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1. Introduction 

Shape Memory Alloys (SMAs) are functional materials, characterized by some attractive 

features, such as pseudo-elasticity (PE) and shape memory effect (SME) [1]. The latter 

consist in the capability of the material to recover high deformation values by heating and 

can be considered very suitable for actuation applications.   

In the actuation field, the most common shape memory alloy is quasi-equiatomic NiTi 

system, commercially known as Nitinol®. Ti-rich NiTi compounds show characteristic 

transformation temperatures higher than the room one and they can recover high values of 

deformation. Moreover, these intermetallic compounds are widely used since they exhibit 

high thermal and mechanical cycling stability. Other NiTi-based alloys are also employed 

for this kind of applications. In particular, NiTiCu, with Cu substituting Ni in the 3-10at% 

range, or NiTiCo system are used respectively when the application requires narrow 

thermal hysteresis or high stiffness. 

In Figure 1, the comparison between differential scanning calorimetry (DSC) data derived 

from NiTi wire (200 μm in diameter) in fully annealed condition and after aging (500ºC for 

10 minutes) are reported. As it can be seen, the fully annealed NiTi alloy goes into a one-step 

transformation both during cooling and heating. In this case, shape memory effect occurs by 

a martensitic transformation (MT) between a low-temperature monoclinic structure, B19’, 

called martensite, and a high-temperature body-centered cubic parent phase, B2, called 

austenite. When the material is aged at specific temperatures, this transition may occur in 

two steps in association with a trigonal phase, called R-phase [1]. 

During heating, the phase transformation, named inverse MT, is defined by austenitic start 

(As) and finish (Af) temperatures. Similarly, during cooling direct MT is defined by 

martensitic start (Ms) and finish (Mf) temperatures, respectively. 
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Figure 1. DSC scan of 200μm NiTi wire in the fully annealed state and after aging (500°C for 10 

minutes). 

Then, the deformation induced by a state of stress on a SMA element can be recovered 

heating the material over the austenitic characteristic temperatures: the shape recovery 

starts at As and finishes at Af. 

The transition temperatures are strongly influenced by the applied load, since it stabilizes 

the martensitic structure causing an increase of all transition temperatures. This behavior of 

SMA is well described by the Clausius-Clapeyron law [1-5]. 

Furthermore, SMA actuators generally need a training to stabilize their fatigue properties in 

terms of transformation temperatures and strain recovery. For example, a possible procedure 

consists in the thermal cycling under a constant load. Figure 2 depicts the evolution of the 

temperature-stroke relationship during the first thermo-mechanical cycles. It is seen that the 

stabilization of the material behavior can be reached after few thermal loops. 

 

Figure 2. Example of thermo-mechanical hysteresis typical of a SMA material. 
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Since SMA can generate mechanical work, they are employed as actuators. The functional 

properties of SMA element used in actuators strictly depend on several factors, such as the  

chemical composition and the thermo-mechanical history[1,4,5]. 

Nowadays, the tendency is to produce ever smaller actuators because of the continued 

miniaturization of all the industrial products. In general, a mini-actuator may be composed 

by only a SMA element or by a mini-modular device, in which the SMA element is 

embedded and acts as the core and active part.  

In this chapter, the fundamental operating parameters, which affect the performance of 

shape memory thin wires, are reviewed. Then, the influence of electrical heating conditions 

performed by different waveforms on functional fatigue of NiTi micro-wires is also 

reported.  

When the SMA element is embedded into a mini-modular mechanical device, its shape 

could be a serious problem as spaces are very restricted. To solve this drawbacks, a new 

SMA conformation suitable for the mini and micro scales is presented: it consists of a planar 

wavy formed NiTi wire, called snake-like arrangement. Currently, this configuration of the 

SMA wire is principally exploited in the textile and medical domains [6-8]. n the micro scale, 

original works are reported by Mineta et al. [7-8], who produced different SMA snake 

elements by means of electrochemical etching for obtaining bending motion of active 

catheters. Khol et al. [9] used the micro snake geometry to activate a microgripper system. 

Moreover, Leester-Schadel et al. [10] adopted laser technology to produce micro SMA snake 

actuators and then used the batch fabrication process to obtain more articulated samples. In 

this chapter the main mechanical performance of this unusual geometry and its exploitation 

in a mini-modular mechanical device are presented. 

