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1. Introduction 

Members of the large transforming growth factor β (TGF-β) superfamily of secreted growth 

factors initiate cellular signal transduction via binding to and oligomerization of two different 

types of membrane bound serine/threonine kinase receptors termed type I and type II 

(Carcamo et al., 1994, ten Dijke et al., 1996, Massague, 2000). They execute important functions 

in early (e.g. gastrulation) as well as in later stages (e.g. patterning) of embryonal development, 

but are also essential for regulation of tissue homeostasis and repair in the adult organism 

(Rosen & Thies, 1992, Kingsley, 1994, Hogan, 1996, Reddi, 1998, Massague, 2000). A 

characteristic feature of this protein family is the high degree of promiscuity in the ligand-

receptor interaction (for review see (Sebald et al., 2004, Nickel et al., 2009)). This is exemplified 

by the numeral discrepancy of a likewise large number of ligands - more than 30 ligands are 

known in mammals to date – and a comparably small number of receptors available for 

binding and signaling (Miyazawa et al., 2002). Only 12 receptors exist in the TGF-β superfamily 

of which seven belong to the type I and five to the type II receptor subclass (Newfeld et al., 

1999). This implies that a given receptor typically binds more than one TGF-β member, but we 

usually see that even a particular TGF-β ligand binds more than one receptor of either subtype 

(for review see (Sebald et al., 2004, Nickel et al., 2009)). Noteworthy, another seemingly 

reduction in the signaling output is due to the fact that principally only two primary pathways 

are activated by all TGF-β members (Hoodless et al., 1996, Nakao et al., 1997). After ligand-

dependent oligomerization of the single transmembrane receptors, the intracellular kinase 

domain of the type II receptor activates the type I receptor kinase domain by 

transphosphorylation of a type I receptor exclusive membrane-proximal glycine/serine-rich 

region, termed GS-box (Shi & Massague, 2003). This phosphorylation unleashes the binding 

site for a group of transcription factors called SMADs whose naming derives from their 
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homology to Drosophila’s mothers against decapentaplegic (MAD) and the C. elegans protein 

Sma (Derynck et al., 1996). Dependent on the nature of the type I receptor present in the TGF-β 

ligand-receptor signaling complex R-SMAD proteins (for receptor-regulated SMADs) either 

belonging to the so-called SMAD1/5/8 or the SMAD2/3 family become phosphorylated. 

Subsequently, the so activated SMAD1/5/8 or SMAD2/3 proteins form heteromeric SMAD 

complexes comprising one R-SMAD of either of the aforementioned subfamilies and the 

common mediator SMAD protein SMAD4. This heteromeric SMAD complex then translocates 

into the nucleus where it regulates gene transcription by functioning as a transcription or co-

transcription factor (see Fig. 1) (Heldin et al., 1997, Miyazono, 2000, Massague et al., 2005). 

 

Figure 1. Signal transduction of BMPs and GDFs. Signal transduction is initiated by binding of the dimeric 

ligand to two types of transmembrane serine-/threonine kinase receptors termed type I and type II. Upon 

ligand binding the receptor chains oligomerize and the type II receptor transphosphorylates the type I 

receptor at the so-called GS-box thereby activating the kinase domain. Consequently, intracellular 
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downstream signaling components termed receptor-regulated SMADs (R-SMADs) are activated by 

phosphorylation. These R-SMADs then oligomerize with the common mediator SMAD (co-SMAD), 

