and Luis [2] developed and 

experimentally verified the analytical model of piezoelectric materials. The main 

contribution of Crawley and Luis was the accurate prediction of performance and 

effectiveness of piezoelectric materials when they are used as actuators. While passive 

isolation techniques are not generally feasible and efficient for low frequency vibration 

suppression; aforementioned initiative studies showed that piezoelectric materials can be 

used to suppress the low frequency vibration. Indeed, Ro and Baz [3] investigated and 

compared the overall effectiveness of the active and passive treatments for vibration and 

noise reduction. Their results revealed that active treatments such as bonded piezoelectric 

patch actuators can significantly reduce the vibration and noise radiation better than the 

passive treatments. Currently, different types of piezoelectric elements are available in 

market which can be employed widely as actuators and sensors for active vibration 

reduction of structures.  
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In the literature, there are published review articles discussing fundamental aspects of active 

vibration control. Rao and Sunar [4] published a review paper on the use  of piezoelectric 

materials as sensors and actuators for control of flexible structures. In this review paper, 

they presented the general framework of structural control strategies and presented the 

applications in various fields. One of the most common application areas is aerospace 

industry, since the aerospace structures are flexible and have limited tolerance for vibration. 

In a different review study,  Loewy [5] presented the key applications of smart structures in 

aeronautical applications with potential usages. In this work, smart materials are 

categorized in terms of their energy-exchange capabilities. The benefits of using smart 

structures in aeronautical applications are also presented. 

The active vibration control systems should be feasible and reliable to be used in marine, 

aerospace and automotive applications. The reliability and feasibility of the control systems 

are related to dynamics of piezoelectric actuators and implementation of controller 

algorithms. Thus, it is needed to predict performance of the piezoelectric sensor and 

actuators embedded in control systems before implementation and production. For this 

purpose, Chee et al. [6]  presented the modeling approaches for performance investigation 

of piezoelectric materials. As discussed in their article, analytical and finite element 

modeling of piezoelectric materials with host structures can be built using the linear 

constitutive piezoelectric equations only for low actuation authority. In case of high 

actuation authority; the nonlinearities occurs and different methodologies should be 

considered. 

The choice of the controller type and optimal positioning of sensors and actuators are other 

important aspects of design and implementation of active vibration control systems. There 

are also published technical review papers discussing the controller algorithms and optimal 

placement of actuators and sensors. For instance, Alkhatib and Golnaraghi [7] reviewed the 

controller architectures and presented the general design procedures for the active vibration 

control systems. In this review paper, the advantages and disadvantages of different 

controller architectures with various application examples are presented. Specifically that 

review paper states that the active damping system is advantageous when the vibration 

suppression is aimed only around resonance frequencies. It is also noted that the active 

damping system ensures stability when collocated sensor and actuator pairs are used. In 

another review paper, Gupta et al. [8] concentrated on the optimal positioning of 

piezoelectric sensors and actuators. In this technical review, the optimization techniques are 

presented based upon six optimizing criteria, namely (i) maximizing modal forces/moments 

applied by piezoelectric actuators, (ii) maximizing deflection of the host structure, (iii) 

minimizing control effort/maximizing energy dissipated, (iv) maximizing degree of 

controllability, (v) maximizing degree of observability, and (vi) minimizing spill-over 

effects. Gupta et al. presented the optimal positioning results in the literature in a tabular 

form for beam and plate like structures.  

For robust and adaptive active vibration control systems, the structural modeling techniques 

and estimation of uncertainties are important. A comprehensive methodology for the design 
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and validation of a robust controller is presented by Iorga et al. [9]. In their paper, structural 

modeling techniques with uncertainty analysis are explained and H∞ controller design is 

pursued by placing emphasis on robust control concepts.  

The piezoelectric materials also attracted attention of the researchers working on noise 

reduction. In a review paper on smart structures and integrated systems, Chopra [10] stated 

that most of the applications for aerospace vehicles are focused on minimization of vibration 

levels;  however, interior and exterior noise reduction, using piezoelectric materials is also a 

potential research area for transport vehicles. Hanselka [11] named the use of smart 

materials in active noise and vibration control as an innovative technology and gave an 

application example of active noise reduction. In that application, piezoelectric materials 

served as sensors and actuators to reduce structural-borne noise and the results showed that 

the application of current developments is possible and advantageous.  

