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1. Introduction 

Proteins are one of the elementary components of life and account for a large fraction of 

mass in the biosphere. They catalyze the big majority of reactions sustaining life, and play 

structural, transport, and regulatory roles in all living organisms. Hence, “Translation”, i.e. 

the process of decoding a messenger (m)RNA by the ribosome to synthesize a protein, is a 

fundamental process for all forms of life (1, 2). Accordingly, many mechanisms to control 

gene expression at the translational level have evolved. They allow organisms to i) rapidly 

and reversibly respond to different stresses or sudden environmental changes; ii) quickly 

produce proteins in tissues and developmental processes where transcription is absent or 

limited; and iii) elicit asymmetric localization of proteins when is required (1-3). For 

instance, gametogenesis, early embryogenesis, memory and neurogenesis are processes 

where translational control plays a prominent role (4-8). 

The knowledge of the basic processes of translation was established some decades ago, and 

many regulatory mechanisms have been subsequently elucidated in different organisms (9-

11). In recent years, the use of powerful genome-wide sequencing, proteomics and 

bioinformatics-based technologies in both model and non-model organisms, has shown that 

a number of components of the translation apparatus has undergone a large diversification 

across eukaryotes, and that many of them emerged at different times on evolution (11, 12). 

Moreover, universal and lineage-specific mechanisms regulating translation have been 

described, and evidence supports the notion that some of them might have emerged at 

different times during evolution (11, 12). Evidence supports the notion that some of these 

mechanisms might have appeared by tinkering, i.e. co-opting and assembling molecules and 

regulatory mechanisms from other cellular processes (11). Overall, the emerging view 

suggests two general principles. On one hand, that while the fundaments of translation are 

well conserved across all forms of life, in eukaryotes the initiation step has undergone 
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substantial increase in complexity as compared to prokaryotes (11, 13-18); on the other hand, 

that after eukaryotes emerged the translation apparatus continued evolving to certain 

degree during eukaryotic diversification (12). The continue divergence of eukaryotes led to 

the diversification of metabolic requirements, to the appearance of different levels of body 

plans and organismal complexity, and to the arousal of novel developmental programs and 

behavioural patterns. Altogether, these changes led to the invasion of novel ecological 

niches. These events most probably were both the causes and effects of a parallel 

diversification and specialization, to different levels in different taxa, of components and 

mechanisms of the translation apparatus. Here I will review current knowledge on how this 

apparatus might have originated and further evolved in eukaryotes, making emphasis on 

the initiation step of translation. 

2. An overview of the translation process in eukaryotes 

Eukaryotic translation is a sophisticated and tightly regulated process, the basic steps of 

which are conserved in all eukaryotes. It is performed by the ribosome together with 

multiple ‘translation’ factors and aminoacyl-tRNA synthetases (aaRSs). It is divided into 

four major groups of steps: initiation, elongation, termination and recycling (Fig. 1).  

 

Figure 1. The general process of translation in eukaryotes. A typical eukaryotic mRNA is represented. 

The cap structure (m7G), the open reading frame (light blue box) and the poly(A) tail are depicted. 

During Initiation, most eukaryotic mRNAs are translated by the cap-dependent mechanism, which 

requires recognition by eIF4E (light purple) complexed with eIF4G (red) and eIF4A (light green) –the 

so-called eIF4F complex– of the cap structure at the 5’ end. A 43S pre-initiation complex (consisting in a 

40S ribosomal subunit (dark gray) loaded with eIF3 (pink), eIF1 and eIF1A (light grey), initiator Met-

tRNAiMet (blue clover), eIF2 (dark green) and GTP binds the eIF4F-mRNA complex and scans along the 

5’-UTR of the mRNA to reach the start codon (usually an AUG triplet). During the scanning eIF4A, 

stimulated by eIF4B (dark blue), unwinds secondary RNA structure in an ATP-dependent manner. The 

poly A-binding protein (PABP, dark brown) binds both the poly(A) tail and eIF4G promoting mRNA 

circularization. Free 60S ribosomal subunit is stabilized by eIF6 and eIF3. Elongation is assisted by 

elongation factors eEF1A and eEF2 (light brown). During this step, aminoacyl-tRNA synthetases (aaRSs, 
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blue) catalyze the binding of amino acids (aa) to cognate tRNAs. Termination is mediated by the release 

factors eRF1 (gray) and eRF3 (light blue), and happens when a termination codon (STOP) of the mRNA 

is exposed in the A-site of the ribosome. In this step, the completed polypeptide (blue line) is released. 