SMAD4, translocate into the nucleus and in concert with other transcriptional modulators regulate target 

gene transcription. Regulation of this signaling pathway can occur at multiple levels as indicated. Thus, 

extracellular signaling modulators (e.g. Noggin, Follistatin) can bind to BMP/GDF ligands thereby 

preventing the interaction with their signaling receptors. On the membrane level coreceptors like ROR2 or 

members of the repulsive guidance molecule (RGM) family are thought to interact with the receptors 

and/or the ligands thereby amplifying the BMP/GDF signal. On the contrary, the pseudoreceptor BAMBI is 

an inhibitor of BMP as well as Activin signaling. The extracelIular domain resembles the ligand binding 

interface of the type I receptors, while an intracellular kinase domain is lacking. The inhibitory function of 

the pseudoreceptor is potentially due to the formation of complexes with type I and/or type II receptors, 

thereby interfering with regular signal transduction. Amongst others, signal transduction can also be 

modulated intracellularly by the so-called inhibitory SMADs (I-SMADs), SMAD6 and SMAD7, where the 

I-SMADs compete with activated R-SMADs for interaction with SMAD4. 

1.1. The multitude of biological functions of TGF-β members is established by a 

highly complex regulatory “cross-reactive” signaling network 

Analysis of the patterning function of TGF-β members showed that they act as classical 

morphogens, i.e. the factors form a concentration gradient across the developing tissue and 

a specific cellular response is triggered dependent on the morphogen concentration (for 

review see (Wu & Hill, 2009)). A precise morphogenic function of an individual ligand can 

therefore only be explained in that either distinct tempero- and/or spatial distribution 

patterns of this ligand and its respective receptor(s) exist, which provide for specific signals 

at individual sites of action or in that the signaling event is tightly controlled by additional 

regulatory mechanisms. In the past years various studies identified a multitude of different 

components modulating the signal transduction of TGF-β members either outside the cell 

through secreted antagonists/modulator proteins (Ueno et al., 1987, Smith & Harland, 1992, 

Francois et al., 1994, Merino et al., 1999b, Shimmi & O'Connor, 2003), at the cell surface level 

via activating coreceptors or deactivating pseudoreceptors or extracellular matrix 

components (Lopez-Casillas et al., 1993, Onichtchouk et al., 1999, Gray et al., 2002, Wiater & 

Vale, 2003, Babitt et al., 2005, Samad et al., 2005, Lin et al., 2007), or in the cell interior through 

proteins interacting with the receptors, SMAD components or via influencing receptor 

turnover or degradation (see Fig. 1) (Zhu et al., 1999, Wotton & Massague, 2001, Chen et al., 

2006). The majority of these modulating mechanisms again involve proteins, which 

themselves exhibit promiscuous binding to several partners, thus resulting in a highly 

complex regulatory “cross-reactive” network. It thus seems logical that attempts or 

incidents, which in vitro seem to manipulate individual interactions by a defined 

mechanism, will in vivo inevitably lead to a massive intervention in an interweaved 

signaling network with established equilibrium of cross-interacting partners. 

1.2. What can be learned from individual gene deletions? 

Due to the morphogen’s inherent coupling of ligand concentration and signaling activity it 

is therefore expected, that mutations causing an alteration in signaling capacities become 
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visible in a broad variety of different phenotypes. Consistently, a vast number of mutations 

could be correlated with inherited diseases (see OMIM database). Although often a clear 

correlation between mutation and phenotype can be drawn, in most of the cases the 

molecular mechanism translating the individual mutation into the corresponding phenotype 

remains unclear. An alternative strategy to identify functions of individual signaling 

components in the above-described signaling network is to eliminate their signaling input or 

function by null mutations. In the past decades a large number of knockout mice have been 

generated (TGF-β ligands, receptors, modulator proteins, etc.) and the loss of individual or 

combinations of genes of the TGF-β signaling network were analyzed in detail in hetero- as 

well as in homozygous situations (Zhao, 2003). Surprisingly, given the importance of TGF-β 

members for embryonic development and organogenesis, deletion of some genes of this 

superfamily did not result in prominent phenotypes (e.g. BMP-6) indicating that others can 

maximally compensate for a loss of these signaling components. On the other extreme some 

individual gene deletion resulted in embryonic lethality (e.g. BMP-2 or BMPR-IA) indicating 

that these components might occupy invariable key signaling positions, but thereby also 