Another topic of this work is related to a current research on fabrication and characterization 

of SMA micro-snakes, by means of laser technology and following polishing processes. The 

reason why this non-traditional production technology has been chosen for this purpose is 

due to its flexibility in the machining of small features, high productivity and repeatability 

[11-12]. Considering the direction of miniaturization of the products during the recent years 

[13], in the last part of the chapter the rescaling of SMA mini-snakes down to micro-scale is 

presented. The attention is also focused on the evaluation of the capability of laser micro-

cutting industrial process in the fabrication of micro-snakes from NiTi SMA sheets [14-17]. 

The evaluation of the thermo-mechanical properties of the produced actuator in 

correspondence of the different fabrications steps is then presented and discussed in order 

to describe the behavior of the micro-snake-like element for actuation. 

2. SMA linear actuators 

The first case study is the application of a simple straight wire as base element for actuation 

systems [18]. The most important functional properties, which characterize shape memory 

wire for actuators, are the capability to recover high strain values, the characteristic 

transformation temperatures and the thermo-mechanical cycling stability [1]. These 
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characteristics of SMA can be tailored acting on chemical composition, thermal and 

mechanical processing, shape setting treatment and training [1, 20-25]. 

In recent years, the good ductility of NiTi intermetallic has been exploited for the production 

of few tens micron wires [21, 26, 27].  

Thanks to their small dimensions, such thin wires permit to reach very short cooling time 

but, obviously, they can be employed just in all those applications in which high loads are 

not required. The fabrication of these products has led to the miniaturization of SMA 

components for actuators that are nowadays employed for new kind of devices such as 

optical image stabilizer and autofocus for small camera [26] 

During working life, the SMA wire is subjected to thermo-mechanical cycling and 

accumulates plastic deformation, elongating irreversibly and reducing its diameter (see 

Figure 3). This behavior has to be considered in actuator design. Another important point to 

consider is the unsteadiness of the functional properties of shape memory wires during the 

working life. The plastic deformation induced during the thermo-mechanical cycling leads 

to a change of microstructure of SMA wire. Lattice defects, dislocations and nano-scaled 

precipitates are introduced into the matrix and they cause significant changes in 

transformation temperature and in the capability of the material to recover a deformation 

[28-30], as depicted in Figure 4. 

 

Figure 3. Thermal cycling of a 80μm wire under constant stress (200MPa). The heating was performed 

by electrical pulse, and stroke was limited at 3%. 

In most cases, SMA wires used as actuator, are heated by means of an electrical pulse (Joule 

effect) and cooled by natural air convection. So, it is very easy to reach short actuation time 

(heating time) but the reset time (cooling time) cannot be substantially controlled. Slight 

improvement in the reduction of reset time is achieved positioning the shape memory wire 

horizontally [19], as shown in Figure 5. In this figure, it can be noticed that after heating (at 
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200s) the strain is maintained to two constant values for both the two configurations till time 

is near to 230s and 250s for horizontal and vertical position respectively. After these points, 

the two wires start the cooling process which results to be faster for the horizontally 

positioned wire than the vertical one. As an example, it can be seen that at 275s the 

horizontally positioned wire recovers half of its maximum strain while at the same time the 

vertical positioned wire has just started the cooling route. 

 

Figure 4. Thermal loop under constant stress (200MPa). The heating was performed by a thermal 

chamber. The test was carried out on a 80μm wire before and after 5x104 thermal cycles under constant 

stress (200MPa). 

 

Figure 5. Comparison between the mechanical performance of horizontal and vertical configuration of 

80μm SMA wire used as actuator [19]. 
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As previously stated, the heating process of a SMA actuator can be easily obtained by Joule 

effect. In this case, it has to be considered that the shape of the electrical pulse used for the 

actuation  strongly affects the functional properties of SMA [27]. As an example, Figure 6 

shows the time required by the wires to recover the 3% of deformation (actuation time) 

when it is heated by two different current pulses. At the 1st cycle ramp and step electrical 

pulse employed to heat two 80μm wires were designed to have the same electrical efficiency 

but the actuation time is 400ms by step current pulse while it is 623ms by ramp. After 5·103 

cycles the wire heated by step pulse employs 618ms, so 218ms more than the time employed 

at the first cycle. As opposite, the ramp pulse leads to an increase of just 22ms. After  5·104  

cycles the actuation time related to the wire heated by step is even higher than the one 

related to wire heated by ramp. This behavior leads to a drastic decrease of the step heating 

method efficiency (from 0.91% to 0.55%), vice versa the efficiency of the ramp heating 

method does not change so much (from 0.91% to 0.75%). 

