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1. Introduction

Audio signal analysis and classification have arisen as an important research topic that has
been developed by many authors in different areas over the time. A main development
context has been speech recognition Holmes & Huckvale (1994); Juang & Rabiner (2005);
Kimura (1999). This specific topic is, in fact, an important source of references to
applications of artificial intelligence techniques Juang & Rabiner (2005); Prasad & Prasanna
(2008). Many classical problems encountered in this research field have been addressed from
this perspective by many authors Farahani & Ahadi (2005); Minematsu et al. (2006).

However, in this same context, a different point of view can be adopted to deal with the
analysis and classification of music signals. The tasks in this framework are varied, including
the detection of pitch, tempo or rhythm Thornburg et al. (2007), but also other tasks like
the identification of musical instruments Müller et al. (2011) or musical genre recognition
Tzanetakis & Cook (2002) can be considered. Also the classification of audio samples as music
or speech has been thoroughly considered in the literature Panagiotakis & Tziritas (2005),
Tardón et al. (2010).

In this specific context of analysis of musical signals, we will expose some ideas regarding
signal classification and their application to a real task.

2. Models and applications

Audio signal classification involves the extraction of a number of descriptive features from the
sound and the proper utilization of them as input for a classifier. Artificial Intelligence (AI)
techniques provide a way to deal with signal processing and pattern classification tasks from
a different point of view of classical techniques.

AI techniques play an important role in the signal processing and classification context
as they have been widely used by a number of authors in the literature for very
different tasks Haykin (1999); Kohonen et al. (1996); Ortiz, Górriz, Ramírez & Salas-Gonzalez
(2011a); Ortiz, Gorriz, Ramirez & Salas-Gonzalez (2011b); Ortiz, Ortega, Diaz & Prieto (2011);
Riveiro et al. (2008). Also, we must be aware of the fact that the current trend in artificial
intelligence systems points to the utilization of both classical and AI-based methods in
conjunction to improve the overall system performance. This leads to build hybrid
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2 Artificial Intelligence and Applications

artificial intelligence systems. These systems can include neural-based techniques, evolutive
computation, or statistical classifiers as well as other statistical techniques such as multivariate
or stochastic methods.

Through this chapter, we will present the problem of classification of musical signals. The
problem will be defined to be handled in a supervised or unsupervised way. It is be important
to point out that a preprocessing stage to determine the features to be used for the classification
task must be done although the classifiers can be able to properly deal with the different
discrimination capability of the different features. Afterwards, a classifier will assign a
different label related to the features employed to any different sound class in a process
performed in a supervised or unsupervised way.

Taking into account that unsupervised classification strategies are able to organize training
samples into suitable groups according to certain classes without using any a priori
information (the samples to be classified are not labelled), we will describe how to apply these
ideas in this context. We will present features related to the analysis framework and samples
of the performance.

Unsupervised techniques include the Self-Organizing Maps (SOM) Kohonen (2001), a vector
quantization method with a competitive learning process. SOMs provide a generalization of
the input space through the prototypes computed during the training phase. In this model,
each prototype represents a set of input vectors on the basis of a given similarity measurement.
Very often, the similarity measure selected is the Euclidean distance. Moreover, it will be
specially interesting to observe that SOMs group the prototypes maintaining the more similar
ones close to each other in the output space while the less similar prototypes ones are kept
apart. In this way, SOMs provide valuable topological information that can be exploited
to make them more flexible than other vector quantization methods. This means that a
description of a SOM model for a certain application must be complemented by additional
details. Specifically, we are referring to two different aspects: the first one consists on
the modelling of the activation process of the neurons of the SOM which can be done by
means of statistical techniques such as Gaussian Mixture Models (GMM) to account for a
probabilistic behaviour of the map. The second aspect to consider is related to the techniques
that allow the extraction of valuable topological information from the SOM; this process can be
accomplished by classical clustering techniques such as k-means or other techniques Therrien
(1989) specially developed for clustering the SOM.

On the other hand, supervised classification Murtagh (1991) techniques use a priori
information of at least some of the samples. It means that the training samples have
labels according to their corresponding class. Classical methods include different clustering
techniques or statistical classifiers. We will introduce some labels and related features for
classification and describe the utilization of them to attain certain classification objectives.