impeding a detailed elucidation of gene function during development. In these situations, 

gene function was often further analyzed using conditional knockout mice to overcome 

lethality or to allow a cell- or tissue-specific deletion of the target gene to study the gene 

function in a more restricted environment. For some of the genes investigated it could be 

demonstrated, that a multitude of biological functions are strongly connected to the 

presence of one gene product in a strict temporal and spatial manner. For instance, it could 

be demonstrated for the receptor BMPR-IA that this receptor is essential for the formation of 

mesoderm during embryogenesis, (Mishina et al., 1995) but also for the differentiation and 

proliferation in postnatal hair follicles (Andl et al., 2004). However, these examples should 

emphasize the main problem of identifying individual relations between the factors and 

their biological function in such regulatory signaling networks. For the analysis of such 

mutation/function relations it is essential that a particular mutation translates into a visible 

phenotype and that this mutation does not result in embryonic lethality.  

2. The role of GDFs in limb development  

Astonishingly, within the complex machinery of TGF-β signaling only a few components 

seem to fulfill these criteria and for those a collection of mutations have been identified in 

the past years. One of these genes encodes for growth and differentiation factor 5 (GDF-5), 

which – like the other members of the TGF-β superfamily – binds as secreted signaling 

molecule to a defined subset of type I and type II receptors and initiates the activation of 

downstream signaling cascades. The biological role of GDF-5 in vivo became first apparent 

from the genetic analysis of the brachypodism mice (bp) (Storm et al., 1994), which also finally 

led to the discovery of GDF-5, -6 and -7. In brachypodism mice length and number of bones in 

the limbs are altered, but the axial skeleton does not seem to be affected (Gruneberg & Lee, 

1973). It has already been suggested in the early 1980’s that the bp mutation very likely 

disrupts a signaling event, which naturally leads to mesenchyme aggregation and 

chondrogenesis in the limb (Owens & Solursh, 1982). Initially three independent bp 
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mutations have been described, which were all mapped to the GDF5 locus on chromosome 2 

all resulting in a frame-shift of the open reading frame and thus basically representing GDF5 

null mutations (Storm et al., 1994). As a result of the bp mutations several long bones show 

reduced length and the first two phalanges in the digits II-V are replaced by a single bony 

element in all four extremities (Gruneberg & Lee, 1973). It is important to note that despite 

GDF5 mRNA expression was reported to occur in a variety of non-skeletal tissues, e.g. the 

uterus, placenta, brain, heart, lung, kidney, etc., bp mice are fertile and do neither show 

behavioral abnormalities nor do they exhibit any morphological changes outside a few 

defined limb elements.  

 

Figure 2. Schematic representation of the skeletal elements of a human limb and autopod.  

A) Skeletal elements of a human limb. The stylopod gives rise to the humerus, the most proximal 

element of the limb skeleton, followed by the bony elements of radius and ulna, which derive from the 

zeugopod. Most distally, the autopod forms the bones of the hand.  

B) Representation of the bony elements of the human autopod subdivided into the bones of the wrist 

(carpals), palm (metacarpals) and digits (phalanges). 

The elements of the vertebrate limb originate from mesenchymal cells that first condense 

and subsequently initiate a differentiation program leading to the production of cartilage 

and bones in a highly defined fashion. These skeletal elements develop from single 

condensations in a proximal-to-distal sequence, which first grow and then branch and 

segment starting with the condensation forming the humerus at 10.5 days post coitus (dpc) 

(Wanek et al., 1989, Storm & Kingsley, 1996, Francis-West et al., 1999). The humerus 

aggregate then branches distally at 11.5 dpc thereby forming the condensations for the 

radius and the ulna (for nomenclature see Fig. 2). The digits develop as continuous 

structures called digital rays, which lengthen distally during further outgrowth. In order to 

build regular hands or feet the rays will then (13.5 - 15.5 dpc) be further separated in a 

sequential segmentation process to form the metacarpals and the phalanges. In mice GDF5 

mRNA is first detectable in the developing forelimb at 11.5 dpc in the proximal and distal 

region that will later form the shoulder and the elbow (Storm & Kingsley, 1996, Francis-