Then, in order to achieve fatigue performance acceptable for the specific device, the right 

electrical pulse has to be chosen considering the number of cycles that the SMA actuator has 

been designed to work. 

Recently, the effect of drawing procedure on functional fatigue of thin NiTi wires has also 

been investigated [21]. Basically, 80μm NiTi wires were produced through two different 

drawing procedures reaching the same final cold working level before shape setting. These 

two processes differ for the number of drawing steps carried out to reach a certain cold 

working level before each heat treatment. After the last thermal treatment the specimen that 

underwent to a less number of drawing steps shows a narrow thermal hysteresis, even after 

thermo-mechanical cycling (see Figure 7). It means that adopting a severe drawing 

procedure leads to improve the actuation performance. 

 

 

 
 

 

Figure 6. Actuation time tests performed by electrical heating (on the left) and by efficiencies (on the 

right). 
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Figure 7. DSC scans, on the left, and thermal loop under constant tensile stress, on the right, of two 

80μm NiTi wires obtained by a severe (SVR) and soft (SFT) drawing procedure. 

3. Snake-like SMA actuators 

The main focus of miniaturization is to develop devices with high mechanical performance 

in very limited spaces. In the SMA field, the mini-actuator may be composed by only the 

SMA element or by a mini-modular device in which the SMA element is embedded and acts 

as the core part. In the latter case, some issues typical of SMA miniaturization should be 

taken into a serious consideration: first of all, the fixing points of the SMA element and the 

electrical contacts should be adequately designed to prevent abrupt rupture, and then the 

use of a wire geometry generally implies the employment of additional mechanical parts 

which may affect the long run performance of the SMA element. 

The mechanical work resulting from the SMA shape recovery is used to produce linear or 

rotational motion in smart actuators. To attain high strokes in limited space, designers 

developed several miniature devices which include SMA elements with a straight or a 

helical spring shape [31]. These two shapes present two opposite mechanical behaviors: the 

straight conformation allows high forces but smart wire arrangements should be employed 

in order to achieve also high strokes. As  an example, Jansen et al. used two sets of seven 

pulleys to arrange a 1000mm long SMA wire with a diameter of 0.200mm, and attain 3% of 

stroke under a constant load of about 130MPa [32]. The use of additional mechanical 

components may affect the overall performance of the SMA element, leading to friction 

which could influence the final functional parameters of the device. As opposite, the helical 

spring shape guarantees high strokes without the use of any further mechanical part but 

fairly small forces can be attained especially when embedded in miniature devices. 

Hence, straight and helical spring conformations represent two opposite limits in the force 

versus stroke plane. In order to answer both to the need of stroke and force between these 

two limits, new SMA geometries should be studied. 

In a recent work, a new SMA conformation has been proposed [33]; it consists in a planar 

wavy formed NiTi wire, named snake-like arrangement. To understand the mechanical 

performance of this unusual conformation as respect to other shapes, three NiTi samples 
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with different geometry, but with identical elemental composition, thermal history and 

power consumption were tested by means of a standard tensile test. In this investigation the 

NiTi wire was formed to have the straight conformation, the helical spring and the snake-

like arrangements, and austenite and martensite mechanical responses were assessed 

separately. As can be seen in Figure 8 the snake-like shape has a mechanical behavior 

between the wire and the helical spring ones. 

 

Figure 8. Comparison between austenite and martensite mechanical behavior of different NiTi wire 

geometries for actuators. 