3. Audio signal features for classification: Clarinet music example

In this section we describe five features extracted from audio signal. These features will
compose the input data used in the unsupervised classifiers shown in the following sections.
The examples shown aims to detect four different playing techniques from clarinet music.
The features extracted from the audio signal attempts to characterize the signal in both, time
and frequency domains in a simple way, being effective enough to perform classification
experiments.
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Classification examples have been performed using three different clarinets from real
recordings taken from the Musical Instrument Sound Data Base RWC-MDB-1-2001-W08 Goto
(2004). Clarinet 1 is a french clarinet made by Buffet, Clarinet 2 is a french clarinet made by
Selmer and Clarinet 3 is a japanese clarinet many by Yamaha. For each clarinet, we have 120
note samples that contain the whole clarinet note range played with different dynamics for
each playing technique (Normal, Staccato, Vibrato and Trill). This gives a total of 1440 note
samples.

3.1 Time domain characterization

In this Section, we describe the features used to characterize the audio signal in time domain.
The duration and the shape of the envelope of the clarinet audio signals contain information
about the technique used to play the notes.

Thus, as in Barbancho et al. (2009); Jenses (1999), the attack time (Ta) is considered from the
first sample that reaches a 10% of the maximum of the amplitude of the waveform of the note
until it reaches the 90% of that amplitude. The release time (Tr) is considered from the last
sample that reaches 70% of the maximum of the amplitude of the waveform to the last one
over the 10% of the amplitude. On the other hand, the time between the attack time and the
release time is called the sustain time Ts. Ta, Tr and Ts depend on the playing technique.

The signal envelope is obtained by filtering the signal with a 5th order Butterworth filter with
cut-off frequency of 66 Hz. After the application of the low-pass filter, the signal is normalized
so that the amplitude is 1. On the other hand, the samples with amplitude under 2.5% of the
maximum are removed.

Additionally, we include another time domain feature Tf based on the presence of signal
fading (i.e.: if the signal envelope is fading, Tf = 1, otherwise Ts = 0).

3.2 Frequency domain characterization

In order to characterize the clarinet in the frequency domain, we use the Fast Fourier Transform
(FFT). In the frequency domain, the frequency axis is converted into MIDI numbers according
to the following equation:

MIDI = 69 + 12 log2( f /440) (1)

Taking into account that the fundamental frequency of the notes of the clarinet ranges from
146.83 Hz to 1975 Hz, the MIDI range of interest is 50 to 94.

However, it is necessary to remove redundant information from the FFT in order to simplify
the signal spectrum. Thus, for a certain MIDI number nMIDI the spectrum between nMIDI −
0.5 and nMIDI + 0.5 is considered and the maximum value of the spectrum in that interval is
assigned to nMIDI. Thus, the MIDI number spectrum (or MIDI simplified spectrum) of each
note will have 45 samples. From this simplified spectrum, the pitch and the spectrum width
around the pitch will be calculated. At this point, we have three time domain features (Ta,
Tr , Ts and Tf ) and two frequency domain features, Fp and Fw. Fp is the pitch of the played
note, and Fw is the spectral width of the fundamental frequency defined and calculated as the
number of significative samples around the fundamental frequency. We consider as significant
samples those over 30% of the value of the fundamental frequency. Thus, the feature space
is composed by six-dimensional vectors in the form (Ta, Tr, Ts, Tf , Fp, Fw). These six features
may be discriminant enough to characterize the playing technique.

119Unsupervised and Neural Hybrid Techniques for Audio Signal Classification



4 Artificial Intelligence and Applications

3.3 Playing technique characterization

The time and frequency domain features previously described can be used for characterizing
different playing techniques from clarinet music samples. Thus, we will recognize four
playing techniques as normal (NO), staccato (ST), vibrato (VI) and trill (TL).