During Recycling, which is required to allow further rounds of translation, both ribosomal subunits 

dissociate from the mRNA. Recycling is assisted by ABCE1 (light blue). eRF1 remains associated with 

the post-termination complexes after polypeptide release. 

2.1. Initiation 

Translation initiation is mediated by eukaryotic initiation factors (eIF). For the big majority 

of mRNAs, translation initiation happens by the so-called cap-dependent mechanism (19-

23). It begins with the dissociation of the ribosome into its 60S and 40S subunits by eIF6. Free 

40S subunit, which is stabilized by eIF3, eIF1 and eIF1A, binds to a ternary complex 

(consisting of eIF2 bound to an initiator Met-tRNAiMet and GTP) to form a 43S pre-initiation 

complex. In separate events, the cap structure (m7GpppN, where N is any nucleotide) 

present in the 5’ end of the mRNA is recognized by eIF4E in complex with eIF4G (forming 

the so-called eIF4F complex). Then the 43S pre-initiation complex is recruited to the 5’ end of 

the mRNA, a process that is coordinated by eIF4G through its interactions with eIF4E and 

the 40S ribosomal subunit-associated eIF3. eIF4G also interacts with the poly A-binding 

protein (PABP) which interacts with the mRNA 3’-poly(A) tail, thereby promoting 

circularization of the mRNA and increasing its stability. The closed-loop model proposes 

that during translation, cross-talk occurs between both mRNA ends due to this circularity. 

The ribosomal complex then scans in a 5’ > 3’ direction along the 5’-untranslated region 

(UTR) of the mRNA to reach the start codon, usually an AUG. During scanning, eIF4B 

stimulates the activity of eIF4A, which unwinds secondary RNA structures in the mRNA. 

eIF1, eIF1A, and eIF5 assist in the positioning of the 40S ribosomal subunit at the correct 

start codon so that eIF2 can deliver the anti-codon of the initiator Met-tRNAiMet as the 

cognate partner for the start codon, directly to the peptidyl (P)-site of the 40S ribosomal 

subunit. Once the ribosomal subunit is placed on the start codon, a 48S pre-initiation 

complex is formed. Then eIF5 promotes GTP hydrolysis by eIF2 to release the eIFs. Finally, 

the 60S ribosomal subunit joins the 40S subunit in a eIF5B-dependent manner to form an 80S 

initiation complex. The outcome of the initiation process is a 80S ribosomal complex 

assembled at the start codon of the mRNA containing a Met-tRNAiMet in the P-site (19-22). 

In some mRNAs, 5’-UTR recognition by the 40S ribosomal subunit is driven by RNA 

structures located in cis within the mRNA itself. Such structures are defined as Internal 

Ribosome Entry Site (IRES) and are located nearby the start codon. This mechanism takes 

place without involvement of the cap structure and eIF4E and is called an IRES-dependent 

initiation of translation (13, 24, 25). 

2.2. Elongation 

Translation elongation is assisted by elongation factors (eEF). During this step, mRNA 

codons are decoded and peptide bonds are formed sequentially to add amino acid residues 
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to the carboxy-terminal end of the nascent, mRNA-encoded, peptide (21, 26-28). Elongation 

involves four major steps: i) formation of the ternary complex eEF1A⋅GTP⋅aminoacyl-tRNA 

and delivery of the first elongator aminoacyl-tRNAs to an empty ribosomal tRNA-binding 

site called the A (acceptor)-site. It is in the A-site where codon/anticodon decoding takes 

place; ii) Interaction of the ribosome with the mRNA-tRNA. This duplex activates 

eEF1A⋅GTP hydrolysis and guanine nucleotide exchange on eEF1A; iii) Peptide bond 

formation then occurs between the P-site peptidyl-tRNA and the incoming aminoacyl 

moiety of an A-site aminoacyl-tRNA. This reaction is catalyzed by the peptidyl transferase 

center of the 60S ribosomal subunit, and the products comprise of a new peptidyl-tRNA that 

is one amino acid residue longer and a deacylated (discharged) tRNA. iv) Binding of 

eEF2⋅GTP and GTP hydrolysis promote the translocation of the mRNA such that the 

deacylated tRNA moves to the E (exit)-site, the peptidyl-tRNA is in the P-site, and the 

mRNA moves by three nucleotides to place the next mRNA codon into the A-site. The 

deacylated tRNA in E-site is then ejected from the ribosome. The whole process is repeated 

along the mRNA sequence. When a stop codon is reached the process of termination is 

initiated (21, 26-28). 