West et al., 1999). At 12.5 dpc GDF-5 is additionally expressed within the developing digital 

ray at a site that likely forms the future joint between the metacarpals and proximal 

phalanges. One day later at 13.5 dpc GDF5 mRNA is expressed in the developing rows of 

carpals and in an additional stripe across the digital rays, with the sites coinciding with 
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developing joints in the wrist and the first interphalangeal joint (Storm & Kingsley, 1996). At 

14.5 dpc the segmentation process seems completed, an additional stripe of GDF-5 

expression separates the developing intermediate and distal phalanges and now all 

elements of a mice forelimb are defined and undergo chondrogenesis (Fig. 3) (Storm & 

Kingsley, 1996). 

 

Figure 3. Expression pattern of BMP2, GDF5, BMPR1A and BMPR1B in the developing mouse fore 

limb.  

Whole-mount in situ hybridization of BMP2, GDF5 and their receptors BMPR1A and BMPR1B in a 

mouse fore limb at different embryonic stages. GDF5 expression marks the developing cellular 

condensations. At 11.5 dpc GDF5 is expressed in regions later forming shoulder and elbow. At 12.5 dpc 

GDF5 is additionally visible in the future joints between the metacarpals and proximal phalanges. Later 

it is expressed in a stripe of the digital ray corresponding to the future interphalangeal joints separating 

the proximal from the intermediate (13.5 dpc) and the intermediate from the distal phalanges (14.5 dpc). 

BMP2 expression is seen in the apical ectodermal ridge, the underlying mesenchyme and at the 

posterior side of the limb at 11.5 dpc. One day later, BMP2 expression is mainly restricted to the 

interdigital mesenchyme as well as to the posterior wrist forming region, the wrist and the distal joints 

of radius and ulna. At 13.5 dpc BMP2 expression can be localized to a region surrounding the cartilage 

condensations of the dorsal tendons, whereas at 14.5 dpc it is mainly found around the regions of future 

interphalangeal joints. BMPR1A shows a more or less uniform expression throughout the whole 

developing mouse limb at all stages depicted above. In contrast, BMPR1B expression at 11.5 dpc is 

restricted to developing condensations of the digit anlagen. Later, at 13.5 dpc 14.5 dpc, BMPR1B 

expression can be found in regions of the future interphalangeal joints.  

Reprinted from The American Journal of Human Genetics (2009) 84, 483-492, K. Dathe et al., 

″Duplications involving a conserved regulatory element downstream of BMP2 are associated with 

Brachydactyly type A2″, Copyright 2011, with permission from Elsevier. 
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The full process of joint formation occurs in three steps: First, special regions with high cell 

densities so-called interzones are formed corresponding to the stripes across the developing 

cartilage elements. Second, apoptosis leads to the removal of cells in the center of this 

interzone. Together with changes in the extracellular matrix on neighboring cells this creates 

a three-layered structure characteristic for the developing joint. Third, at both extremes of 

the interzone differentiation of the articular cartilage takes place leading to a fluid-filled gap 

between the (now segmented) skeletal elements (Haines, 1947, Mitrovic, 1978, Craig et al., 

1987). The above observations highlight GDF-5 as one of the earliest markers for joint 

formation, whose mRNA can be detected in the developing joint 24 to 36h prior to visible 

morphological changes in the interzone and its expression continues for 2 to 3 days (for 

details see Fig. 4). The reduction of the number of phalanges in the brachypodism mouse, 

which is basically a GDF5 knockout mouse, is likely due to a failure in the segmentation in 

the digital rays (Storm et al., 1994). In bp mice limb-bud development as well as the 

condensations for the initial digital rays seem normal, but during segmentation of the digital 

rays during 12.5 to 14.5 dpc the formation of an interzone leading to the separation of 

proximal and intermediate phalanges is absent in bp mice. However, as GDF-5 is expressed 

in all synovial joints in wildtype mice and not just in the first interphalangeal joints of digits 