Normal playing technique presents a short attack time (Ta) (see Fig. 1). Figure 1, presents
the audio waveform, the envelope and the simplified spectrum of an A4 played normal. This
note corresponds to the middle range of the notes played with a violin. There not special
characteristics if notes with higher or lower pitches are played. The shortness of the attack
time, and the lengths of the sustain time (Ts) and the release time (Tr) (the time it takes the
sound to die when the air pressure, that maintains the clarinetist, finishes) can be observed.
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Fig. 1. Waveform, envelope and simplified spectrum of an A4 played normal.

In staccato, the duration of the note is reduced to a half, that is, the main characteristic of a
note played in staccato will be its short duration. In this technique the clarinettist, produces
an constant air pressure, but his tongue will be in the reed to avoid any vibration. When the
clarinettist removes the tongue from the reed, a fast attack is get and just after put again his
tongue in the reed, so the sustain time and the release time are reduced. So, in this technique,
the attack, sustain and release times are going to be reduced. Figure 2, presents the audio
waveform, the envelope and the simplified spectrum of an G4 played in staccato.

Vibrato stands for a slight fluctuation of the amplitude and the pitch of the notes. This
technique can be an undesirable effect when it is produced unwittingly due to the nervousness
of the clarinettist. Vibrato is a difficult playing technique and it requires certain level of
expertise. In this technique, the clarinettist produces a periodic variation of the air pressure by
means of contractions of the diaphragm or lip pressure over the reed. Consequently, when this
technique is used, the envelope shows periodic oscillations. Figure 3, shows the envelopes of
E3 and D6 played in normal mode and in vibrato and Figure 4, shows the simplified spectrum
of E3 and D6 played in normal mode and in vibrato.

Trill is a quavering or vibratory sound, specially a rapid alternation of sung or played notes.
This technique consists on changing between one note and the following one very quickly by
moving fingers. So, it should be expected that the envelope and the spectrum present notable
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Fig. 2. Waveform, envelope and simplified spectrum of an G4 played staccato.
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Fig. 3. Envelopes of E3 and D6 played in normal mode and in vibrato.

differences with respect to the ones found when the other playing techniques are employed.
Figure 5, presents the time signal, the envelope and the simplified spectrum of an G5 played
with trill.

4. Classification with Self-Organizing Maps

The Self-Organizing Map (SOM) is one of the most commonly used artificial neural network
models for unsupervised learning. This model, proposed by Kohonen Kohonen (2001), is a
biologically inspired algorithm based on the search for the most economic representation of
data and its relationships, as in the animal brain.

Sensory experience consists in capturing features from the surrounding world, and these
features usually are multidimensional. For instance, the human visual system captures
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Fig. 4. Simplified spectrum of E3 and D6 played in normal mode and in vibrato.
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Fig. 5. Waveform, envelope and simplified spectrum of an G5 played with trill.

features from different objects such as colour, texture, size or shape, which will provide
enough information to ensure further recognition of that object. The learning process in
the human brain projects the extracted features onto the neural structures of the brain
to creating different maps corresponding to different types of features. Moreover, the
learning process stores the prototypes of the features in the maps created. These maps are
continuously modified as the learning process progresses. Prototypes could be considered
as the smallest feature set needed to be able to represent the sensory information acquired.
In other words, prototypes represent generalizations of the learnt features, being possible to
distinguish between different objects, and associate similar ones. Moreover, sensory pieces
of information coming from different organs are topologically ordered in the brain cortex
(topology preservation in brain mapping).
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Input layer Output layer

Fig. 6. Self-Organizing Map architecture.

Thus, as in the brain learning process, the main purpose of SOMs is to group the similar
data instances close into a two or three dimensional lattice (output map), keeping apart the
different ones. Moreover, as the difference between data instances increases, the distance in
the output map also increases.

SOMs consist of a number or neurons, also called units, which are arranged following a
previously determined 2D or 3D lattice, and each unit stores a multidimensional prototype.
Thus, topology is preserved as in the human brain, which is a unique feature of the SOM.
Figure 6 shows the SOM architecture in which the output layer is arranged in a 2D lattice.

Units on the SOM are self organized during the training phase. During this stage, the distance
between any input vector and the weights associated to the units on the output map are
calculated. Usually, the Euclidean distance is used as shown in Equation 2:

U
ω(t) = argmin

i

‖ x(t)− ωi(t) ‖ (2)

where x(t) ∈ X, is the input vector at time t and ωi(t) is the prototype vector associated to the
unit i.

