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1. Introduction 

Dento-alveolar trauma and congenital absences are the most important causes of edentulism 
that are not associated with bacteria. However, the World Health Organization reports show 
that dental caries and periodontitis, two conditions of bacterial origin, are the most frequent 
oral diseases in humans [1]. These conditions might be avoided if an adequate oral 
preventive health policy is implemented, including preventive and educational measures 
that, regardless of the population´s socioeconomic factors, have shown their effectiveness. 
Despite these facts, tooth extraction1, defined as the surgical removal of a tooth, is currently 
the most frequent surgical procedure in the world [1]. 

Tooth loss or edentulism affects the aesthetics and function of the stomatognathic system. 
The missing interproximal contact produces an intra-arch imbalance that is visible as dental 
misalignment and the formation of anterior/posterior diastema.  Additionally, the tooth 
distal to the extraction site will drift mesially into the space, thus creating an oclusal 
collapse. Inter-arch disharmonies are observed as occlusal collapse, supereruption of 
antagonist teeth, and alteration of the vertical dimension of occlusion. The synergy of inter-/ 
intra- arch disequilibrium is associated with ATM dysfunction, muscle hyperactivity, 
nutritional imbalances, tooth wear, mobility, and potential harmful contact areas during 
mandibular eccentric movements or otologic symptoms [2]. 

Recovering aesthetics and function is only possible using some oral rehabilitation 
procedures such as fixed or removable prostheses. In the fixed restorations, titanium 
implant-based therapy appears as the “gold standard’, considering that successful rates of 
~95% after 5 years have been reported. 
                                                                 
1 Tooth extraction was indexed (1965) in the MESH of the National Library of Medicine (NLM). Some synonyms are 
dental extraction, exodontia or pulling teeth. 
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The history of implantology has been divided in two different phases, namely the pre-
osseointegration and post-osseointegration eras. Many audacious designs were developed 
to be used in sub- or endosteal areas in the former. The most commonly used implants were 
blades and plaques based on metallic alloys such as cobalt-chromium-molybdenum and 
stainless steel (Figure 1). These types of devices have been associated to doubtful long-term 
clinical success. Initial clinical research reported by Branemark was criticized, but the basis 
for a new philosophy in dental therapy had been initiated. After completing training in 
Sweden, Zarb and colleagues from Toronto started a longitudinal study to verify the 

  
Figure 1. History of dental implants. (a,b) Panoramic radiography and general view of a failed total 
rehabilitation supported on blade/plate-shaped implants. (c) Parallel pins implant, (d) Endosteal 
endodontic stabilizers and (e) different designs and surfaces of screw dental implants. 

 
Figure 2. Double implants to replace a mandibular molar. (a,b) Periapical radiography and occlusal view 
of the final rehabilitation. (c,d) Periapical radiography and detailed occlusal view after 10 years of function. 
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Figure 3. Ten-year follow-up of a successful implant-based rehabilitation after trauma. (a) Initial 
panoramic radiography, where radiopaque zones compatible with metallic residues are observed. (b) 
Initial clinical view. Note the extensive loss of mandibular teeth and their alveolar process. (c, d) 
Surgical phase: ten implants were placed in two surgical treatment phases after a procedure of 
distraction-based osteogenesis for vertical bone augmentation. (e,f) Final restorations exhibited an 
increased length to obtain a compensation of the vertically lost bone dimension. (g,h) Panoramic 
radiography and intraoral view after ten years of function. Note that the restoration is maintained in a 
good aesthetic condition. (i) Clinical view in labial resting position. 

possibilities of osseointegrated implants [3]. In 1982, the concept of osseointegration was 
discussed in a meeting in Toronto attended by people from the most important dental 
schools in North America. For more detailed information about the first steps of 
osseointegrated implants, the reader is referred to more specific literature [3, 4]. 
Branemark’s work described osseointegration as a biological phenomenon involving direct 
contact between bone and Ti surfaces, allowing for a new philosophy of therapy. 
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In general, it is accepted that implant therapy is a predictable treatment without any 
contraindications for partially and fully edentulous patients. However, several factors, such 
as implant design, surgical procedure, anatomic and osseous conditions, systemic diseases, 
prosthetic design (Figure 2), and two-stage or immediate loading may affect the prognosis 
and long-term success (Figure 3). A poor prognosis was observed in patients with 
insufficient quality and/or quantity of bone receptor. Patients exhibiting poor quality of 
bone (type IV) in the posterior area of the maxilla had a 35% implant failure. This 
retrospective study indicated that patients with type I, II and III showed only 3% failure [5].  

Systemic diseases are potential factors that affect the prognosis. The available information is 
derived from empirical observational studies where multifactorial risks are considered. Moy 
et al. showed a 10-year retrospective cohort study where 1140 patients were evaluated. Their 
results presented evidence that smoking, history of diabetes, head and neck radiation and 
postmenopausal estrogen therapy were correlated with a significantly increased failure rate, 
while gender, hypertension, coronary arterial disease, pulmonary disease, steroid therapy, 
chemotherapy and absence of hormone replacement therapy for post-menopausal women 
were not associated with increased risk in implant failure [6]. This study concluded that 
there are no absolute medical contraindications to dental implant rehabilitation, although 
they must be individually considered for each new patient. 

The decision to put implants in patients treated for aggressive periodontitis is a challenge 
since controlled studies with large sample sizes are not available. Some case reports showed 
approximately 8% failure in patients previously treated for aggressive periodontitis. 
However, all the evaluated implants were placed in patients that had been previously 
treated for several years before the implants were put in place [7]. Until more evidence 
becomes available, factors such as time before therapy, the presence of natural treated teeth 
or immune compromise might render these clinical situations unpredictable.        