This chapter is organized as follows. In section 2, the design procedure and algorithms for 

active vibration and noise control systems are explained briefly. In section 3, a proportional 

velocity feedback implementation for active vibration control system developed in our 

laboratory is presented. Finally, the vibration and noise reduction performance of the 

controller is discussed. 

2. Active vibration and noise control system design 

2.1. Design procedure 

Undesired mechanical vibrations and noise can be avoided or minimized by active vibration 

and noise control systems. The design of such systems starts with the dynamic 

characterization of the target structure that is called host structure for embedding or 

bonding the smart materials. The dynamic characterization procedure can be carried out 

numerically and/or experimentally by investigating the vibration characteristics of the 

structure. By utilizing sensors and actuators, system identification methods can be applied 

for modeling the whole system. The next step is the reduction of the developed model such 

that the computations can be performed in a reasonable time. In fact, the model reduction 

techniques shall be applied while considering the controllability and observability 

properties of the system. The steps between the characterization of the host structure and 

the reduced order model are referred as “modeling stage”. Having determined the reduced-

order model, the controller is designed and configured until the performance objectives are 

met. This stage is called the controller stage where the aim is to design and implement the 

controller for the performance requirements. The design steps of modeling and controller 

stages are presented in flow chart by Preumont [12] and depicted in Fig. 1. In the next 

section, the controller architectures will be discussed in detail. 

2.2. Selection of controller architecture 

This section presents an overview of controller algorithms for active vibration and noise 

control systems. In general, the controllers are designed for two different tasks: tracking a 
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trajectory or rejecting disturbances. For active vibration suppression systems, the task is the 

rejection of external disturbances and reduction of vibration levels. These can be achieved 

via feedback and feedforward controllers. The generic block diagrams [7] of these controller 

algorithms are presented in Fig. 2a and Fig. 2b. Basically, the feedback controller generates 

controller output signal based on summation of plant response and external disturbance. On 

the other hand, feedforward controller generates controller output by measuring external 

disturbance and predicting the plant response. 

 

Figure 1. Control System Design Steps 

The feedback controller algorithms can be divided into two categories [13] : active damping 

systems and model-based controllers. In an active damping system, the vibration of the host 

structure (acceleration, velocity or displacement) can be suppressed around the resonance 

frequencies. The closed-loop transfer function of the active damping system can be derived 

by using the block diagram shown in Fig. 2a as it follows: 

	ݕ  = 	݀	 +  (1) (ݏ)ܩݑ	

Here, the sensor output signal is denoted by y, external disturbance is shown with d and 

controller output is u. The open-loop system is presented with G(s) in Laplace domain. After 

algebraic manipulations, one can obtain the following relation for the closed-loop system: 

ݕ  = ଵଵା஼(௦)ீ(௦)݀ (2) 

In Equation 2, the closed-loop transfer function shows that the effect of external disturbance 

on the sensor output can be minimized by increasing the magnitude of the C(s)G(s) as the 

phase and gain margin of the open-loop system G(s)	allows. Since the collocated sensor and 

actuator pair provides infinite gain and phase margins, the active damping system works 

very efficiently when the collocated sensor and actuator pair is used.  
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Figure 2. a) Feedback control block diagram b) Feedforward control block diagram 

In the case of model-based controller, the open-loop system dynamics is represented with 

the state-space model as in Equation 3: 

 
(a)

(b)

= + +

= +

dx Ax Bu B d

y Cx Dy


 (3) 

In this state-space form, ܠ is the state variable, ܡ is the measured output, ܝ is the input signal 

and ܌ is the external disturbance signal. In addition to these, ۯ presents the state matrix, ۰ is 

the controller input matrix, ۰܌ is the disturbance matrix, ۱	is the output matrix and ۲ is the 

feed-through matrix. For full-state feedback controller (ݑ	 = െ۹ݔ), the closed-loop system 

can be obtained as 

 
( ) (a)

( ) (b)

= − +

= +

dA BK x B d

y C DK x

x
 (4) 

The aim of this state-space closed-loop system is to eliminate the effect of disturbance on 

output signal similar to the active damping. The gain matrix ۹ can be determined by 

applying pole-placement or optimal control design methodologies.  