The unit closest to the input vector Uω(t) is referred to as winning unit and the associated
prototype is updated. To complete the adaptive learning process of the SOM, the prototypes
of the units in the neighbourhood of the winning unit are also updated according to equation 3
Then, the unit nearest the input vector is referred to as winning unit and the associated weight
is updated. Moreover, the weights of the units in the neighbourhood of the winning unit are
also updated according to Equation 3:

ωi(t + 1) = ωi(t) + α(t)hUi
(t)

(
x(t)− ωi(t) (3)

where α(t) is the exponential decay learning factor and hUi(t) is the neighborhood function
associated to the unit i. Both, the learning factor and the neighborhood function decay
with time, thus the prototypes adaptation becomes slower as the neighborhood of the unit
i contains less number of units. This is a competitive process in which the winning neuron
each iteration is called Best Matching Unit (BMU).
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The neighbour function defines the shape of the neighbourhood and it is usually a Gaussian
function which shrinks at each iteration, as defined by the next equations:

hUi
(t) = e

−
‖rU−ri‖

2

2σ
2(t) (4)

σ(t) = σ0e
−t
τ1 (5)

In Equation 4, ri represents the position on the output space (2D or 3D) and ‖ rU − ri ‖ is the
distance between the winning unit and the i-neuron on the output space. On the other hand,
σ(t) controls the reduction of the Gaussian neighborhood at each iteration. σ(t) usually takes
the form of exponential decay function as in Equation 5.

Similarly, the learning factor in Equation 3, also diminishes in time. However, α may decay in a
linear or exponential fashion. Therefore, during the training phase, the prototypes associated
to each unit are computed at each iteration. At the same time, the position of the units in the
output space changes according to the similarity among the actual prototypes.

As previously commented, topology preservation is a unique feature of the SOM related to
the goodness of the clustering process performed during training. This way, the calculation of
the quality of the output map, results essential to evaluate the overall process.

In order to perform a quantitative evaluation of the goodness of the SOM, two measures can
be accomplished. The first one is the quantization error, which is a measure of the resolution
of the map. This quantization error can be calculated by computing the average distance
between all the BMUs and the input data vectors as shown in Equation 6:

qei = ∑
xj∈c:i

‖ ωi − xj ‖ (6)

The second one measures the topographic error, i.e.: how the SOM preserves the topology.
This error can be computed using Equation 7:

te =
1

N

N

∑
i=1

u(−→xi ) (7)

In this equation, N is the total number of input vectors. u(−→xi ) is 1 if the first and the
second BMU for the input vector −→xi are adjacent units and 0 otherwise Arsuaga & Díaz (2005);
Kohonen (2001). Then, the lower qe and te, the better the SOM is adapted to the input patterns.

5. SOM clustering

In order to deal with fully unsupervised classification using SOMs, it is necessary to compute
the clusters brought up during the training phase.

This clustering process consist on grouping the prototypes in different classes according to a
similarity criterion. This similarity criterion depends on the clustering technique used. Thus,
several clustering approaches which use the Euclidean distance as similarity criterion have
been developed Murtagh (1995); Rossi & Villa (2009); Vesanto et al. (2000); Wu & Chow (2004).
In this chapter, we deal with SOM clustering using two different approaches.
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5.1 SOM clustering with K-means

k-means algorithm MacQueen (1967) is a well-known and widely used clustering method due
to its performance and simplicity. k-means aims to create k partitions from n observations
in such a way that each observation will belong to the cluster with the nearest mean to
that observation. In other words, the algorithm computes the centroids of each class at
each iteration, and computes the euclidean distance to each observation. Then, the nearest
observations to each centroid are considered as belonging to the centroid class.

Thus, given a n − dimensional data collection (x1...xn), k-means creates k, k < n classes, while
minimizing the mean squared error of the euclidean distance between each data point and the
corresponding cluster centroid, as shown in equation 8:

argmin
C

k

∑
i=1

∑
xj∈mi

‖ xj − si ‖
2 (8)

where mi represents the mean (centroid) of all the points belonging to the class i.