Reduced alveolar bone height appears as an important consideration when evaluating the 
prognosis of dental implants. Two different approaches are used to achieve clinical success. 
In situations of an extremely reduced amount of bone, the surgeon may employ bone 
augmentation procedures (Figure 3 and 4), which result in higher costs, greater morbidity, 
and longer treatment times. Another possibility includes the use of short implants, which 
are defined as devices shorter than 6 to 10 mm [8]. Conflicting information is available about 
the success of this type of implants, with some authors reporting that short implants are 
unpredictable in cases of poor bone quality. However, alternative treatments are viable if 
other favourable factors are considered.  A survival rate of approximately 94% for a five-
year observation period was observed [8-10]. However, short implants have mechanical 
disadvantages as a consequence of implant-crown ratios and the amount of osseointegrated 
area around the implant [11]. 

In the last decade, there has been an important discussion related to loading implants 
immediately. Branemark’s group postulated that early loading affects the prognosis due to a 
fibrous capsule that may develop due to micro-movements, thus affecting osseointegration 
[12]. They introduced the two-phase surgical procedure, in which the implant is submerged 
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under gingival tissue and maintained unloaded during a 3 to 6-month period. However, 
new approaches have been introduced that include immediate loading based on the primary 
stability during surgical procedure and surface bioactivity [13]. 

 
Figure 4. Fourteen-year follow-up of a successful implant-based rehabilitation. (a) Full-thickness flap 
reflection reveals the extension of missing bone in the buccal aspect of the maxilla. (b) The use of 
monocortical block graft to reconstruct the horizontal deficiency of the maxilla. (c) After 6 months tissue 
exhibits good healing. (d) Three implants were placed in this site and submerged for a six-month 
period. (e,f) Periapical radiography and clinical photography of complete restoration after treatment 
and (g,h) Periapical radiography and clinical view after 14 years of function. 

The long-term success of an implant largely depends on the equilibrium between 
osseointegration and epithelial/connective tissue attachment. A complete soft tissue seal 
protects the newly formed bone from bacterial products originated in the oral environment.  

Several animal and in vitro studies showed similar epithelial and connective structures 
between the gingiva and the peri-implant mucosa. The outer surface of the peri-implant 
mucosa is lined by a stratified keratinized oral epithelium that is continuous, with a 
junctional epithelium attached to the Ti surface by a basal lamina and hemidesmosomes. 
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The non-keratinized junctional epithelium is only a few cell layers thick in the apical portion 
and is separated from the alveolar bone by collagen-rich connective tissue. This 3 to 4 mm 
biological barrier, formed irrespective of the original mucosal thickness, protects the 
osseointegration zone from factors released by the plaque and the oral cavity [14]. The main 
differences between the soft tissues around natural teeth and those around implants are the 
collagen fibres orientation, which run parallel from the implant surface to the crest bone, the 
low number of fibroblasts, and the reduced vascularization of the scar tissue.    

An osseointegrated implant is a good alternative to replace missing teeth, but they are not 
exempt from failure and complications (Figure 5). Oral implant failures have been classified 
as: 1) biological failures, which can be observed before loading and are associated with 
reduced osseointegration. If they take place after loading, they are associated with failing to 
maintain the achieved osseointegration; 2) mechanical failures, which can be observed as 
implant or prosthetic structural failures; 3) iatrogenic failures, mainly associated with 
procedures that affect anatomical structures or the misalignment of implants, which render 
them impossible to restore; and 4) failures by inadequate patient adaptation that include 
phonetical, aesthetical or psychological problems [15].  

 
Figure 5. Different failure types in dental implantology. (a,b) Periapical radiography shows a 
radiolucent lesion on the mesial surface associated with bone resorption and sign of mobility. 
Photography shows the implant after removal.   (c,d) Periapical radiographies show two posterior 
fractured implants. Fracture was apparently caused by bruxism. Note in the radiography (d) that the 
more anterior implant exhibits a large radiolucent zone as bone losses and the adjacent tooth shows an 
apical lesion. (e,f) Failure of full restoration on implants and natural teeth was caused presumably by 
poor design and support. 
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Mobility is the most evident sign of implant failure and can be presented as rotational, 
lateral or horizontal, and axial or vertical mobility [15]. There are different terms in the 
literature associated with biological implant failure or complications like peri-implant 
diseases, peri-mucositis and peri-implantitis, where the first two are reversible 
inflammatory reactions around a functioning implant. Peri-implantitis is a chronic 
inflammation with loss of the supporting tissues around the implant induced by bacterial 
colonization, facilitated by the implant/abutment gap and by the chemistry and surface 
roughness of the restorative components [14, 16]. 

Bacteria colonize and develop biofilms on the transmucosal abutment of osseointegrated 
dental implants.  Like the gingival crevice around the natural tooth, the peri-implant 
mucosa covering the alveolar bone is closely adapted to the implant. In partially edentulous 
subjects, the developing microbiota around implants closely resembles the microflora of 
natural teeth [14]. In addition to the dark-pigmented, gram-negative anaerobic rods, other 
bacteria are associated with peri-implant infections (Bacteroides forsythus, Fusobact. nucleatum, 

Campylobacter, Peptostreptcc. micros and Prevotella intermedia) [17], and eventually Staphylocc. 

spp, enterics, and Candida spp [18]. 

Metals, including Ti, may induce non-specific immunomodulation and self-immunity. In 
immunologic in vitro tests, sensitization to Ti was observed [19]. Such problems with Ti and 
the ever-growing expectations on aesthetics lead to increasing interest in all-ceramic 
implants. 

The surface texture of dental implants affects the rate of osseointegration [20] and 
biomechanical fixation. Surface roughness may be classified as “macro“, “micro“ and 
“nano“ sized topologies. The “macro” range, from millimetres to 10 μm, is directly related 
to implant geometry, with threaded screws and macroporous coatings helping the primary 
stability of the implants during the early phases of implantation. However, high surface 
roughness may increase peri-implantitis risk compared with moderate roughness (1-2 μm) 
within the “micron” range (1-10 μm), maximizing bone/implant interlocking. Surface 
profiles in the “nano” range play an important role in protein adsorption and osteoblast 
adhesion and thus, in osseointegration [21]. No reproducible surface roughness is currently 
clinically available.  