2.3. Termination 

Translation termination is mediated by two polypeptide chain-release factors, eRF1 and 

eRF3. When any of the termination codons is exposed in the A-site, eRF1 recognizes the 

codon, binds the A-site, and triggers the release of the nascent polypeptide from the 

ribosome by hydrolysing the ester bond linking the polypeptide chain to the P-site tRNA. 

This reaction leaves the P-site tRNA in a deacylated state, leaving it to be catalyzed by the 

peptidyl transferase center of the ribosome. eRF1 recognizes stop signals and functionally 

acts as a tRNA-mimic, whereas eRF3 is a ribosome- and eRF1-dependent GTPase that, by 

forming a stable complex with eRF1, stimulates the termination process (21, 29, 30). 

2.4. Recycling 

In the recycling step, both ribosomal subunits are dissociated releasing the mRNA and 

deacetylated tRNA, so that both ribosomal subunits can be used for another round of 

initiation (21, 29, 30) (Fig.1). Evidence suggests that the ABC-type ATPase ABCE1 is 

probably the general ribosome recycling factor which coordinates termination with 

recycling (31). ABCE1 establishes multiple contacts with both ribosomal subunits as well as 

with the release factors and stimulates ribosome dissociation. ABCE1 also influences eRF1 

function during stop-codon recognition and peptidyl-tRNA hydrolysis. During ribosome 

recycling, eRF3 dissociates from ribosomal complexes after GTP hydrolysis, whereas eRF1 

remains associated with posttermination ribosomal complexes after peptide release (31-33).  

According to the closed-loop model, termination and recycling may not release the 40S 

ribosomal subunit back into the cytoplasm. Instead, this subunit may be passed from the 

poly(A) tail back to the 5’-end of the mRNA, so that a new round of initiation can be started 

on the same mRNA (21, 29, 34) 



 
On the Emergence and Evolution of the Eukaryotic Translation Apparatus 35 

3. The emergence of eukaryotic translation  

The emergence of eukaryotes from prokaryotic ancestors led toward novel, higher levels of 

cell organization. A plethora of new features emerged at the cellular level, including the 

acquisition of a nucleus, an endoplasmic reticulocyte and endosymbiotic bacteria, the 

formation of split genes sorted out in chromosomes, an actin-based cytoskeleton and, in 

many phyla, the emergence of multicellularity, behavioural patterns and developmental 

programs. In this new type of cell, novel features appeared in the translation process, 

including the spatio-temporal separation between transcription and translation, and the 

increase of the number of events occurring during the initiation step that led to the 

establishment of the cap-dependent mechanism. 

During the emergence of eukaryotes, the translation apparatus itself also underwent 

profound changes, including the evolution of the 40S and 60S ribosomal subunits from the 

prokaryotic 30S and 50S, respectively. This was due to the addition of several rRNA 

expansion segments, peptide additions to most ribosomal proteins, and the addition of extra 

eukaryotic-specific components, including novel ribosomal proteins and the 5.8S rRNA (26, 

35-38). Moreover, the number of initiation factors increased. While in prokaryotes 

translation initiation is assisted by three factors, in eukaryotes initiation needs the interplay 

of at least fourteen factors. Thus, novel, eukaryotic-specific translation factors evolved 

(including eIF3, eIF4B, eIF4E, eIF4G, eIF4H and eIF5). The mRNA also underwent profound 

changes which can be summarized as follows: i) it acquired a novel molecular structure, 

from polycistronic to monocistronic, capped, and polyadenylated transcripts; ii) it acquired 

a novel life cycle, from simultaneous transcription/translation, to be transcribed, spliced and 

exported from the nucleus, to be stored, translated and degraded in the cytoplasm; and iii) it 

acquired a novel functional conformation when engaged in translation, displaying a 

functional cross-talk between the 5’- and 3’-ends. Finally, with the emergence of eukaryotes 

the number of different mechanisms that regulate translation was expanded (11-15, 17, 39). 

How the transition from prokaryotic to eukaryotic translation occurred remains still 

unresolved. I will discuss some ideas that have been set forward to try to address this 

question. 