2.3. Design of controller architecture 

For control applications, it is necessary to understand the system dynamics appropriately 

since the controller design parameters are determined based on the system dynamics. As 
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stated in section 2.2 there are different types of the control algorithms and for each type of 

the controller, system identification is essential. This system identification can be carried out 

via a vibration testing & analysis methods. Aim of such method is to extract Frequency 

Response Functions (FRF) where these functions presents the system response to a specific 

input in frequency range of interest by means of magnitude and phase. A representative 

FRF is shown in Fig. 3 for a structure where piezoelectric materials are used as bonded patch 

actuators (to excite the structure) and LDV as velocity sensor (to measure the vibration 

response) . 

 

Figure 3. Example FRF of a system 

The modal (resonance) frequencies of the systems are indicated in magnitude plot of FRFs as 

sharp peaks where the active damping systems are most effective. In active damping 

systems, the higher frequency modes may deteriorate the stability due to phase lag. Such 

effects of the higher frequency modes can be suppressed by including the low-pass filters. 

On the other hand, model based controllers use mathematical relations which in turn 

represents the system response based on FRF. Since the scope of this chapter is devoted only 

to proportional analog velocity feedback controller, more detailed information on model-

based controllers and mathematical system representations can be found in references [6, 7, 

9, and 12].  

3. Application of analog velocity feedback controller  

In this section an active vibration control system using an analog velocity feedback 

algorithm is described. At first, the system architecture is explained. Later, the controller 

design and implementation steps are discussed. In the final step, the evaluation of the 

controller performance is presented. 
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3.1. System architecture 

The structure used in this study is a rectangular box (1 x 1 x 2 m) and shown in Fig. 4. The 

surrounding cavity walls are constructed using wood filled concrete with a thickness of 10 

mm. This box is separated inside with a thin plate to obtain two enclosed compartments. 

The two compartments are used for investigation of vibration and noise transmission. The 

thin steel separation plate (1 x 1 m) in the rectangular box has a thickness 1.8 mm and 

clamped along on all four edges.  

 

Figure 4. Rectangular box for vibration and noise reduction experiments 

In the presence of mechanical and acoustical vibrations, the thin separation plate transmits 

the vibration and noise to the compartments. By attenuating vibrations of the separation 

plate, the noise radiation can be also reduced. In this study, the piezoelectric patch actuators 

bonded on the separation plate are employed as actuators to control and suppress vibration. 

The piezoelectric actuator is a PI Dura-act 875 bender type piezoelectric patch. This type of 

patch is compact, lightweight and insulated so it can be easily attached to the host structure 

and it does not add additional weight. The mechanical properties of the steel and 

piezoelectric patches are given in Table 1.  

Since the piezoelectric materials generate high strain on the host structure, the most effective 

position for the piezoelectric patch is around the high strain regions on the host structure. In 

fact, for a clamped-clamped plate, the maximum curvature (highest strain region) changes 

over the surface for each vibration mode. The maximum curvature of the first mode of a 

clamped-clamped plate occurs at the center and along the edges; whereas in the second 

vibration mode, maximum curvature is in the middle of the upper and lower halves of the 

plate. After these high strain regions are identified, the piezoelectric patches are attached to 

the center and upper-left (-35 cm, 35 cm from the left upper corner) of the plate in order to 

suppress first two modes. For suppression of vibration and noise, two piezoelectric patches 

are used in independent and pair configuration. Fig. 5 shows the thin-separation plate and 

piezoelectric patches. 
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Property Steel Piezoelectric Patch 

Length (mm) 1000 65 

Width (mm) 1000 31 

Depth (mm) 1.5 0.5 

Elastic modulus (GPA) 190 70.2 

Poisson’s ratio 0.33 0.36 

Density (kg/m3) 6305 7800 

Piezoelectric Strain Constant d31 (10-10 m/V) - 1.74 

Piezoelectric Strain Constant d33 (10-10 m/V) - 3.94 

Piezoelectric Strain Constant d51 (10-10 m/V) - 5.35 

Table 1. Mechanical properties of host structure and piezoelectric patch 

 

Figure 5. Thin steel plate with piezoelectric patches 

3.2. Controller architecture  

This section presents design and implementation of the active vibration controller via 

piezoelectric actuators. At first, proportional feedback controller is presented and then 

analog implementation of the controller is explained.  