Dental implant failure is an active clinical research area. A number of strategies have been 
studied to modulate cell/material interactions, which play an important role in determining 
the short- and long-term implant success rate.  This chapter will be mainly focused on the 
basic aspects to study cell/material interactions in dental implants using progenitor cells and 
in vitro biofilm formation approaches, as well as basic information related with micro-
engineering technologies to modify dental implant surfaces. 

2. Strategies to study cell/material interactions 

Mesenchymal Stem Cells (MSCs) are commonly isolated from perinatal tissues (i.e, placenta, 
umbilical cord and blood from the umbilical cord) and postnatal tissues (bone marrow, 
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trabecular bone, alveolar bone, cartilage, hair follicles, fat, skin and dental pulp) [22]. Bone 
marrow and pulp derived cells are frequently used in oral biology research to evaluate the 
biocompatibility of different dental materials. However, the frequency of MSCs in both 
tissues is not well known (0.001 to 0.01%). Bernardo et al. reported that MSCs frequency in 
bone marrow exhibits an age-related behaviour from 1:10,000 in a new-born to 1:1,000,000 in 
an 80-year-old subject [23]. Another important aspect is associated with anatomic skeletal 
site-specific differences [24], where MSCs obtained from calvaria have proven more 
successful for grafting in craniofacial application than cells obtained from others donor sites. 

Different mechanical, chemical, or combined approaches have been used to disrupt the 
extracellular matrix to isolate MSCs from bone tissue bits or bone marrow. In the mechanical 
approach, the bone tissue is cut into small pieces using surgical blades, and then either 
suspended or plated. The main disadvantage of this procedure is shear-stress injury.  The 
enzymatic digestion of the bone chips, with a combination of trypsin and collagenase 
(chemical-based approach) to obtain a cell suspension, should be avoided because trypsin 
might damage the cell membrane surface. If these cells are collected for some type of human 
cell therapy, a complete characterization of these proteases is required by regulatory 
agencies.    

The number of sources for autologous MSCs for dentistry has increased due to the hundreds 
of mandatory extractions (e.g., third molars and premolars for orthodontic purposes) 
performed each year, since these tissues are routinely discarded. Many authors have shown 
that pulp-derived MSCs from deciduous and permanent teeth, as well as from periodontal 
ligament, might be isolated. These types of MSCs from different niches are heterogeneous 
and exhibit site-specific features, but in general they are able to produce bone, dentine, 
cement, and periodontal ligament-like structures [22, 25].   

The successful isolation procedure of homogeneous populations is commonly based on 
morphology at early culture stages, considering that MSCs exhibit a fibroblast-like 
morphology. In the case of heterogeneous populations, the classification based upon specific 
markers is more desirable. Although specific and unequivocal markers are not available, an 
evaluation of non-specific multi-markers allows for a reasonable characterization. Tuan [26] 
reported that MSCs cells are positive for STRO-1, CD73, CD146, and CD106, and negative 
for CD11b, CD45, CD34, CD31 and CD117, preferably evaluated by fluorescence-active cell 
sorting (FACS). Other phenotypic approaches require the evaluation of MSCs capacity for 
trilineage mesenchymal differentiation (osteoblasts, adipocytes and chondroblasts) under 
standard in vitro differentiating conditions [23, 27].  

Dulbecco’s Modified Eagle’s (D-MEM) and Minimal Essential Medium (α-MEM) are the 
most used standard cell culture media for in vitro bone cell studies. They are supplemented 
with different percentages of fetal bovine serum (FBS, 10% or 15%), antibiotics, antimycotics, 
and ascorbic acid. Coelho, et al. [28] made a comparative study on the behaviour of human 
bone marrow (hBM) osteoblastic cells cultured in α-MEM or D-MEM and they found a 
similar cell proliferation between both media. However, cells cultured in α-MEM exhibited 
higher ALP levels and earlier formation of mineralized deposits. Serum is essential in 
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promoting or inhibiting cell proliferation and differentiation since it is a complex mixture of 
proteins, growth factors, ions, lipids and hormones.  

Fetal Bovine Serum (FBS) is an inexpensive choice to conduct in vitro bone regeneration 
studies, but Human Serum is another option that can help to obtain more realistic results, 
and although a direct extrapolation from in vitro studies to clinical situations would be 
desirable, this has not been possible [29].  Recently, Deorosan and Nauman (2011) evaluated 
the effects of the concentrations of serum and glucose on the metabolic activity of murine 
MSCs, and concluded that the effects of the serum percentage (e.g. 2%, 5% and 10%) were 
negligible. However, a high correlation was found between cell viability and glucose 
concentrations (0.5 to 25 mM) [30].  

Antibacterial and antimycotic agents are other types of supplements that can be 
controversial. Both should be avoided because they may affect cell physiology and mask 
improper aseptic conditions. However, from a realistic point of view, considering the risk of 
losing irreplaceable MSCs, the standard use of antibacterials (e.g., Penicilin/Streptomycin, 
100 IU/ml and 10mg/ml, respectively; Gentamicin, 10μg/ml) and antimycotics (e.g., 
Amphotericin B, 0.25μg/ml) is required. Also, tetracyclines are often used to take advantage 
of their Ca-binding and fluorescence properties under UV light, allowing for the 
quantification of  matrix mineralization. Other tetracyclines, like doxycycline and 
minocycline, when in low concentrations, may stimulate the proliferation of human 
osteoblastic cells [31].    