4. The transition from prokaryotic to eukaryotic translation initiation  

4.1. Translation initiation in the prokaryotic world 

It was established in the 1970s that in eubacteria the recruitment of the small ribosomal 

subunit to the mRNA occurs by a direct interaction. This happens via the complementary 

base pairing between the Shine-Dalgarno (SD) sequence of the mRNA, which is a purine-rich 

region located at around 10 nucleotides upstream the start codon, and a sequence at the 3’ 

end of the 16S rRNA on the ribosome (referred to as anti-Shine-Dalgarno sequence, ASD) (40, 

41). The importance of the SD sequence to initiate translation was later experimentally 

corroborated in different eubacteria and archaea (42-44), and has been retained in some cell 

organelles that evolved from eubacteria over a billion years ago (45). This, together with the 



 
Cell-Free Protein Synthesis 36 

large proportion of genes having the SD sequence in the well studied bacteria, led to the 

general idea that for the vast majority of prokaryotic mRNAs the SD sequence was the 

essential (although not necessarily the sole) element to select the correct initiation codon, and 

that the SD/ASD interaction during initiation is conserved in most prokaryotes (16, 46, 47). 

However, in recent years a large number of mRNAs lacking a SD sequence have been 

discovered widespread in a variety of different eubacterial and archaeal lineages. These 

include mRNAs devoid of 5'-UTR (and hence referred to as “leaderless” mRNAs) (15, 16, 39, 

45, 48-54), and mRNAs that possess a 5’-UTR and lack a SD sequence (45, 48-53, 55). For 

leaderless mRNAs the start codon itself was found to serve as the most important signal for 

ribosome recruitment and for translation initiation. Here the initiator tRNA and IF2 are 

critical for complex formation between the start codon and the ribosome. It is noteworthy that 

translation initiation of leaderless mRNAs involves the undissociated ribosome 70S instead of 

the 30S ribosomal subunit (15, 16, 39, 51, 56-59). mRNAs with a 5’-UTR devoid of a SD 

sequence exhibit a pronounced minimum in secondary structure and AUG start codons 

reside in single-stranded regions of the mRNAs. For these mRNAs, ribosome binding to the 

start codon is a sequence-independent event, but is strictly dependent on the local absence of 

RNA secondary (45). Translation initiation of these transcripts is promoted by the ribosomal 

protein S1 (RPS1), which is a component of the 30S ribosomal subunit. RPS1 interacts with 

the 5’-UTR of an mRNA initiating translation efficiently, regardless of the presence of a SD 

sequence. Intriguingly, neither archaeobacteria nor eukaryotes contain a RPS1 gene, raising 

the question of how leadered mRNAs devoid of a SD sequence are translated in Archaea (39, 

46, 49, 51). Finally, evidence suggests that alternative, unknown mechanisms might be used 

to initiate translation in Cyanobacteria (49) and in haloarchaea (60). 

Overall, the emerging view indicates that in the prokaryotic world, both SD-dependent and 

SD-independent translation mechanisms are present in all major groups of prokaryotes. 

Indeed, evidence suggests that the leaderless mechanism might represent the major 

pathway to initiate translation in Archaea (52-54). Thus, it has been suggested that the last 

common ancestor of existing life already possessed an established fundamental translational 

apparatus, but the mechanisms to initiate translation initiation further diversified in the 

bacterial and archaeal lineages (17, 49, 50, 60). 

4.2. What was the mechanism to recruit mRNAs in the last common ancestor of 

existing life? 

Despite the presence of leaderless and leadered, SD-lacking mRNAs across prokaryotes, a 

recent study using the genomes of 277 prokaryote species, both eubacteria and archaea, 

showed that the anti-SD sequence at the 3’ end of the 16S rRNA on the ribosome is highly 

conserved among all species, and that loss of the SD sequence seems to have occurred 

multiple times, independently, in different phyla (49). These observations strongly suggest 

that the SD/ASD interaction plays an important role in translation initiation in essentially all 

prokaryote species that are descended from the last universal common ancestor. Thus, the 

SD-based mechanism of ribosome recruiting might have driven translation initiation in the 

last common ancestor of existing organisms, but was further lost in different phyla (49). For 
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those phyla which lost the SD sequence, RSP1-mediated or leaderless mRNA-used 

mechanisms of translation initiation work to great extent (49). The evolutionary pressures 

that led to the loss of SD sequences, however, are completely unknown. 