3.2.1. Design of proportional feedback controller 

Proportional feedback control is a very simple and easily implementable controller 

methodology. Since only a sensor signal is passed through a negative amplifier and fed back 

to the system, the total computational and implementation cost is very low. Thus, it is 

possible to apply this control scheme using analog circuits since it does not need online 
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calculation of parameters such as controller gains and current states’ values. In addition to 

these, by using collocated sensor and actuator pair, proportional feedback controller 

provides active damping at the resonance frequencies of the structure. In fact, this active 

damping can be employed effectively in the lower-frequency modes of the structure because 

of stability issues. At the high-frequencies, the phase lag may deteriorate the stability of the 

collocation and the closed-loop system can be unstable. This high-frequency stability 

problem is eliminated usually by decreasing the proportional gain or including a low-pass 

filter in the closed-loop. In this paper, we consider a proportional velocity feedback 

controller along with a low-pass filter to eliminate high-frequency dynamics. 

The undesired vibrations of the thin separation plate are originated by external disturbances 

and the controller is designed for the expected disturbances including frequencies up to the 

third resonance mode. By only aiming low-frequency vibration suppression of the plate, 

high frequency performance of the controller is not considered. For this purpose, a low pass 

filter which has a cut-off frequency around third resonance mode is considered. In order to 

have decay at the frequencies higher than the cut-off frequency, the filter is included as an 

input low-pass filter and is placed between the sensor signal and the controller. 

Then, the amplifier gain is adjusted by utilizing the tools of Ziegler-Nichols method. In 

Ziegler-Nichols method, the important step is the determination of critical gain (gain margin 

of the closed-loop system). This critical gain is defined as the amplifier ratio at which 

response of the controlled plant has sustained oscillations and closed-loop system is at the 

stability limit. Proportional feedback criterion of Ziegler-Nichols method claims that 0.8 

times the critical gain yields the best proportional controller performance.  

Having determined the cut-off frequency of the filter and amplifier ratio, the proportional 

velocity feedback controller is finalized for the implementation and experiments. 

3.2.2. Implementation of velocity feedback controller 

The designed proportional velocity feedback controller is implemented on a breadboard by 

using the circuit shown in Fig. 6. This analog circuit includes one inverting amplifier and 

low-pass filter.  

The measured sensor voltage signal (Vin) is passed through a low pass filter which is in the 

form of resistor-capacitor (RC) filter. The cut-off frequency of this filter equals to one 

divided by multiplication of resistor and capacitance value. The aim of this low-pass filter is 

the reduction of high-frequency components of the sensor signal. After passing through this 

filter, the filtered signal is fed to the inverting amplifier. This inverting amplifier includes an 

operational amplifier (op-amp) and two resistors as indicated in Fig. 6. The op-amp is 

powered by dual polarity. The filtered sensor voltage is connected through input resistor Rc 

to the positive input channel of the op-amp. Then, a jumper resistor Rf is included between 

positive input channel and the output channel, whereas negative input channel is connected 

to the ground. By passing through this inverting amplifier, the sign of filtered sensor signal 

is inverted and its voltage value is amplified. The amplifier ratio is equivalent the ratio of 

jumper resistor Rf and input resistor Rc. Finally, this amplified and inverted signal serves as 

the proportional controller output signal.  
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Figure 6. Implementation diagram for analog proportional velocity feedback controller 

 