The main goal of long-term in vitro MSCs cell cultures is their differentiation. To promote 
osteoblastic differentiation, the most frequently used supplements are ascorbic acid (AA, 
50μg/ml), dexamethasone (Dex, 10nM), and β-glycerolphosphate (βGP, 10mM) [32]. When 
tested in vitro, these compounds are able to promote growth and accelerate the 
differentiation process of osteoprogenitor cells, thus reducing the proliferation period of the 
developmental sequence in the expression of the osteoblastic phenotype [33]. Coelho and 
Fernandes studied the proliferation/differentiation of hBMSCs cultured under different 
conditions of mineralization supplements. Their results show high proliferation in all the 
tested conditions, but mineralization was only achieved in the presence of βGP and this 
mineralization was greater in the presence of Dex.[32]. 

The micro-environment affects the ability of the osteoblast to produce a mineralized matrix, 
thus compromising the bone repair/regeneration process. Roughness has been considered as 
a major aspect in the osseointegration of titanium implants. Albrektsson and Wennerberg 
[34] classified the surface implants as smooth (0.0-0.4 μm), minimally rough (0.5-1.0 μm), 
moderately rough (1.0-2.0 μm) and rough (>2.0 μm). Theoretically, an increased roughness 
can be associated with a stronger bone response but also a greater potential for peri-
implantitis and a higher risk of ionic leakage [34]. Other materials based on Co-Cr alloys 
and AISI 316L stainless steel have been used as dental implants. However, their use is 
controversial because corrosion products from Co-Cr alloys have been demonstrated to 
affect the cell viability, ALP activity and formation of a mineralized matrix in vitro when 
using osteoblast-like cells from rat, rabbit and human BM-MSCs [35]. These findings have 
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been confirmed with corrosion products from AISI 316L stainless steel (and the isolated Fe, 
Ni and Cr ions). Deleterious dose- and time-dependent effects on ALP activity and matrix 
mineralization in rat, rabbit BMSCs and human alveolar bone cell cultures have been shown 
[33, 36]. On the other hand, the release of ionic species from hydroxyapatite-based materials 
might be explored to obtain a positive modulation of the osteoblastic cell response. For 
instance, Si-substituted hydroxyapatite coatings promote osteoblast proliferation and 
differentiation when compared to hydroxyapatite coatings due, at least in part, to the release 
of Si ions [37]. The aforementioned studies help to understand the relevance of MSCs and 
their in vitro osteogenic differentiation as tools to assess bone cell response to materials and 
agents intended for bone repair/regenerations strategies. 

2.1. Bacterial adhesion process, biofilm formation and in vitro models 

Adherence mechanisms of oral bacteria are essential to bacterial colonization of the oral 
cavity. In their absence, bacteria become part of the salivary flow and are swallowed. As a 
result, oral bacteria have developed several mechanisms to fulfill this task. The mechanisms 
are highly specific; the oral cavity is colonized mainly by bacteria that are exclusively found 
in it. Through retention, these bacteria can form organized, intimate, multispecies 
communities referred to as dental plaque and biofilms [38, 39]. Microbial adhesion and the 
accumulation of pathogenic biofilms are considered to play major roles in the pathogenesis 
of peri-implantitis and implant loss [40]. Therefore, knowledge about the microbiology 
around dental implants is essential. 

After exposure of an osseointegrated implant to the oral cavity, an acquired pellicle is 
formed on the implant surface through selective adsorption of the environmental 
macromolecules including glycoproteins (mucins), proline-rich proteins, enzymes like α-
amylase, histidine-rich proteins, phosphoproteins like statherin, and other molecules [38, 
41]. These are derived mainly from saliva but, in the subgingival region, molecules originate 
from gingival crevicular fluid [42]. The physicochemical surface properties of a pellicle, 
including its composition, packing, density, and/or configuration, are largely dependent on 
the physical and chemical nature of the underlying hard surface.  

The adsorption of proteins from an aqueous solution onto a solid surface is the result of 
various types of interactions that simultaneously occur between all the components, namely 
the fluid, the solid and the solubilized proteins. The mechanisms involved in pellicle 
formation include electrostatic, van der Waals, and polarity forces. The polarity of each of 
these components has great impact on the adsorption process, which is reflected in the 
hydrophilicity or hydrophobicity of the interacting components [41, 43]. The pellicle plays a 
decisive role in microbial adhesion, as its constituents may interact with oral micro-
organisms, either by direct interaction with them, or indirectly by influencing the 
thermodynamic conditions for microbial adhesion [44]. 

After formation of the acquired pellicle, bacterial attachment with initial colonizers followed 
by cell-to-cell adhesion with secondary colonizers occurs on the implant surface [45]. An 
initial reversible adhesion involves weak, long-range, non-specific physicochemical 
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interactions between the charge on the microbial cell surface and that of the acquired 
pellicle. Microorganisms are usually transported passively to the surface by the flow of 
saliva or gingival crevicular fluid or by active bacterial movement. A few species (e.g 
Wolinella, Selenomonas and Campylobacter spp.) found sub-gingivally have flagella and are 
motile [42]. Alternatively, microorganisms in suspension may also be transported towards 
each other by microbial (co)aggregates [41].  

During the second phase of adhesion, strong, short-range interactions between specific 
molecules on the bacterial cell surface (adhesins) and complementary molecules (receptors) 
present in the acquired pellicle can result in irreversible attachment. Oral bacteria generally 
possess more than one type of adhesin on their cell surface and can participate in multiple 
interactions both with host molecules and similar receptors on other bacteria (co-adhesion) 
[46].  

Streptococci, the main early colonizers, bind to acidic proline-rich-proteins and other 
receptors like α-amylase and sialic acid in the acquired pellicle [47]. In addition, Actinomyces, 
which are other primary colonizers, bind to the acquired pellicle and to the streptococci [38, 
39, 41]. Consequently, these two groups of primary colonizers are thought to prepare the 
environment for later colonizers that have more fastidious and slow requirements for 
growth. Other bacteria, including periodontal pathogens such as Hamophilus 

actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Treponema denticola, 
Tannerella forsythensis or Fusobacterium species, bind to Streptococci and/or Actinomyces [48]. 
This stage also involves specific inter-bacterial adhesin-receptor interactions and leads to an 
increase in the diversity of the biofilm [46]. 