The snake-like conformation is characterized by four main parameters: the number of 

curvatures, N,  the curvature radius, R, the distance between two consecutive curvatures, D, 

and the height, H. A snake-like specimen can be prepared by constraining a SMA wire in the 

snake-like arrangement by using a drilled aluminum bar and a series of nails; heating at 

high temperature is finally used to fix the shape. Figure 9 reports a snake-like sample 

prepared from a commercial NiTi wire having the diameter of 0.2mm, formed at 500°C 

during ten minutes and quenched in water at room temperature, with N=4, 

H=5.27mm±0.07mm, R=0.54mm±0.03mm and D=0.82mm±0.06mm. 

 

Figure 9. Snake-like NiTi wire with N=4, H=5.27mm±0.07mm, R=0.54mm±0.03mm and 

D=0.82mm±0.06mm. 
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As previously stated, during the ten minutes formation process the curved parts of the 

snake element are in contact with metal devices. This fact does not modify the calorimetric 

properties of the SMA element in all its length, as can be seen in Figure 10 where the 

overlapping of the DSC scans relative to the straight and the curved segments is clearly 

visible.  

 

Figure 10. DSC scans of the straight and the curved part of the snake-like NiTi wire. 

For small deformation values (see Figure 11), this snake-like shape shows an almost 

complete recovery of the deformation both for austenite and for martensite. 

The relative higher output stroke performed by the snake-like NiTi wire as respect to the 

straight wire conformation is substantially due to the bend/unbend movement of the 

curvatures. In order to avoid plastic deformation and to achieve simultaneously a significant 

output stroke, the snake sample, formed as previously explained, should be stressed with a 

load near 0.1N, as forces lower and higher than 0.1N do not guarantee a proper functioning 

of this snake element: in fact, lower forces do not induce martensite formation, as opposite 

higher forces cause plastic deformations. As an example, in Figure 12 the curves derived 

from five thermal cycles of the snake-like NiTi sample under two constant loads, 0.1N and 

0.2N is depicted. By comparing the two trends, it can be seen that in both cases the snake 

sample lose part of its shape recovery during cycling; this is much more visible for the 

specimen stressed with 0.2N. 

Fatigue life was studied under the constant load of 0.1N; the snake-like sample was 

electrically activated with 0.6A with a maximum power consumption of 1W and a work 

frequency of 0.1Hz. Fracture takes place at the apex of that curvature most far from the 

applied load and from Figure 13 it can be observed that it occurs near the 7,5x104 cycle. The 

fractured section was analyzed through SEM observation, see the inset of Figure 13; it can be 

seen a region with the striation of the crack propagation departing from a nucleation site 

placed on the inner surface of the snake and a region characterized by dimples, typical of 

ductile materials. 
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After the cycling test, the DSC scan shows a feeble shifting of the transformation 

temperatures towards higher values; a better definition of the rhombohedral phase during 

heating is also visible (see Figure 14). 

 

Figure 11. Force versus displacement of austenite and martensite of the snake-like NiTi wire. 

 

Figure 12. Hysteresis curves of the snake-like NiTi sample treated at 500°C for 10 minutes under 0.1N 

and 0.2N constant load. 

When embedded in mini-modular device, the snake-like wire does not lose its mechanical 

performance. As an example, in Figure 15 a miniature rotational actuator composed by two 

mutual antagonist NiTi snake-like wire is reported [34]. The device exerts a stroke of about 

120° under a constant torque of 0.1Nmm, as shown in Figure 16; it is activated by 0.6A with 

a maximum power consumption of 1W and a work frequency of 0.05Hz. Due to the 

particular construction, plastic deformation of the SMA element is prevented as the SMA 

elements never exceed 6mm of deformation.  
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Figure 13. Snake-like NiTi sample fatigue test result under 0.1N load. 

 

Figure 14. Snake-like NiTi sample DSC scan before and after the fatigue test 

 

Figure 15. Mini rotational actuator activated by two antagonists snake-like NiTi wires. 
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Figure 16. Fatigue test results of the mini rotational actuator under 0.1Nmm constant torque. 

3.1. Micro snake-like shape memory alloy elements 

In the last years the trend of miniaturization of components and products has been 

evidently introduced in several industrial fields, such as biomedical, electronics, aerospace 

and mechanics [35-36]. SMAs, as it already happens in biomedical applications [14,15,37-40], 

can be machined using laser machining with appreciated and high qualitative results [12]. 