II to V it seems apparent that GDF-5 cannot be the sole factor for the formation of all joints 

in the whole limb (Storm & Kingsley, 1996). Without knowing the nature and molecular 

functions of GDF-5 Hinchliffe and Johnson in 1980 already suggested that the brachypodism 

phenotype might be caused by the disruption of a pattern (of various factors) that 

determines the location of joints in the limb (Hinchliffe & Johnson, 1980). As GDF-5 shares 

between 80 and 86% amino acid sequence identity in its C-terminal mature part with GDF-6 

and GDF-7 and the latter factors are also expressed during limb development it seemed 

logical to assume that these factors might compensate for the loss of GDF5 in the 

brachypodism mutations (Storm & Kingsley, 1996). This hypothesis whether the two GDF-5 

family members GDF-6 and GDF-7 can either substitute in case of a loss of GDF5 or act in a 

synergistic manner was again tested by generating knockout animal models. 

Both genes GDF6 and GDF7 are expressed in and around the developing joint (Hattersley et 

al., 1995, Wolfman et al., 1995), furthermore the mRNA expression pattern does not strictly 

overlap with that of GDF5 (Wolfman et al., 1997). Strong mRNA levels of GDF6 can be 

observed in elbow and the carpal joints as well as the perimeter of the digital ray, whereas 

GDF7 expression is restricted to the proximal interphalangeal joint (Settle et al., 2003). 

Indeed, studies on GDF6 knockout mice show fusions in joints different from those seen in 

the brachypodism mice - in GDF6-/- mice fusions of specific bones in the wrist and ankle 

correlate with the strongest GDF6 expression in wildtype mice - possibly suggesting that a 

particular member of the GDF-5/6/7 family might be responsible for the formation of a 

subset of joints in the limb system (Settle et al., 2003). Expression analysis using other joint 

markers such as GDF5 (Storm & Kingsley, 1996), PTHRP (Parathyroid hormone-related 

protein, (Lanske et al., 1996, Vortkamp et al., 1996)) or DELTAEF1 (a zinc-finger homeobox 

transcription factor, (Takagi et al., 1998)) shows that the earliest stages of joint formation also 

occur in the absence of GDF6 expression, but similar to the brachypodism mutations these 

morphological changes do not proceed and thus segmentation of these skeletal elements is  



 

Mutations in Human Genetic Disease 18 

 

Figure 4. Schematic representation of limb bud outgrowth and determination of digit identities. A-C) 

Limb bud outgrowth. During limb bud initiation morphogen gradients determine the three main axes 

of the limb: proximo-distal, antero-posterior and dorso-ventral. Development of these gradients is 

under control of specific signaling centers such as the apical ectodermal ridge (AER) providing a 

proximo-distal gradient, the zone of polarizing activity (ZPA) producing an anterior-posterior gradient 

and the dorsal and ventral ectoderm establishing a dorso-ventral signal, thereby generating a 

morphogenic field inheriting the information for skeletal pattern formation (for review see Tickle, 2003 

& 2006; Zeller, 2009). Skeletal elements of the vertebrate limb originate from mesenchymal cells that 

condense to form the cartilage anlagen, which develop in a proximo-to-distal manner starting with the 

condensation forming the humerus at 10.5 dpc. The humerus aggregate then branches distally at 11.5 

dpc thereby forming the condensations of radius and ulna. The digits develop as continuous structures 

termed digital rays, which lengthen distally during further outgrowth. In order to build regular hands 

the rays will then (13.5 - 15.5 dpc) be further separated in a sequential segmentation process to form the 

metacarpals and the phalanges. D) Formation of the initial condensation in the human autopod. Distal 

mesenchymal cells under control of fibroblast growth factors (FGFs) derived from the AER and 

ectodermal Wnts (eWnts) remain in an undifferentiated, proliferative state. As cells escape from AER 

signaling they start to differentiate into prechondrogenic cells and later into chondrocytes, whereas 

chondrogenesis is negatively regulated by eWnt/β-catenin signaling. Mesodermally derived BMPs as 

well as GDF-5 positively influence differentiation by signaling via type I receptors BMPR-IA and 