The increase in attached cell numbers leads to biomass augmentation and the synthesis of 
exopolymers that form a biofilm matrix. This matrix is a common feature of all biofilms, and 
is more than a chemical scaffold to maintain the shape of the biofilm. It provides a 
significant contribution to the structural integrity and general tolerance of biofilms to 
environmental factors (e.g. desiccation) and antimicrobial agents. The close proximity of 
cells to one another in a biofilm facilitates numerous synergistic and antagonistic 
interactions between neighboring species. Within the biofilm, oral bacteria do not exist as 
independent entities but rather as a coordinated, spatially organized, and fully metabolically 
integrated microbial community, whose properties are more relevant than the sum of the 
individual composing species [41, 42, 49]. 

The physico-chemical characteristics of specific material surfaces are known to significantly 
influence the bacterial adhesion process. Both surface free energy and surface roughness are 
known to play major roles in this process [41, 50]. High surface roughness values 
significantly promote bacterial adhesion by reducing the influence of shear forces on 
initially attaching bacteria, while materials with high surface free energy values are known 
to increase bacterial adhesion [51]. Furthermore, the bacterial adhesion process is influenced 
by the chemical composition, surface hydrophobicity, and the zeta potential of the material 
[52]. An increased zeta potential, which refers to the electrostatic potential generated by the 
accumulation of ions on the surface, results in decreased bacterial attachment. Generally, 
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hydrophobic microorganisms prefer to attach to hydrophobic substrata, and bacteria with 
hydrophilic properties prefer hydrophilic materials. Moreover, bacterial adhesion varies 
between the various bacterial species and strains [50, 53]. 

Understanding how bacteria relate and act within biofilms is essential for the prevention 
and proper management of dental and periodontal diseases [54]. In order to increase the 
knowledge concerning biofilm physiology, the creation of models to study and evaluate this 
complex consorting under controlled conditions is of great interest. Over the past years, 
several in vivo and in vitro biofilm models have been developed with this intent. However, in 

vivo studies in both animals and humans are more restricted due to problems with access 
and sampling and because of complex ethical issues involved [55, 56].  

The currently available in vitro models clarify extensively the microbial biofilm physiology, 
micro-ecology, pathology and behaviour. These models are used to replicate environmental 
conditions in vitro and have served as the major conceptual framework for biofilm research, 
ranging from static mono-cultures to the development of diverse mixed cultures growing 
under dynamic conditions. For each particular application, every model has its strengths 
and weaknesses that can be appropriate for one specific application but not for others [57-
59]. Two major biofilm models have been studied in the laboratory, namely biofilms grown 
without a continuous flow of fresh medium, known as static models, and biofilms grown 
with a continuous flow of fresh medium, known as flow models [60].  

The quantification of biofilms started with simpler methods based on the cultivation of the 
biofilm in the wall of test tubes or well plates, like the microtiter plate method.  With this 
system, biofilms are grown on the bottom of the walls or in a substrate placed on the wells 
of a microtiter plate, for a desired period of time. Besides its simplicity, this method has 
several advantages, such as low cost and the small amount of reagents required and allows 
to perform a large number of tests simultaneously, remaining among the most frequently 
used models to assess biofilm formation.  By running it under static conditions, the 
environment in the well will change during the experiment, unless the fluid is regularly 
replaced.  Also, during biofilm formation, bacteria may deposit on the substrate and on the 
bottom of the well, and not actively attach to the surface [55, 61-63]. 

Recently, a new model where the substrate can be positioned vertically to assure active 
attachment of the bacteria to the surface was developed. This simple high-throughout active 
attachment model consists of a lid with 24 clamps were different substrates can be put. This 
lid is placed in a common 24-well plate allowing the substrates to be vertically positioned 
during the period of biofilm formation [59, 63, 64]. 

Since in vivo conditions are almost exclusively dynamic, the use of reactors for the in vitro 
development of biofilms has been largely applied. These systems normally work using 
continuous flow to provide nutrients to the growing biofilm and can be used for different 
purposes [57].   

A very frequently used model in the dental research field is the constant depth film 
fermenter (CDFF), a steady-state model. This system consists of a rotating stainless steel disk 
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in which plugs are located.  Different materials can be placed and used as substrates for 
biofilm growth until a maximum thickness has been reached. When reached, the excess 
biofilm is scraped off and nutrients are distributed into the system. The reactor allows 
several parameters to be tailored, such as the possibility to choose growth conditions- 
aerobic or anaerobic- and the option to alter nutrient schemes. This model has been 
frequently used for dental plaque studies [56, 65, 66].  

Another commonly used system is the CDC biofilm reactor developed in the Centers for 
Disease Control and Prevention by Donlan, et al. [67, 68]. The reactor has 24 removable 
surfaces that allow biofilm formation under moderate to high sheer stresses in batch or 
continuous flow-conditions. It has been used to evaluate biofilm formation and structure 
and also to test the effects of antimicrobial agents in the biofilm [67, 68]. 

 
Figure 6. Biofilm formation on a) negative,  b) positive relief micropatterned surfaces and c) flat 
surfaces. 

However, the systems described previously lack the possibility of continuously monitoring 
biofilm growth. Recently, microfluidics systems have been adapted to study biofilm 
formation. Microfluidics set-ups are normally fabricated through soft-lithography with the 
size of the channels in the range of 50 to 500 μm and flow rates typically very low, between 
0.1–50 μl/min. These devices have the advantage of simulating biological phenomena with 
physiological flow velocities, low fluid-to-cell volume ratios, and biomimetic micro-/ nano-
engineered surfaces (Figure 6). Also, the small size of the chambers allows for real-time 
microscopic analysis of biofilm formation [55, 69, 70]. 