Figure 7. Experimental setup for active vibration and noise reduction 

3.3. Experimental setup 

The experimental setup for active vibration control via analog velocity feedback controller is 

presented in Fig. 7 with the data acquisition system. The data acquisition system has the 

ability of generation and recording analog voltage signal while communicating with a PC 

through Ethernet connection. The system provides high frequency sampling with high 

measurement accuracy and also generates the disturbance signal to drive the shaker 

amplifier. The mechanical shaker is located in the left compartment in Fig.4, and attached to 

the thin-separation plate via a connecting rod and a force sensor. The vibration of this plate 

is measured by Polytech PDV100 laser Doppler vibrometer (LDV). The target location of the 

vibrometer is determined as the same point of the piezoelectric patch to obtain a collocated 

sensor and actuator pair. The voltage output of the LDV is connected to the analog 

controller as a sensor signal and sent to the data acquisition system for recording. By 

connecting the sensor signal to the analog circuit, the controller output signal is acquired. 

This controller signal is amplified by E-413 Dura-act Piezo Driver and sent to the PZT 

patches (Dura-act P876.A12). Control input voltage between -2V and +8V are accepted by 
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the voltage amplifier and the input signal is amplified by factor of 50. By closing-the-

controller loop, an active damping system for vibration suppression is created. While the 

vibration suppression experiments are conducted, the output signal of a microphone 

properly located in one of the compartments is also recorded at the same time to 

demonstrate the suppression of noise.  

3.4. Results 

In this section, active vibration suppression of the thin separation plate and noise reduction 

inside the compartment via analog velocity feedback controller is presented. The experimental 

results are given in frequency and time domains for three different piezoelectric patch 

configurations. At first, the piezoelectric patch located at center and upper-left is used as an 

actuator independently, and then they are employed together as an actuator. 

3.4.1. Suppression of vibration in time domain 

The performance of the analog velocity feedback control for the vibration suppression is 

evaluated in the time domain by disturbing the thin separation plate with the mechanical 

shaker. For this purpose, disturbance signal is applied to the mechanical shaker via data 

acquisition unit as a sine-wave at the first resonance frequency (approximately 13 Hz) and at 

the second-resonance frequency (approximately 26 Hz) of the plate. The vibration of the 

plate is monitored by targeting laser displacement to the center of the piezoelectric actuator 

patch. The experiments are conducted for each piezoelectric actuator configuration. Fig. 8 

presents the results for forced vibration at the first resonance frequency. Fig. 8 (a) presents 

the open-loop vibration at the center of the plate. The open-loop response corresponds to the 

structural vibrations of the thin plate when the analog feedback controller is inactive. Fig. 

8(b) shows the closed-loop vibration response of the plate when the active vibration 

suppression is obtained via piezoelectric patch located at center. In Fig. 8(c), the 

piezoelectric patch located at upper-left and is employed as actuator independently. The Fig. 

8(d) shows the closed-response for the piezoelectric actuator in pair configuration where the 

center and upper-left patch are used as actuator jointly and laser displacement sensor is 

targeted to the center of the upper-left patch.  

As can be seen from the subfigures of Fig. 8, the vibration of the plate at the first resonance 

frequency is attenuated for each piezoelectric actuator configuration. In fact, the best 

performance is acquired when the piezoelectric center patch is used as actuator 

independently. The performance of this configuration is better than the pair configuration 

because of phase mismatch of the piezoelectric patches in pair. Fig. 8 presents the open and 

closed vibration of the plate for the second resonance forced vibration. To measure the open-

loop vibrations of the plate, the LDV is targeted to the center of the upper-left patch. Fig. 

9(a) presents the open-loop vibration measured at this location. Fig. 9(b) shows the 

performance of the active vibration control via piezoelectric actuator patch located at the 

upper-left of the plate. Besides, Fig. 9(c) presents the effectiveness of piezoelectric pair 

configuration for the vibration suppression of the plate.  
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Figure 8. Vibration response of the plate at the first resonance frequency (a) Open-loop (b) Closed-loop 

with piezoelectric patch located at center (c) Closed-loop with piezoelectric patch located at upper-left 

(d) Closed-loop with piezoelectric actuator patches in pair 

 

Figure 9. Vibration response of the plate at the second resonance frequency (a) Open-loop (b) Closed-loop 

with piezoelectric patch located at upper-left (c) Closed-loop with piezoelectric actuator patches in pair 
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Piezoelectric Patch 