4.3. The transition to eukaryotes 

As mentioned above, while the fundaments of translation are well conserved in all forms of 

life, in eukaryotes the initiation step underwent substantial increase in complexity and in 

number of initiation factors as compared to prokaryotes. 

Although it is established that eukaryotes evolved from archaeal ancestors, we still don’t 

know what lineage they evolved from. Thus, we don’t know what type of mRNA (i.e. SD-

containing, leaderless, or SD-lacking transcript) the first eukaryotes possessed. Nevertheless, 

all eukaryotic mRNAs lack SD sequences and ribosomes have no RPS1. I have previously 

suggested that three were the most important evolutionary forces that led to the emergence 

of the cap-dependent initiation mechanism in eukaryotes, namely (i) the need to adjust to 

the emergence of the nuclear membrane and interrupted genes, (ii) the subsequent 

requirement to splice and export intron-less mRNAs to the cytoplasm, and (iii) the absence 

of SD sequence and RSP1 in eukaryotic mRNAs (11, 13, 14). Because eukaryotic mRNAs lack 

both SD sequences and RPS1 protein, they cannot efficiently recruit the small ribosomal 

subunit directly to the initiation codon. This, together with the fact that most initiation 

factors that evolved only within the eukaryotes (including eIF4E, eIF4G, eIF4B, eIF4H and 

eIF3) are involved in the cap-binding and the scanning processes, indicates that the absence 

of both SD sequences and RSP1 protein was one of the crucial selection pressures that led to 

early eukaryotes to develop a novel mechanism to ensure the correct landing of the 

ribosome at the 5’-end of mRNAs, namely the cap-dependent initiation (11, 13, 14). 

I have discussed that during eukaryogenesis and before the time when the cap-dependent 

initiation was developed, it is possible that there would have been a transition period where 

the mRNAs of the early eukaryotes were translated in a cap-independent, IRES-driven 

manner. In this period, 5’-UTRs lacking SD motifs that were able to passively recruit the 40S 

ribosomal subunit would have been positively selected for and could, therefore, have 

become the first examples of IRESs (Fig. 2). In this scenario, the cap structure, a proto-eIF4G, 

the poly(A) tail and an ancestral PABP, might have appeared for functions in RNA 

metabolism that emerged among the primary adaptive responses to the emergence of split 

genes and the need for nucleocytoplasmic RNA export, but initially had no role in 

translation (11, 13, 14). As a consequence of the absence of the SD sequence in eukaryotic 

mRNAs, the scaffold proteins eIF4G, eIF3 and eIF4B, as well as the 5’-end cap structure, 

eIF4E, and RNA helicases were later incorporated into the already established but incipient 

eukaryotic translation machinery because they ensured a more efficient recruitment of the 

40S ribosomal subunit by the mRNA. Altogether, these events led the “scanning” process to 

evolve and to the establishment of the current cap-dependent translation initiation. 

Mutations in PABP, which allowed binding to eIF4G and promoted mRNA circularization 

underwent a strong positive selection because they ensured a more efficient recruitment of 
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the 40S ribosomal subunit by the mRNA, stimulating translation and increasing mRNA 

stability. mRNA circularization provides an effective means for the protein synthesis 

apparatus to selectively translate only intact mRNAs, i.e., those that harbor both a cap and a 

poly(A) tail. Thus, mRNA circularization also (and perhaps primarily) underwent a strong 

positive selection because it represents a checkpoint that determines whether or not to 

initiate translation (11, 13, 14). 

 

Figure 2. A proposed model for the evolution of the cap-dependent. 

initiation of translation. (A) Ancestral archaeal cells had polycistronic (blue boxes) mRNAs. It is not 

known what was the mechanism used by the prokaryotic ancestors of eukaryotes to recruit the mRNA by 

the 30S ribosomal subunit. (B) The evolutionary transition from ancestral archaeal cells to early 

eukaryotes is represented. Due to the appearance of the nucleus and split genes, transcription and 

translation were decoupled, and a need to splice, export and protect the transcripts during nucleus-

cytoplasm export emerged. The cap structure might have first appeared at this evolutionary stage to 

provide a "platform" to assemble the splicing, export and RNA protection mechanisms (see reference 14 

for details). The arousal of PABP might have happened at this stage as part of the mechanisms to protect 

mRNAs (see reference 11 for details). The lack of SD sequences in the mRNAs, probably as a result of 

massive invasion of introns from endosimbionts, as well as the apparition of monocistronic mRNAs and 