Although k-means constitutes a usual way to cluster the SOMs in an unsupervised manner, it
presents two main drawbacks:

• The number of clusters to be found has to be determined in advance. In other words, it is
necessary to know beforehand the value of k.

• k-means only uses the Euclidean distance between prototypes, and does not take into
account the relationship between the output and the data topology to compute the clusters.
This underutilizes the knowledge available at the output layer of the SOM given by data
topology and data distribution Tasdemir & Merenyi (2009); Tasdemir et al. (2011).

Hence, to deal with fully unsupervised classification using SOMs, supervised clustering
techniques have to be used at the output layer. In this sense, the CONN clustering method
Tasdemir et al. (2011), which is based on SOM visualization of a weighted Delaunay graph,
not only performs unsupervised clustering but also takes into account data distribution and
topology.

5.2 CONN clustering

CONN clustering computes clusters on the SOM output layer using a new similarity metric for
the prototypes Tasdemir & Merenyi (2009). This similarity measure is based on the receptive
field of each unit, instead of using the Euclidean distance, unlike other clustering algorithms.
Moreover, this technique does not need to know the number of clusters to be found, as in
k-means. CONN clustering computes the number of clusters during the clustering process.

As described in Section 4, each SOM unit has an associated prototype ωi. Each of these units
is the centroid of its voronoi polyhedron containing the receptive field of unit i, as described
in equation 9:

RFi = {xk ∈ X :‖ xk − ωi ‖≤‖ xk − ωj∀j ∈ S} (9)

where X is the data manifold and S is the set of units on the SOM layer.

Then, it is possible to define the connectivity strength between two prototypes ωi and ωj as
data vectors for which ωi and ωj are the BMU and second BMU Tasdemir & Merenyi (2009);
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Tasdemir et al. (2011):

RFij = {xk ∈ RFi/ ‖ xk − ωj ‖≤‖ xk − ωl ‖, ∀l �= i} (10)

Then, the connectivity strength matrix CONN(i, j) is created as CONN(i, j) = |RFij − RFji|
where each element indicates the connectivity between the prototypes ωi and ωj. In this way,
if CONN(i, j) = 0, it indicates that ωi and ωj are not connected.

Thus, it is possible to determine not only the similar prototypes which are included in a cluster
but also the number of clusters with a fully unsupervised clustering technique. In addition,
this clustering technique exploits the relationship between the data topology and the SOM
layer in a hierarchical agglomerative clustering method.

Figure 7a shows the labels assigned to each SOM unit when audio signal features are extracted
from clarinet music, and Figure 7b shows the clustering of the output layer using k-means,
computed using the SOM toolbox Vesanto et al. (2000). As commented above, it is necessary
to know the number of clusters (k) beforehand to run the k-means algorithm. Thus, it is
possible to compute the number of clusters that attain the best performance using the k-means
algorithm, using a measure of the validity of the clustering.

There are several metrics to evaluate the validity of the clustering process, such as
the Davies-Boulding index Davies & Bouldin (1979), the Generalized Dunn index (GDI)
Bezdek & Pal (1998), PBM index Hassar & Bensaid (1999) or the silhouette width criterion
Kaufman & Rosseauw (1990). These validity indexes provide lower or higher values as the
clustering improves depending on the specific algorithm. Particularly, DBI provides lower
values for better clustering results. This index is defined by the next equation:

DBI =
1

K

K

∑
k=1

max
i �=j

(
SKQi + SKQj

S(Qi, Qj)

)
(11)

where K is the number of clusters, SK is the average distance of all objects from the cluster to
their cluster centre and S(Qi, Qj) the distance between clusters centroids.

Then after several runs of the k-means algorithm the DBI has been computed and represented
in Figure 7c. According to this Figure, k = 4 leads to the best clustering scheme since it attains
the minimum DBI.

On the other hand, Figure 8 shows the clustering found using the CONN clustering algorithm
described above.

6. SOM modelling

In Section 4, the SOM learning model was described. In that model, the unit corresponding
to the prototype which is closest to the data instance is activated (BMU). This imposes with
a binary response of each unit, since each unit is activated or deactivated but intermediate
states are not considered.