3. Micro/nanoscale engineering of cell-material interactions 

Understanding the interactions between cells and biomaterial surfaces at the micron-, 
submicron-, and nano-scale, is crucial for the production of functional biomedical devices 
(e.g. implants, biosensors, etc.). Biomaterials are known to elicit specific cellular responses 
(positive or negative) depending upon the surface chemical and/or physical properties. 
Surface topography (from the micron- down to the nano-scale), for instance, plays a crucial 
role in controlling important cellular processes such as adhesion, propagation, proliferation, 
orientation, migration, differentiation, and reactivity to certain hormones, growth factors 
and drugs, both in vitro and in vivo [71, 72].  
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The effects of surface microtopography on cell behaviour have been widely documented. 
Previous research has shown that microtextured surfaces, independent of surface chemistry, 
exhibit a strong influence on in vitro and in vivo cell behaviour [71, 73, 74].  

Surface microroughness affects in vitro adsorption of albumin and fibronectin [75]. Studies 
performed on randomly oriented microtopographies showed stronger cell adhesion, altered 
integrin expression, up-regulation of focal contacts, reorganization of the cytoskeleton, 
changed proliferation, increased differentiation, and enhanced susceptibility to different 
hormones and growth factors [76-79]. The implementation of lithographic and dry etching 
techniques from the silicon microelectronics industry into the cell biology field allowed for 
further studies on the effects of controlled microtopographies on cell behaviour [73]. For the 
past two decades, in vitro and in vivo studies on controlled microtopographies have shown 
enhanced cell adhesion and proliferation, cell orientation along the direction of the 
microfeatures, altered migration and motility patterns, up-regulation of certain cytoskeletal 
and extracellular matrix proteins, reduced immune response, increased mitochondrial 
activity, augmented differentiation, etc. Such effects are cell and material-dependent [80-85]. 

The effects of surface nanotopography on cell functions have been studied since the early 
1960’s [86, 87]. Cells are known to be reactive to objects as small as a few nanometers  
(~ 5nm) [80]. A number of different topographical patterns at the submicron and nano-scale 
(both randomly oriented and controlled) have been explored, including columns, dots, pits, 
pores, meshwork, gratings, nanophase grain, and random surface roughness [88-95]. 

Some studies have suggested that osseointegration is a function of the initial interactions 
that occur between the implant surface and blood. Park and collaborators found that platelet 
adhesion and activation were increased on micro/nanotextured titanium surfaces compared 
to polished ones [96], presumably due to the increase in actual surface area (leading to 
increased protein adsorption), and/or topographically-induced cytoskeletal rearrangement, 
which could have led to downstream intracellular signaling cascades resulting in platelets 
aggregation and granules release. This enhanced thrombogenic potential is expected to 
improve endosseous integration, as osteogenic cells reach the implant surface by migrating 
through the remnants of the initial osteo-conductive/inductive blood thrombus [97, 98]. 
Additional studies found that surface micro/nanotextures improve osseointegration due to 
the fact that the initial fibrin clot is mechanically stabilized by the topography [99, 100]. 

Finally, micro/nanostructured material surfaces have also been shown to provide a greater 
number of nucleation sites for the precipitation of minerals (e.g. Ca and P) from the blood 
plasma, which results in the formation of an amorphous apatite layer on the surface of the 
implant that could potentiate osseointegration [70, 101].  

Another way surface micro/nanofeatures could lead to enhanced osseointegration is by 
directly influencing bone cell responses. Previous studies showed that the initial osteoblast-
material interactions (i.e. adhesion, spreading and growth) could play an important role in 
leading to a long-term positive response at the bone-implant interface [70]. Fewster, et al. 
showed that micron-scale (1-50 μm) pillars and pores on polyethylene terephthalate (PET) 
and polystyrene (PS) surfaces led to improved osteoblast adhesion [102]. Using a cyto-
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detacher, Wang, et al. showed that the adhesion force of osteoblasts to nanostructured 
titanium surfaces increased (38.5-58.9 nN) in direct proportion to the surface roughness [70]. 
Webster, et al. found increased vitronectin adsorption and enhanced osteoblast cell adhesion 
on nanophase alumina surfaces [95]. Wan, et al. showed that osteoblast adhesion was also 
enhanced on micro- and nanostructured PLLA and PS surfaces, in comparison to their 
smooth surface counterparts [103]. In this study, no significant differences in the adhesion 
were found between micro- and nanostructured surfaces, and the cell proliferation levels 
were similar on textured surfaces compared to the smooth ones. Other groups showed 
increased osteoblast cell proliferation on nanostructured ceramic surfaces [104, 105]. This 
indicates that there may be a synergistic effects between surface topography and chemistry 
that need to be accounted for in some cases, or perhaps that the specific geometrical 
parameters (e.g. shape, size) of the nanotexture could also determine the degree of cell 
responses. 

Numerous studies have reported an enhanced osteogenic phenotype in response to surface 
micro- and nanotextures on polymeric, ceramic, and metallic materials [104-109]. 
Remarkably, Dalby, et al. showed that circular nanostructures can induce osteogenic 
differentiation in the absence of osteogenic factors in the cell culture medium [110, 111]. 
More recent reports by Zhao, et al. indicated that the combination of micro- and 
nanostructures on the same surface may result in a cooperative synergy between the micro- 
and nanotopography that ultimately leads to improved bone cell responses [112]. 

Micro- and nanotextured surfaces also tend to promote increased adhesion in other cell 
models (e.g. fibroblasts, smooth muscle cells, and chondrocytes), although the stimulus for 
topography-mediated increased cell adhesion seems to be more prominent for osteoblast 
cells [99]. Similarly, topography-mediated changes in cell morphology, gene expression, 
proliferation, and migration, have been reported for human embryonic stem cells, rat aortic 
endothelial cells, murine macrophages, epithelial, and glial cells, among others [71, 113].  