both the 40S and the 60S ribosomal subunits, happened at this stage. Initiation of translation occurred 

perhaps in an IRES-dependent manner via the direct recruitment of the 40S ribosomal subunit by the 

mRNA. (C) The evolution in the cytoplasm of a proto-eIF4G (Pr-4G), along with the emergence of eIF3 

and eIF4B, gradually improved the delivery of the 40S ribosomal subunit to the early mRNAs during 

evolution. The scanning process (orange arrow) evolved probably at this stage due to the activity of RNA 

helicases coming from different processes of metabolism that at the same time could participate in the 

unwinding of mRNA secondary structure during translation initiation. Among them, however, only an 

eIF4A-like helicase evolved functional interactions with eIF4G thus becoming later the canonical 

initiation factor eIF4A. (D) It is not know when eIF4E evolved during eukaryogenesis. However, an 

interaction of eIF4G with eIF4E, eIF4A and PABP evolved, which eventually led to the establishment of 

today's widespread cap-dependent mechanism to initiate translation. 
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5. Diversification of eukaryotes and further evolution of the translation 

apparatus 

5.1. Functional divergence of initiation factors 

After eukaryotes emerged, components of the translation machinery further evolved along 

the radiation into different phyla (Fig. 3). The continue appearance of different levels of 

organismal complexity led to the arousal of new phyla, developmental programs, 

behavioral patterns, and the invasion of novel ecological niches by eukaryotes. These events 

most probably were the causes of a further evolution, to different levels, of components and 

mechanisms of the translation apparatus in different taxa (11, 12). In the following, I will 

summarize the most studied examples of this.  

 

Figure 3. Diversity in the components of the translation apparatus across eukaryotes. The different 

components of the translation machinery with well-studied diversity in different phyla are shown in 

colors. Components with some diversity that is not discussed here are depicted in gray. Several cognates 

of eIF4E (purple) and eIF4G (red) have been found in plants, metazoan, protists and some fungi. In some 

cases, eIF4E cognates have evolved towards translational repressors (4E-HP, dark blue, is an example). 

Many 4E-binding proteins (including Maskin, 4E-BPs, Eap1, p20 and Cup, light blue) have been 

discovered in different species. The subunit composition of eIF3 (pink) ranges from 5 to 13 nonidentical 

polypeptides in different phyla. There is, however, a core of five homolog subunits shared by most 

eukaryotes. Some diversity has been found in eIF6. Several RNA helicases (light green) from diverse 

organisms are involved in the Initiation step. A family of five kinases (HRI, PERK, GCN2, PKR and PKZ, 

red) phosphorylate the alpha subunit of eIF2 to inhibit global translation under stress conditions. The 

presence of eIF2alpha kinases varies in different lineages. Different domains, such as WHEP, EMAPII, 

and UNE-S, have been added to different aminoacyl-tRNA synthetases (aaRSs, blue) in distinct phyla of 

multicellular species. For Elongation to happen, a number of protist, algae and fungi lack eEF1A (light 

brown) and instead possess the related factor elongation factor-like (EFL, dark brown). Ribosomes from 

all eukaryotes perform Elongation with eEF1A and eEF2. However, the yeast S. cerevisiae requires an 

additional essential factor, eEF3 (dark pink), for Elongation to proceed. Genes encoding eEF3 have been 

found exclusively in many species of fungi. Evidence supports the notion that eEF3 activity promotes 

ribosome recycling. Several cytoplasmic PABP (dark brown) cognates have been found in many phyla. 
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Most evidence for molecular and functional diversification among the translation 

components has been found in the eIF4 proteins. All major eukaryotic lineages possess 

several paralog genes for members of the eIF4 families. For some of them, differential 

expression patterns, and even variable biochemical properties among paralogs of the same 

organism, have been found (12, 14, 61-66). For eIF4E and eIF4G cognates, physiological 

specialization has been also found and, in some cases, eIF4E cognates have evolved towards 

translational repressors (12, 14, 61-63, 65). These findings support the hypothesis that in 

organisms with several paralogs, a ubiquitous set of eIF4 factors supports global translation 

initiation whereas other paralogs perform their activity in specific cellular processes (61). 

Whereas the need for distinct eIF4 proteins in different tissues may have been the driving 

force behind the evolution of various paralogs in multicellular organisms, in unicellular 

eukaryotes different paralogs may be differentially needed during distinct life stages 

(67).The multisubunit eIF3 is another example of factor that has undergone molecular 

diversification across eukaryotes, whose subunit composition ranges from 5 to 13 

nonidentical polypeptides in different phyla (68). However, the functional relevance of these 

phenomena is not known. 