A variant of the SOM consist on measuring the response of the map units instead of calculating
the BMU as the unit which is closest to the input data. This is related to a probabilistic
view of the output layer. In order to provide the SOM with this probabilistic behaviour, a
Gaussian Mixture Model (GMM) is built over the output layer Kohonen (2001). Thus, the
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Fig. 7. (a) Unit labels, (b) Davies-Boulding index for different values of k (c) Clustering result
for minimum DBI.
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Fig. 8. SOM clustering using the CONN Tasdemir et al. (2011) algorithm.

BMU is determined computing not only the minimum distance from an input vector but also
taking into account the likelihood of a unit of being the BMU. This way,the responses of the
units surrounding the BMU can be taken into account.
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Thus, the prior probability of each map unit i is computed in a similar way as in
Alhoniemi et al. (1999), as shown in equation 12:

p(i) =
#X̃i

#X̃
(12)

where #X̃ is the total number of input vectors and #X̃i is the number of vectors whose closest

prototype is ωi. More specifically, #X̃i is the number of sample vectors found by equation 13:

X̃i = {x ∈ V / ‖x − mi‖ ≤ ‖x − mk‖ k = 1, ...N} (13)

Thus, #X̃i can be defined as the set of data samples whose first BMU is the unit i (Voronoi set
of unit i).

The GMM is built according to the equation 14:

P(x1, ..., xn) = ∑
N

piPi(x1, ..., xn) (14)

where the weights pi for each Gaussian component correspond to the prior probabilities
computed in equation 12. In 14, each individual Gaussian component Pi corresponds to the
n − dimensional weights associated to each unit (prototype vectors) Alhoniemi et al. (1999);
Riveiro et al. (2008). The mean of each individual Gaussian component (kernel centre) is the
weight vector of the corresponding unit itself, while the covariance matrix for the i-component
is given by the dispersion of the data samples around the prototype i.

Once the GMM model has been built, the response of the unit i can be computed as the
posterior probability by using the Bayes theorem.

p(ωk|x) =
p(x|ωk)P(ωk)

p(x)
(15)

In equation 15, p(ωk|x) represents the probability that a sample vector x belongs to class ωk.
p(x|ωk) is the probability density function of the prototype ωk computed from the GMM and
p(x) is a normalization constant. This way, this posterior probability can be used to classify
new samples.

Figure 9 shows the mixing proportions of each component in the GMM that correspond to
each unit on the SOM. Thus, peaks and valleys can be used to identify th units to be activated
with largest probability.

In this way, SOM modelling provides a framework to include a probabilistic behaviour to
the SOM, making it possible to modify the activation likelihood of each unit by means of the
mixing proportions.

On the other hand, 6-dimensional SOM prototypes can be projected into a 2 or 3 dimensional
space using PCA and storing the 2 or 3 principal components with the largest eigenvalues,
respectively. Then, also the reduced prototypes can be modelled using a GMM. Figure 10a
shows the clusters computed by the projected prototypes considering a 2-dimensional GMM.
Similarly, Figure 10b shows the clusters computed using a 3-dimensional GMM.
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Fig. 10. GMM modelling of the projected prototyped into (a) 2D space and (b) 3D space.

6.1 SOM labeling

Once the map is trained, a label can be assigned to each unit in order to identify the receptive
field of this unit. This labelling process can be addressed in two main ways:

1. Labelling with majority voting scheme Vesanto & Alhoniemi (2000); Vesanto et al. (2000).
Each unit is labelled with the most frequent label on its 1-neighbourhood. In this case, the
size of the neighbourhood for labelling is fixed to radius 1. This process is performed once
after the SOM is trained and the assigned labels are used in further classification tasks.

2. Dynamic labelling Cruz et al. (2012); Ortiz, Górriz, Ramírez & Salas-Gonzalez (2011a);
Ortiz, Gorriz, Ramirez & Salas-Gonzalez (2011b); Ortiz, Ortega, Diaz & Prieto (2011). As
commented in Section 6, the response of the SOM units computed from the posterior
probabilities are used to label those units which remain unlabelled during the training
process. This way, when a new sample arrives, the BMU with the maximum a posteriori
probability is selected. However, this BMU could be unlabelled if the map is big enough.
In that case, the label of this unit is computed taking into account the response of the units
in the neighbourhood of the BMU. Hence, the label assigned to the BMU will be the label of
the unit in the neighbourhood Lp which provides the strongest response at the unlabelled
BMU, as shown in equation 16:

Lp = L{argmaxi{p(ωi|x) ∀i ∈ BN}} (16)
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This leads to a dynamic method which labels the units according to the response strength
of the neighbourhood units.