Configuration 
LDV Target Location First Mode Second Mode 

Center Center 44.6% (5.1dB) - 

Upper-left Center 20.4% (1.9 dB) 73.8% (11.6 dB) 

Center and Upper-left 

(Pair Configuration) 
Upper-left 32.3% (3.4 dB) 74.9% (11.9 dB) 

 

Table 2. Vibration suppression levels in time domain for different piezoelectric actuator configurations 

To employ piezoelectric patches in pair for the second resonance mode of the plate, the LDV 

is targeted again to the center of the upper-left piezoelectric patch. It is obvious that the 

independent configuration of piezoelectric patch located at upper-left provides better 

vibration suppression when it is compared with the pair configuration. The reduction levels 

for each configuration are presented in Table 2.  

3.4.2. Supression of vibration in frequency domain 

The aim of this section is to present the performance of the active vibration suppression in 

the frequency domain. The experiments are conducted for the same piezoelectric actuator 

configurations. In contrast to time-domain results, the disturbance signal applied to the 

mechanical shaker is changed to sine-sweep in the bandwidth of 2 Hz to 100 Hz. By 

monitoring the open-loop and closed-loop response of the plate, frequency responses are 

gathered using the data acquisition system. Fig. 10 presents the frequency responses for 

different piezoelectric configurations between vibrometer and the force transducer at the tip 

of the mechanical shaker. In Fig. 10(a), the performance of the active vibration suppression 

system via piezoelectric patch located at center is presented. It is noticeable that the 

vibration is attenuated very well in the first resonance mode of the plate; however the other 

resonance frequencies of the plate are not affected. This is due to the fact that the position of 

piezoelectric patch located at center corresponds to the anti-mode of the higher order 

modes. So, the higher structural modes are not affected. Fig. 10(b) presents the closed-loop 

performance of the piezoelectric patch located at upper-left. As can be seen this figure, the 

closed-loop system reduces the vibration of the plate in a broad frequency range for this 

configuration. Fig. 10(c) shows the effectiveness of the closed-loop system via piezoelectric 

actuator pair. It is noticeable that the performance of the closed-loop is improved 

considerably when piezoelectric pair configuration is adopted instead of using upper-left 

patch independently. Indeed, the closed-loop system reduces the vibration levels as 

compared to open-loop in all piezoelectric actuator configurations. Table 3 lists the vibration 

reduction levels in the frequency domain. 
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Figure 10. Frequency responses for different piezoelectric actuator configurations (a) Closed-loop with 

piezoelectric patch located at center(LDV at center) (b) Closed-loop with piezoelectric patch located at 

upper-left(LDV at upper-left) (c) Closed-loop with piezoelectric actuator patches in pair(LDV at upper-

left) 

 

Piezoelectric Patch 

Configuration 
LDV Target Location First Mode Second Mode 

Center Center 63.7 % (8.8 dB) - 

Upper-left Center 34.1 % (4.4 dB) 52.8 % (6.5 dB) 

Center and Upper-left 

(Pair Configuration) 
Upper-left 50.6 % (6.1 dB) 54.0 % (6.7 dB) 

Table 3. Vibration suppression levels in time domain for different piezoelectric actuator configurations 

3.4.3. Suppression of noise in frequency domain 

This section presents the noise reduction in one of the compartments for controller-inactive 

and active cases while disturbing the thin plate via shaker. The noise inside the 

compartment is measured with a microphone. The frequency responses between the 

microphone and the force transducer are gathered using the data acquisition system. Fig. 11 
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presents the results for noise in the frequency domain. As in the same manner with 

vibration suppression experiments, open-loop response shows the noise radiation in the 

compartment when the controller is inactive, whereas closed-loop response is monitored 

when the controller is active. In Fig. 11(a), the performance of noise reduction via 

piezoelectric patch located at center is given. It is noticeable that the low-frequency acoustic 

mode in the compartment coincides with the vibration mode of the plate. Since the vibration 

of plate at the first resonance mode is considerably attenuated, the noise radiation is also 

reduced for this mode. At the higher-acoustics modes, the closed-loop system does not 

improve and deteriorate the noise radiation in the compartment. Fig. 11(b) presents the 

effectiveness of the piezoelectric patch located at upper-left. Similar to the previous results, 

noise radiation is reduced by suppressing the vibration of the plate. However, it is obvious 

that the performance of the piezoelectric patch located at center is fairly better than the 

performance of the piezoelectric patch located at upper-left. 