5.2. Multiple helicases involved in the initiation step  

eIF4A is the factor traditionally thought to perform RNA helicase activity to unwind the 5’-

UTR secondary structure during the scanning. Recently, other RNA helicases from diverse 

organisms have also been found to be involved in different steps of translation initiation. 

Such is the case of the mammalian, Drosophila and yeast helicases DDX3 and Ded1, as well 

as the human helicases RHA and DHX29 (69-71). Evidence supports the idea that in 

Drosophila, the helicase Vasa is a translational activator of specific mRNAs involved in 

germline development (5, 6). In contrast, orthologs of the Xenopus helicase Xp54 in several 

organisms, including Drosophila Me31B, Saccharomyces Dhh1, human rck/p54, and 

Caenorhabditis CGH-1 have been found to repress translation of stored mRNAs and promote 

aggregation into germplasm-containing structures (72). In Arabidopsis, the eIF4F complex 

contains eIF4A in proliferating cells but different RNA helicases in quiescent cells (73). 

These findings show that evolutionary convergence has happened in different lineages to 

fulfill the need of RNA helicase activity during translation initiation.  

5.3. Divergence in molecules involved in the elongation step 

In contrast to the initiation step, the process of elongation is highly conserved among all forms 

of life. Strikingly, a recent genome-wide analysis revealed that a number of eukaryotic lineages 

lack eEF1A, a canonical factor that delivers aa-tRNAs to the A-site of ribosomes during the 

elongation step. Instead, they possess a related factor called elongation factor-like (EFL) 

protein that retains the residues critical for eEF1A (74). It was later found that EFL-encoding 

species are scattered widely across eukaryotes and that eEF1A and EFL genes display mutually 

exclusive phylogenetic distributions. Thus, it is assumed that eEF1A and EFL are functionally 

equivalent (74-82). It is thought that eEF1A is ancestral to all extant eukaryotes and that a 
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single duplication event in a specific lineage gave rise to EFL. EFL genes were then spread to 

other lineages via multiple independent lateral gene transfer events, where EFL took over the 

original eEF1A function resulting in secondary loss of the endogenous eEF1A. It is thought that 

both genes co-existed for some time before one or the other was lost. Indeed, the diatom 

Thalassiosira bears both EFL and eEF1A genes (79) and might be an example of this situation. It 

is also possible that there was a single gain of EFL early in evolution followed by differential 

loss of it (74, 78, 79, 81, 82). So far, EFL genes have been identified in widespread taxa, 

including diatoms, green and red algae, fungi, euglenozoans, foraminiferans, cryptophytes, 

goniomonads, katablepharid, chlorarachniophytes, oomycetes, dinoflagellates, choanozoans, 

centrohelids and haptophytes. Most of them are unicellular organisms. In contrast, most 

eukaryotes contain only eEF1A (74-82). 

Key molecules for elongation are aaRSs, which catalyze the aminoacylation reaction 

whereby an amino acid is attached to the cognate tRNA (21, 26, 27). aaRS represent an 

intriguing and perhaps unique case of evolution among the components of the translation 

apparatus. Throughout evolution of multicellularity, different domains such as the 

tripeptide ELR (Glu-Leu-Arg), the oligonucleotide binding fold-containing EMAPII domain, 

the WHEP domain, the glutathione S-transferase (GST) domain and a specialized amino-

terminal helix (N-helix), have been progressively added to different aaRSs in distinct phyla. 

The tripeptide ELR and the EMAPII domain were incorporated simultaneously to TyrRSs in 

metazoans starting from insects; the WHEP domain is present in TrpRS only in chordates; 

and a unique sequence motif, UNE-S, became fused to the C-terminal of SerRS of all 

vertebrates. In bilaterian the glutamylRS and prolylRS were linked via WHEP domains 

giving rise to a bifunctional glutamyl-prolylRS (83, 84). 