Figure 11a shows a posteriori probabilities associated to each unit in the 1-neighbourhood
of the BMU, which is currently unlabelled. As indicated in the figure legend, darker color
correspond to larger a posteriori activation probability. Then, the label of the unit in the
neighbourhood with the largest activation probability is assigned to the BMU, as depicted
in Figure 11b.
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Fig. 11. Probabilistic labelling procedure Cruz et al. (2012).

7. SOM modelling and clustering using ICA

SOM modelling has been addressed by means of Gaussian Mixture Models. This assumes
Gaussian distributions on SOM prototypes. An alternative for SOM modelling consist in
using Independent Component Analysis (ICA) Mixture Models Ghahramani & Beal (2000);
Lee et al. (2000); Tipping & Bishop (1999). This deals with an unsupervised classification of
SOM prototypes by modelling them as a mixture of several independent classes. Each of these
classes are described by linear combinations of independent non-Gaussian densities Lee et al.
(2000). Thus, in the same way the previously model uses multivariate Gaussian to model the
SOM prototypes, ICA mixture models can be used to estimate the probability of each data
instance to be generated by a non-Gaussian structure. Let X = {x1, ..., xn} be the data set
generated by a mixture model. The likelihood of the data can be expressed in terms of the
component densities in a similar way that in Equation 14, but in this case, each component
has a non-gaussian density derived from the ICA model. Then, the data belonging to each
class are described as

xt = Aksk (17)

where Ak is the mixing matrix in ICA and sk is the source vector.

Equation 17 assumes that the individual sources are independent, and each class was
generated from 17 using a different mixing matrix Ak. This way, it is possible to classify
the input data and to compute the probability of each class for each data point. In other
word, this allows calculating the probability of a data instance to be generated from an
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independent component. Nevertheless, as each SOM unit is considered as a kernel center,
gaussian components are usually more suitable to provide a probabilistic measurement of the
SOM units activation.

8. Growing Hierarchical Self-Organizing Map

The main drawback of SOMs is the size of the map, which has to be selected beforehand.
In addition, the performance of the classification process depends on the size of the SOM.
Additionally, the performance of SOMs with highly dimensional input data highly depends
on the specific features and the calculation of the clusters borders may be not optimally
defined. Taking into account these issues, the Growing Hierarchical Self-organizing Map
(GHSOM) Dittenbach et al. (2000); Rauber et al. (2002) arises as a convenient variant of SOMs.
GHSOMs dynamically grow to overcomes the limitations of the SOMs and to discover
inherent hierarchies on the data.

GHSOM is a hierarchical and non-fixed structure developed to overcome the main limitations
of classical SOM Rauber et al. (2002). GHSOM structure (shown in Figure 12 consists of
multiple layers in which each layer is composed by several independent SOM maps. Hence,
during the training process, the number of the SOM maps on each layer and the size of each
of these SOMs is determined. This constitutes an adaptive growing process in horizontal and
vertical ways. The growing process is controlled by two parameters that control the depth
of the hierarchy and the breadth of each map. Therefore, these two parameters are the ones
which have to be determined beforehand.

Fig. 12. GHSOM growing example.

In order to determine the limit of the growth of the GHSOM, the quantization error of each
unit is calculated according to the next equation:

qei = ∑
xj∈ci

‖ ωi − xj ‖ (18)

where Ci is the set of input vectors mapped into the unit i, xj is the j-th input vector belonging
to Ci and is the weight associated to the unit i.