Although surface nanotopography for the most part has been shown to induce “positive” 
cell responses (e.g. increased adhesion, proliferation, differentiation), there are other reports 
that suggest that this phenomenon (i.e. topography-mediated cell responses) may be 
regulated to some degree by the specific geometrical (and perhaps chemical) properties of 
the patterns. Curtis, et al. studied the effects of different nanofeatures (pillars, pits, randomly 
distributed Au nanoparticles) on fibroblast and endothelial cell behaviour [114]. The results 
confirmed increased cell adhesion on the nanogrooves, and decreased adhesion on the 
nanopillars and nanopits (with adhesion being inversely proportional to the distance 
between nanofeatures). Cell adhesion on the Au nanoparticles was no different compared to 
flat surfaces. Dalby, et al. studied fibroblast responses to PMMA nanocolumns and found 
that cell adhesion and spreading were reduced on the nanocolumns compared to smooth 
surfaces [115, 116]. The cells growing on the nanocolumns exhibited lower actin 
polymerization, smaller focal adhesions, and increased filopodia formation. Kunzler, et al. 
studied osteoblast responses to silica-based nanotopographies, and found that cell adhesion, 
spreading, and actin polymerization were reduced on the nanostructured surfaces in 
comparison to smooth ones [117]. 
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To summarize, there is rather strong evidence suggesting that micro- and nanoscale surface 
structures have the potential to modulate cell responses, which could be used to better 
design biomedical devices (e.g. implants, sensors) by turning on/off specific responses 
depending on the application. However, the lack of systematic and more controlled studies 
limits the exploitation of this concept, as it is difficult to reach a consensus on a single micro- 
and/or nanotopography that could lead to optimum cell responses for any given 
application. Nevertheless, recent advances in the fields of micro- and nanofabrication are 
enabling the development of studies where different topographical parameters (e.g. feature 
size, organization, density, geometry) could be evaluated in a more controlled manner, 
which is expected to ultimately lead to a better understanding of the role of surface 
topography on cellular responses. 

A host of different techniques have been developed to imprint features on the surface of a 
biomaterial at the submicron and nanoscale: laser irradiation, soft lithography, dip-pen 
nanolithography, capillary lithography, electron beam (e-beam) lithography, 
microimprinting, interference lithography, nanoimprint, X-ray lithography, polymer 
demixing, and colloidal lithography among others [88-90, 92, 93, 118-122].  

3.1. Soft Lithography and Sol-Gel Technology 

Lithography has been used since ancient years. Initially, photolithography was introduced 
in the editorial industry to achieve better printing results. However, this technique 
contributed later to the development of the integrated circuit industry, and it became the 
main contributor to the information technology. Photolithography is also essential to 
produce technology for sensors, microsensors, micromechanical systems (MEMS), 
microanalytical systems, micro-optical systems and integrated circuits [123, 124]. 

In 2006, Ferrari, et al. wrote “Less than twenty years ago photolithography and medicine 
were total strangers to one another …. And then, nucleic acid chips, microfluidics and 
microarrays entered the scene, and rapidly these strangers became indispensable partners in 
biomedicine” [125].  

In basic terms, photolithography helps to create small structures in a massive scale, but it is 
not always the best option for all applications since it requires expensive technology. Poor 
results for curved substrates and the fact that it is limited to photosensitive materials are 
some of its drawbacks. These limitations inspired two important review papers introducing 
Soft Lithography (Figure 7) [123, 124]. 

The soft lithography process can be included among other techniques that are basically 
rapid prototyping processes. Figure 7 shows a 24h flow from the idea to the final 
prototyping [123]. Establishing borders for soft lithography is a hard task because several 
techniques, such as microcontact printing (mCP), replica molding, microtransfer molding, 
micromolding in capillaries (MIMIC) and solvent-assisted micromolding (SAMIM), include 
the use of stamps or molds as key elements to produce micro- nano-patterns [123]. 
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Figure 7. Rapid prototyping using Photolithography and Soft Lithography. Adapted from [123] 

Elastomers, such as polydimethylsiloxane (PDMS) have been used in most applications of 
stamping. Other research groups have also used other elastomers such as polyurethanes, 
polyimides, and cross-linked Novolac resin (a phenol formaldehyde polymer) [123]. PDMS 
exhibits advantages such as being chemically inert, good surface reproducibility, limited 
shrinkage, homogenity, isotropy, transparency, and easily modifiable by plasma. However, 
its main disadvantages are the swelling in the presence of non-polar solvents, such as 
toluene and hexane, and forces, like gravity. Adhesion and capillary forces exert stresses on 
the elastomeric features and cause them to collapse, generating defects in the produced 
pattern. Therefore, obtaining patterned surfaces with features smaller than 1 μm is difficult 
[123].  

Sol-gel is called “the wet chemistry” in processing ceramics, glasses and other materials, but it 
can be referred to as several chemical reactions occurring during the manufacturing of 
technological products. Under this term, several techniques of production of materials such 
as monolithics, powders, fibers, nanospheres, pigments, and coatings have been developed 
for aerospatial, optical, electronic, refractory, automotive, polymers and sensors, and 
medical industries [126-130].  

First synthesis of silica was described by Ebelmen in 1844, but it found its commercial 
application in the early 1960´s [131]. Since its beginnings in the 1940´s, the sol-gel processing 
has helped to obtain a new generation of materials (ceramic and glasses). Considering the 
initial precursors, the processing can be divided in aqueous solution of metal salts, metal 
alkoxide solutions or mixed organic, and inorganic precursors [132]. Frequently, the 
alkoxides (TEOS/MTES) have been used to produce a hybrid sol. These precursors 



 

Cell Interaction 290 

hydrolyze with the formation of partially hydrolyzed products and they subsequently 
undergo condensation with formation of an oxide network [133, 134]. The sol stage is used 
to produce thin films by spin coating, dip coating or imprinting.   

In general, these materials present high purity and homogeneity, their particle size 
distribution may be controlled at the nano-scale level, and they require low temperatures to 
be prepared. In comparison with high temperature processes, these sol/gel materials and 
processes save energy, minimize evaporation losses and air pollution, and, in general, do 
not induce reactions with their containers. However, they are not free of disadvantages. 
Among these disadvantages, the high cost of raw materials, the large shrinkage during 
processing, the residual hydroxyls, carbon and microporosity, the long times for processing, 
and the difficulty to adapt them to produce large pieces are found. For additional 
information, the readers are invited to read more specialized reviews [134, 135].  