BMPR-IB expressed in the chondrogenic precursor cells. E) Elongation and segmentation of the digit 
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condensations. Directed outgrowth of the condensations is achieved by BMP signaling in a region 

termed phalanx-forming region (PFR). This process is negatively regulated by eWnt signaling. Within 

the condensation pre-hypertrophic chondrocytes arise expressing Ihh, which positively influences PFR 

located BMP signaling. At the side of the future joint locally acting Wnt signals derived from the 

surrounding mesenchyme induce the differentiation of chondroprogenitor cells into flatened interzone 

cells expressing GDF-5. This process is encouraged by Ihh signaling from pre-hypertrophic condrocytes. 

Furthermore, GDF-5 and Ihh positively influence proliferation of columnar chondrocytes. F-G) 

Cavitation of the joint and growth of the digit. Ihh induces parathyroid hormone-related peptide 

(PTHrP) expressed in proliferative columnar chondrocytes underneath the future joint. PTHrP itself is a 

negative regulator of Ihh expression, thereby forming a negative feedback loop with Ihh. Interzone cells 

express BMP-2, which has a role in regulating apoptosis of these cells, thereby forming the joint cavity. 

The establishment of the so-called growth plate initiates further growth of the digit. This region is 

composed of zones of progressively differentiated chondrocytes: proliferating, columnar chondrocytes, 

followed by pre-hypertrophic chondrocytes expressing Ihh and finally hypertrophic chondrocytes 

eventually undergoing apoptosis thereby giving rise to the formation of the bone marrow cavity (BMC).  

halted (Settle et al., 2003). In contrast to GDF5-/- mice, which had fusions restricted to 

synovial joint, GDF6-/- mutants also showed defects in the cartilage and ligament structures 

of the middle ear and the coronal suture (a non-synovial joint) in the skull (Settle et al., 2003). 

Analysis of the GDF5/GDF6 double knockout mouse showed additional skeletal defects with 

many bones being strongly reduced in length or even being absent. As these defects are not 

observed in either one of the single knockout mice and are also observed in synovial joints 

outside the limbs it suggests that GDF-5 and GDF-6 act synergistically during the formation 

of specific joints (Settle et al., 2003). 

For GDF-7 function the effects in GDF7-/- mice are subtler and no changes in the skeletal 

patterning have been observed (Settle et al., 2001). The phenotypes described comprise 

abnormal vesicle development in male mice (Settle et al., 2001), smaller cross-sectional 

diameter of various long bones (Maloul et al., 2006) and minor differences in tendon and 

ligament structures (Mikic et al., 2006). A possible explanation for the very mild phenotype 

seen in GDF7-/- mice might be due to the upregulation of GDF5 and GDF6 mRNA expression 

above levels seen in wildtype mice leading to a partial compensation in the absence of GDF7 

(Mikic et al., 2006). The above-described effects seen upon single or double deletion of GDF 

members indeed underline that GDF-5 alone, despite its patterning structure throughout the 

skeleton, does not induce the joint forming process in all joints of the developing limb. 

Moreover, it rather acts only on specific joints or might address additional ones throughout 

the limb in combination with GDF-6 or other factors (possibly in varying ratios) giving rise 

to the hypothesis that additional morphogens, e.g. members of the BMP superfamily, 

contribute to joint formation in vivo. 