The decision to investigate this method for the production of SMA actuators is considered 

an interesting topic because it shows some relevant advantages in comparison with other 

technologies, such as high productivity, high quality and repeatability, when applied in the 

industrial world. 

Hence, the snake geometry can be easily scale down to the micro scale by the employment 

of laser technology with appreciated and high qualitative results. Because laser material 

processing is a thermal process, in which an heat source is used to remove a certain volume 

of material from the work piece, some thermal damages are evidently obtained, such as 

melted material, heat affected zone and oxides. To remove these defects, chemical etching 

and electro-chemical polishing have to be performed on the snake SMA samples [37,41]. 

Figure 17 depicts SEM images of the snake NiTi sample after laser, chemical etching and 

electro-chemical processes; top and bottom surfaces as well as snake sample section are 

shown. It can be seen that laser damages are mainly visible on the bottom surface and that 

the chemical etching remove the great part of defects. Moreover, a significant loss of mass 

and consequent reduction of the dimensions of the micro-snake can be evidently observed 

from SEM pictures due to the material removal of the post-processing. The snake NiTi 

sample geometry and calorimetric properties change after each process, as can be seen in 

Figure 18 and in Figure 19 respectively. In particular, the geometrical dimension are referred 

to a micro-snake obtained starting from a 120μm NiTi sheet. As concern the DSC data, it can 

be observed that the laser machining produces a refinement of the rhombohedral phase 

peak both on cooling and heating while the martensite peak barely change as respect to the 

unworked 120mm thick sheet, being almost spread and invisible. The laser process also 

yields a conspicuous diminution of the rhombohedral phase transformation temperatures 
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and of the martensite starting temperature while the other characteristic transformation 

temperatures do not have an analogous variation being almost unchanged. Chemical 

etching and electro-polishing steps do not visibly alter any phase transformation 

temperature both on cooling and on heating, even if some little change due probably to the 

hydrogen introduction in the chemical process, is visible [45,46].  

 

Figure 17. SEM images of the snake NiTi sample surfaces and section after laser, chemical etching and 

electro-polishing processes. 

 

Figure 18. Variation of the geometrical parameters of the micro-snake during the fabrication process (h: 

high, R: radius of curvatures, w: width, t: thickness). 
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Figure 19. DSC scans before laser machining and in correspondence of each fabrication process. 

The fabrication process previously described can be used to produce snake SMA sample of 

different length. As an example, Figure 20 depicts the SEM image of a micro-snake NiTi 

sample with 19 curvatures (i.e. 3.8mm of length) obtained starting from a 120μm NiTi sheet 

treated at 400°C for 15 minutes and quenched in water. 

 

Figure 20. SEM image of a micro-snake NiTi sample obtained starting from a 120μm NiTi sheet. 

Strain-recovery and thermo-mechanical cycling tests demonstrate the high performance of this 

micro-snake sample. As an example, under the constant load of 16mN, it reaches about 40% of 

recovery with a cycling stabilization within few hundreds of cycles, when heated by electrical 

current (130mA) with a maximum power consumption of 0.3W and a frequency of 0.15Hz. 

4. Conclusions 

In this work, new developments on SMA actuators in the mini/micro scale are presented: the 

attention was focused on straight NiTi thin wires and mini/micro snake-like NiTi samples.  

Several working parameters have proved to strongly affect the functional and fatigue 

properties of SMA actuator, such as the electrical pulse performed to heat a wire, the 
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different drawing procedures carried out to produce the wire or the wire arrangement into 

the device. 

Then, the functional parameters of a snake-like NiTi wire demonstrate that this kind of 

geometry may be a good alternative to the most common geometries. It can generate a shape 

recovery in a very large range of deformation comparing to the straight SMA wire. This 

point is very beneficial for practical uses since the new proposed SMA conformation just 

occupies small space to generate the same displacement as the straight one, and it 

demonstrates to maintain its general mechanical performance when embedded in a mini-

modular mechanical device. Finally, the presented fabrication process adopted for the 

manufacturing of micro-actuators looks to be very attractive (laser process can be performed 

on a large family of materials with high repeatability). The thermo-mechanical behavior of 

the micro-snake actuator can be considered interesting in the range of low applied load 

values with a good cycling stability. 
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