 

 
 

Figure 8. Anisotropic (a) and isotropic (b) silica coatings produced by synergy of soft lithography and 
sol-gel technology. Inset in both figures shows the PDMS molds. 

For optical applications, surface relief features in or on thin films can be used. Specific 
geometries are used to produce couplers, filters, lenses, beam splitters and mirrors. For 
biomedical applications, Hench [136] described early that “A common characteristic of glasses, 

glass-ceramics and ceramics that bond to living tissues is the development of a bioactive 

hydroxyapatite layer in vivo at body temperature”. Also, this author proposed the following 
categories for materials with the potential for biological or medical use: 1) bioactive sol-gel 
coatings, 2) bioactive sol-gel glasses, 3) doped sol-gel matrices as biological and chemical 
sensors and 4) sol-gel matrices with entrapped living organisms. 

The synergy between soft lithography and sol-gel has been explored before in the 
production of membranes and waveguides with a feature size of 1 μm [137]. Figure 8 shows 
anisotropic and isotropic PDMS molds and microstructured silica coatings produced by sol-
gel. Specific shapes and dimensions can be selected depending on the application [138].  
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3.2. Bioactive Micropatterned Surfaces 

Ceramic nanoparticles can be added to silica thin films in order to increase bioactivity and 
contact surface area. Hydroxyapatite (HA) is one of the most widely used synthetic calcium 
phosphates due to its chemical similarities to the inorganic component of hard tissues.  

 
Figure 9. Silica coatings with bioactive Portland cement (PC) particles. SEM images of Portland cement 
particles (a) Energy Dispersive Spectrum of PC particles (b) micropatterned coating produced by dual 
(c) and single molding (d) Saos-2 osteoblast cells responses to the produced coatings. Dual (e) and 
single (f) molding. 

HA exhibits exceptional biocompatibility and bioactivity, key features for the formation of a 
direct and strong interface with bone, and in addition, osteoconductivity, which is the 
ability to serve as a template for the local formation and growth of new bone [139-141]. 
Current research is focused on the development of new HA formulations with properties 
closer to those of living bone, such as nano-sized and monolithic structures [139, 142]. 
Compared to conventional ceramic formulations, nanophase HA properties such as surface 
grain size, pore size, wettability, etc., could control protein interactions, thus modulating 
osteoblast adhesion and long-term functionality [95, 143] . These implant materials are 
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suitable for bone replacement and could be useful for additional functions, such as the 
release of drugs, growth factors, or other substances [144]. 

Portland cement based materials (e.g. MTA) have been extensively used in the dentistry field 
for stimulating the formation of cement and dentin (Figure 9a-b) [145]. The high content of 
Ca(OH)2 of hydrated Portland cement causes it to have an extremely basic pH (~12.5-13.0). 
This basic pH has been shown to be advantageous for endodontic applications as it prevents 
bacterial contamination. Moreover, the Ca(OH)2 released under physiological conditions 
interacts with phosphates in the medium to produce rapid precipitation of amorphous apatite. 
However, previous research by Gallego-Perez, et al. showed that the showed that the Ca(OH)2 
present in hydrated Portland cement could be extremely cytotoxic [146, 147].  

 
Figure 10. Stamping silica coatings with bioactive particles via single or dual molding technique [148-150]. 

Such toxic effect effect may not be desirable in certain applications, like implants, as it will 
prevent adequate cell adhesion and propagation on the surface and cause the formation of a 
large necrotic zone around the implant after placement, provoking a chronic inflammatory 
response by the host, which could potentially lead to total rejection of the implant. To avoid 
this, Gallego-Perez, et al. developed a simple strategy to obtain cytocompatible Portland 
cement based on the carbonation of the paste. The CO2 introduced during the hydration of 
Portland cement reacts with the Ca(OH)2 that is being formed to produce calcium carbonate 
(CaCO3), which decreases the pH of the cement (~7.4), and provides a more compatible 
environment for cell growth [146, 147, 151]. More recently, a new method was developed 
(Figure 10) for the production of cytocompatible Portland cement microparticles, which 
could be incorporated, along with nano-hydroxyapatite particles, in micropatterned 
bioactive coatings (Figure 9c-f) of interest to dental implantology [148-150]. 
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4. Future considerations 

Dental implantology is still an area of active research. A growing number of biomaterials, 
implant surfaces, and geometries, are currently available in the market. However, independent 
of the selected implant system, a successful therapy always results from the proper interplay 
between the implant, surrounding soft/hard tissues, and the oral environment.  

Different approaches are constantly being developed to modulate the response of MSCs as 
precursors of differentiated cells. MSCs cells from craniofacial niches are desirable for the 
repair or replacement of soft and hard oral tissues. Although a host of surface modification 
strategies can be implemented, micro-/ nanoengineered surfaces have shown great promise for 
this application, in part due to their ability to properly control cell and tissue adhesion to the 
implant surface. A close apposition of gingival tissues helps to prevent apical migration of 
bacteria, which could be responsible for the resorption of the bone crest and implant failure. 

Micro-/nanopatterned surfaces are an interesting model to study the basic phenomena 
associated with osseointegration and biofilm formation on dental materials. In addition, a 
number of other micro-/nanoscale technologies also facilitate the development of more 
complex model systems. As an example, microfluidic devices could help to study biofilm 
formation on micro-/nanoengineered surfaces under dynamic flow, thus resembling more 
closely the in vivo conditions. 

Finally, the synergy between soft lithography and sol-gel chemistry provides several 
possibilities to develop a new generation of dental implants with micro-/nanopatterned hard 
surfaces that may lead to improved osseointegration and guided soft/hard tissue regeneration. 
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