This idea that GDF-5 possibly acts via a defined combination with other factors to induce 

and maintain joint formation is supported by overexpression studies applying either locally 

ectopically GDF-5 protein (Storm & Kingsley, 1999) or by expressing GDF-5 systemically via 

retroviral transfection (Francis-West et al., 1999). Interestingly, implantation of agarose 

beads soaked with recombinant GDF-5 into the limbs of chicken embryos did not lead to the 

development of additional ectopic joints. Instead, GDF-5 stimulated cartilage growth of 
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existing cartilage, which - dependent on the location of the implantation - could even 

interfere with joint development (Storm & Kingsley, 1999). Studies using developing limbs 

of mice show similar results, implanting recombinant GDF-5 in hind limbs at 12.5 or 13.5 

dpc showed that GDF-5 stimulated growth of currently present cartilage cells whereas the 

interdigital mesenchyme did not respond to GDF-5 treatment after 12.5 dpc. This different 

response of both cell types could also be seen when different cartilage differentiation 

markers such as Collagen2 and Indian hedgehog (IHH) were analyzed with both markers 

being induced upon GDF-5 treatment in the existing cartilage but not in the interdigital 

mesenchymal cells (Storm & Kingsley, 1999). This suggests that the different cells present in 

the developing joints lose their GDF-5 responsiveness at different times. GDF-5 can thus be 

considered as a pro-chondrogenic factor that acts in a stage-dependent manner and is 

required but not sufficient for joint formation. 

3. Disorders in limb development 

A group of skeletal malformation diseases observed in humans, i.e. brachydactyly, 

symphalangism and chondrodysplasia, exhibits similar limb deforming phenotypes as 

observed in brachypodism mice suggesting that similar mechanisms and factors are affected 

in humans (for review see (Temtamy & Aglan, 2008, Mundlos, 2009)). All phenotypes 

describe skeletal malformations of extremities – especially of the phalanges – caused by 

abnormalities in cartilage development. Typically all the brachydactyly-causing mutations 

affect the formation of synovial joints due to a deregulation of chondrocyte proliferation 

and/or differentiation. The classification of the different diseases has initially been done by 

examining the skeletal malformation phenotype (Bell, 1951). Genetic analyses later revealed 

disease-causing mutations not only in GDF-5, but also in other TGF-β ligands, receptors or 

modulator proteins as well as in other differentiation factors. Nowadays the different 

brachydactyly phenotypes are classified into eight different forms (BDA1-3, BDB1-2, BDC, 

BDD, BDE), which show clear differences regarding affected phalanges (see Fig. 5).  

Of those the brachydactylies BDA1, BDD and BDE are caused by genes that are seemingly 

unrelated to the TGF-β/BMP signaling pathway. In BDA1, which is characterized by 

shortened intermediate digits in all phalanges, inactivating mutations in the gene encoding 

for the secreted morphogen of the Hedgehog family Indian hedgehog (IHH) seem to be the 

molecular cause (Gao et al., 2001, Liu et al., 2006). Indian hedgehog is regulating chondrocyte 

proliferation and is also required for ossification of endochondral bones (St-Jacques et al., 

1999, Karp et al., 2000). The skeletal malformation phenotype resembles that of the IHH-/- 

knockout mice (St-Jacques et al., 1999) and suggested that binding to the receptor Patched 

(PTCH) and its subsequent activation is impaired in patients suffering from BDA1. 

Modelling of a potential receptor interaction of IHH on the basis of the crystal structure of 

Sonic hedgehog bound to the hedgehog antagonist HHIP indicates that the four missense 

mutations at position Gly95, Asp100, Glu131 and Thr154 inactivate IHH via two different 

mechanisms (Bosanac et al., 2009). The mutations of Gly95, Asp100 or Glu131 disrupt the 

conserved calcium coordination site present in hedgehog proteins, which was shown to be  
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Figure 5. Clinical features of non-syndromic brachydactylies. In the top row, schematic representations 

of human hands depict specific phalanges and interdigital tissue affected in each skeletal malformation 

disease. Typical clinical features of hands are shown in the middle, corresponding X-rays underneath. 