 

Figure 11. Noise levels in the one of the compartments for different piezoelectric patch configurations 

(a) Open and closed-response for the piezoelectric patch located at center (b) Open and closed-loop 

response for the piezoelectric patch located at upper-left 

4. Conclusion 

In the first part of this chapter, a short review of literature about active vibration control is 

presented. The general controller design approach and the differences between various 

controller algorithms are discussed.  

In the second part of this chapter, an application using an analog velocity feedback 

controller for vibration suppression of a flexible plate is presented. Experiments for 

vibration suppression of the flexible plate are conducted and by measured the vibration of 

the plate; the time-responses and frequency-responses are presented. Finally, the acoustic 

response in one of the compartments is also obtained for different piezoelectric actuator 

configurations. The results revealed that vibration reduction of the separation plate 

improves the noise radiation and the sound pressure level is decreased due to the reduction 

of the vibration. However, for an effective and powerful noise reduction, robust controller 

algorithms with multiple piezoelectric actuator patches can be preferred. 



 
Smart Actuation and Sensing Systems – Recent Advances and Future Challenges 

 

694 

Author details 

Ipek Basdogan*, Utku Boz, Serkan Kulah and Mustafa Ugur Aridogan 

Koç University, Turkey 

5. References 

[1] Bailey T, Hubbard J.E. Distributed Piezoelectric Polymer Active Vibration Control of a 

Cantilever Beam. Journal of Guidance Control and Dynamics 1985;8(5): 605-611. 

[2] Crawley E.F, De Luis J. Use of Piezoelectric Actuators as Elements of Intelligent 

Structures. AIAA Journal 1987; 25: () 1373-1385. 

[3] Ro J, Baz A, Control of Sound Radiation from a Plate into an Acoustic Cavity Using 

Active Constrained Layer Damping. Smart Materials and Structures 1999; 8(3): () 292. 

[4] Rao S.S, Sunar M. Piezoelectricity and Its Use in Disturbance Sensing and Control of 

Flexible Structures: A Survey. Applied Mechanics Reviews 1994; 47(4):113-123. 

[5] Loewy R.G, Recent Developments in Smart Structures with Aeronautical Applications. 

Smart Materials and Structures 1997; 6(5):  R11. 

[6] Chee C.Y.K, Tong L, Steven G.P. A Review on the Modelling of Piezoelectric Sensors 

and Actuators Incorporated in Intelligent Structures. Journal of Intelligent Material 

Systems and Structures 1998; 9(1): 3-19. 

[7] Alkhatib R, Golnaraghi M.F. Active Structural Vibration control: A review, Shock and 

Vibration Digest 2003; 35(5):367-383. 

[8] Gupta V, Sharma M, Thakur N. Optimization Criteria for Optimal Placement of 

Piezoelectric Sensors and Actuators on a Smart Structure: A Technical Review. Journal 

of Intelligent Material Systems and Structures 2010; 21(12):1227-1243. 

[9] Iorga L, Baruh H, Ursu I. A Review of H∞ Robust Control of Piezoelectric Smart 

Structures. Applied Mechanics Reviews 2008; 61(4): 040802-040815. 

[10] Chopra I. Review of State of Art of Smart Structures and Integrated Systems. AIAA 

Journal 2002; 40(11):2145-2187. 

[11] Hanselka H. Adaptronics as a Key Technology for Intelligent Lightweight Structures. 

Advanced Engineering Materials 2001;, 3: 205-215. 

[12] Preumont A. Vibration Control of Active Structures : An Introduction, 2 ed. Kluwer 

Academic: New York; 2002. 

[13] Hurlebaus S, Gaul L. Smart Structure Dynamics. Mechanical Systems and Signal 

Processing 2006; 20(2):255-281. 

                                                                 
* Corresponding Author 