It has been found that the function of the aaRSs was either increased or impaired by the 

addition of the new domains. Whereas the WHEP domain regulates interaction of TrpRS 

with its cognate receptor, with MetRS this domain plays a tRNA-sequestering function. The 

Leu-zipper motif in ArgRS is important for the formation of multi aaRSs complex (MSC), 

which enhances channeling of tRNA to the ribosome. Moreover, different aaRSs play 

diverse roles in cellular activities beyond translation, such as stress response, plant and 

animal embryogenesis, cell death, immune responses, transcriptional regulation, and RNA 

splicing (83-85). It has been found that the incorporation of domains to aaRSs correlates 

positively with the increase in organism’s complexity. For example, the number of aaRSs 

carrying the GST domain increases from two in fungi to four in insects, to five in fish and six 

in humans (83). Thus, it has been proposed that the newly fused aaRSs domains triggered 

the appearance of new biological functions for these proteins in different lineages, and that 

the fusion of domains to aaRSs could have played an important part in expanding the 

complexity of newly emerging metazoan phyla (83). 

5.4. Divergence in termination and recycling factors 

Termination is governed by eRF1, which is a monophyletic protein that was inherited by 

eukaryotes from archaeal ancestors. eRF1 is universally present in eukaryotes and, with the 
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exception of some vascular plants and some ciliates, eukaryotes contain only one eRF1 gene 

(86-89). Interestingly, unusually high rates of eRF1 evolution have been found in organisms 

with variant genetic codes (mostly protists and unicellular fungi), especially in the N-

terminal domain, which is responsible for stop-codon recognition (86, 87, 89-92). eRF1 

displays structural similarity to tRNA molecules and mimics its activity during binding of 

ribosomal A-site during recognition of a stop codon (91-94). Since mutations in eRF1 N-

terminal domain switch from omnipotent to bipotent mode for stop-codon specificity (94-

98), most likely the accelerated evolution of eRF1 in organisms with variations to the nuclear 

genetic code has been driven mainly to accommodate these variations (89-99). 

Another striking case of evolutionary divergence was found in the fungi. Ribosomes from 

all eukaryotes perform elongation with eEF1A and eEF2. Surprisingly, it was found that the 

yeast Saccharomyces cerevisiae requires an additional essential factor, eEF3, for the elongation 

cycle to proceed (100). Genes encoding eEF3 were subsequently identified exclusively in 

other fungi, including Candida, Pneumocystis, Neurospora, Aspergillus and Mucor (101-104). 

eEF3 is an ATPase that interacts with both ribosomal subunits and that is required for the 

binding of aminoacyl-tRNA-eEF1A-GTP ternary complex to the ribosomal A-site by 

enhancing the rate of deacylated tRNA dissociation from the E-site (105). Recently, it was 

shown that post-termination complex, consisting of a ribosome, mRNA, and tRNA, is 

disassembled into single components by ATP and eEF3. Because the release of mRNA and 

deacylated tRNA and ribosome dissociation takes place simultaneously and no 40SmRNA 

complexes remain, it is proposed that eEF3 activity promotes ribosome recycling (106). It 

remains unsolved what were the evolutionary forces that led to the emergence of eEF3 

exclusively in fungi.  

6. Concluding remarks 

One of the enigmas in current Biology is how eukaryotic protein synthesis emerged. I have 

discussed that, in the absence of SD sequence in mRNAs and RPS1 in ribosomes, the 

evolution of translation machinery followed a gradual addition of scaffold proteins, namely 

eIF4G, eIF3 and eIF4B, which highly improved the efficiency and regulation of mRNA 

binding to the 40S ribosomal subunit (14). This, together with the incorporation of several 

RNA helicases, eIF4E and PABP, gradually improved the global efficiency, accuracy and 

possibilities of gene expression regulation at the level of translation initiation (14). Most 

likely the molecular diversification of the translation apparatus is among the basis that 

provided to early eukaryotes the scope to invade new ecological niches and overcome the 

different environmental and biological challenges this represented. Indeed, the evolution of 

the translation apparatus might have been both, cause and consequence of eukaryotic 

radiation. 

Translation in eukaryotes is tightly coupled to other features and components of cellular 

metabolism. For example, translation control is coupled to RNA transport to ensure 

different developmental programs to occur (107, 108). The RNA transport machineries have 

also diverged in different phyla, and together with them some components of the translation 
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apparatus also diverged (108). Another fundamental aspect of RNA metabolism is the 

storage and degradation of mRNAs in different cytoplasmic bodies, such as P-bodies and P-

granules, which contain translation factors (109). The diversity and conservation of these 

foci across phyla are a reflection of the general evolution that the translation machinery and 

its regulation have undergone during eukaryotes evolution. 
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