Initially, all the input vectors are considered to belong to C0. This means that the whole
available input data are used to compute the initial quantization error, qe0. Then, the
quantization errors qei for each neuron are calculated. Thus, if qei < τ2 × qe0, then the neuron
i is expanded in a new map on the next level of the hierarchy. Each new map is trained as
an independent SOM and the BMU calculation is performed as shown in Equation 3 by using
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the Euclidean distance metric. Once the new map is trained, the quantization error of each
neuron on this map is computed as

qi = ∑
xj∈Ci

‖ ωi − xj ‖ (19)

(where qi is the quantization error of the unit u on the upper layer). Then, the mean
quantization error MQEm of the new map is computed. If MQEm ≤ τ1qi the map stops
growing.

All the growing process is depicted in Figure 12. If τ1 and τ2 are selected in such a way that the
GHSOM is sightly oversized, some of the units on the GHSOM maps may remain unlabelled
after training.

Classification using GHSOM can be accomplished in two ways:

1. Using the clusters computed by GHSOM. These clusters correspond to the receptive field
of each map on the lower level of the hierarchy. In this case, since labelling information
has not been used, it is possible to distinguish different data instances because the BMU of
these instances will be in the corresponding map. However, the identification of a specific
playing technique is not possible. This is shown in Figure 13.

2. Using the labelled data for GHSOM training. In this case, although the clustering process
is still competitive, the units will contain a label that identifies the playing technique
represented by its receptive field.

Fig. 13. GHSOM clustering.

Also, BMU calculation can be performed in GHSOMs in a similar way as in classical SOMs by
simply following the hierarchy level until the deepest map is found.

8.1 BMU calculation on GHSOM

Once the GHSOM is trained, the BMU is computed for every data sample.

In the case of SOM, the BMU is calculated in the same way it was found during the training
phase. Since several SOM layers have been created during the GHSOM training, we have
to follow the whole SOM hierarchy in order to determine the winning unit and the map it
belongs to.
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To this end, an iterative algorithm, depicted in Figure 14, has been developed. In this figure,
an example of BMU calculation on a three-level GHSOM is represented. Assume that the
distances between an input pattern and the weight vectors of the level 0 map are calculated,
then compute the minimum of these distances. As a result, the winning neuron on map 1 is
found. Since other maps could be grown from this winning neuron, we have to check if the
wining neuron is a parent unit. This test can be carried out making use of the parent vectors
resulting from the GHSOM training process. If a new map arose from the wining neuron, the
BMU on this map is calculated. This process is repeated until a BMU with no growing map is
found. Thus, the BMU in the GHSOM is associated to a map in a level of the hierarchy.

Fig. 14. GHSOM BMU calculation example.

At his point, a probability-based relabelling method can be applied using a 2D
Gaussian kernel centered at each BMU Ortiz, Górriz, Ramírez & Salas-Gonzalez (2011a);
Ortiz, Gorriz, Ramirez & Salas-Gonzalez (2011b); Ortiz, Ortega, Diaz & Prieto (2011). Thus,
a mayority-voting scheme with the units inside the Gaussian kernel is used to relabel the
unlabelled units, assigning the calculated label to the data samples as shown in Figure 15.

Fig. 15. GHSOM map relabeling method.

In Equation 20, the Gaussian kernel used to estimate the label for unlabelled units is shown:

L(x, y, σ) =
1

2πσ
2

e−
x2+y2

2σ
2 (20)

In this equation, σ determines the width of the Gaussian kernel. In other words, it defines the
neighbourhood considered for the relabelling process. On the other hand, (x, y) is the position
of the BMU in the SOM grid.

9. Concluding summary

In this chapter, we have presented the utilization of artificial intelligence techniques in the
context of musical signal analysis.

133Unsupervised and Neural Hybrid Techniques for Audio Signal Classification



18 Artificial Intelligence and Applications

We have described some features related to a specific classification problem and, then, we have
focused on the utilization of neural models for the development of specific tasks in musical
audio classification.

The classification task analysed in the context of the application of self-organizing maps and
some of its variants which make use of the competitive learning paradigm to implement
unsupervised classification techniques applied to audio signals.

As it has been shown in this chapter, these performance of these models can be improved by
means of hybridizing with other clustering and dimension reduction techniques like Principal
Component Analysis methodologies.

Also, the application of Gaussian Mixture Models provides a probabilistic behaviour of the
maps instead of a binary activation of the neurons.
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