Reprinted from Clinical Genetics (2009) 76, 123-136, S. Mundlos, ″The brachydactylies: a molecular 

disease family″, Copyright 2011, with permission from John Wiley and Sons.  

required for high-affinity receptor binding (McLellan et al., 2006, Gao et al., 2009, Guo et al., 

2010). For the fourth mutation - T154I - identified recently no clear mechanistic explanation 

can be given, however based on the IHH 3D model Thr154 is located in close proximity to 

the other BDA1-associated missense mutations (Liu et al., 2006) and thus possibly also 

interferes with receptor binding. Although neither IHH nor its receptors directly bind to 

TGF-β signaling components, BMP and IHH signals interact at various stages to regulate 

chondrocyte development. First of all, it has been shown that treatment of limb explants 

with the BMP antagonist Noggin leads to a decreased expression of IHH message (Minina et 

al., 2001). Later Seki and Hata found that the IHH gene is a direct target of the BMP/SMAD 

signaling pathway due to the fact that GC-rich boxes in the promoter region of IHH confer 

binding of SMAD4 (Seki & Hata, 2004). This allows an upregulation of IHH expression in 

response to BMP signals. In the GDF-5 implantation experiments performed by Storm and 

Kingsley the GDF-5 dependent increase in the IHH mRNA message was used as a marker 

for chondrocyte differentiation (Storm & Kingsley, 1999). Secondly, there also seems to be a 

positive feedback loop as in chicken ectopic expression of IHH leads to an increased 

expression of BMP-2 and BMP-4 and similar results could be obtained in mice using 

transgenic animals in which the IHH gene expression is driven by a COL2 promoter (Pathi et 

al., 1999, Minina et al., 2001). However, the effects of the deactivating IHH mutations in 

BDA1 are not exclusively transmitted via its direct regulatory roles on the BMP signaling 

pathway, besides the above described feedback loop between IHH and BMP pathways, both 

factors also exhibit independent functions in chondrocyte development (Minina et al., 2001). 



 

Mutations in Human Genetic Disease 22 

The brachydactylies BDD and BDE are characterized by a shortened distal phalanx in finger 

I and shortened metacarpals in fingers I to V, respectively. In both diseases mutations in the 

HOXD13 gene seem to be the molecular cause (Caronia et al., 2003, Johnson et al., 2003). 

HOXD proteins represent homeobox transcription factors and disruption of the 5’ HOXD 

genes HOXD11, HOXD12, and HOXD13 in mice have shown that these transcription factors 

exhibit important position-specific functions during limb development (Davis & Capecchi, 

1996, Villavicencio-Lorini et al., 2010). Two of three mutations described, I314L and Q371R 

seem to disrupt binding of the HOXD transcription factor to its target DNA site as deduced 

from structural modeling of the protein:DNA complex (Johnson et al., 2003, Zhao et al., 

2007). Although the amino acid replacement is rather conservative, the leucine sidechain 

seems to introduce a steric hindrance to a neighboring pyrimidine base of the bound target 

DNA possibly altering the specificity for DNAs containing either a thymine or a cytosine in 

this sequence. For the second mutation, serine 308 to cysteine, it is difficult to deduce a 

molecular mechanism explaining the skeletal phenotype. Serine 308 located in the 

homeobox domain of HOXD13 is not in contact with the DNA and placed in a less 

conserved region, thus misfolding of the HOXD13 protein due to the different sidechain size 

and polarity of the introduced cysteine residue might explain the altered HOXD13 function. 

The effect of both mutations on DNA binding was however confirmed experimentally by 

electrophoretic mobility shift assays (EMSA) (Johnson et al., 2003). Similar to BDA1 a direct 

regulatory or physical interaction of HOXD proteins and members of the TGF-β/BMP 

pathway is not apparent and thus it seems unclear at first sight whether the skeletal 

malformation phenotype of the HOXD13 mutants results from an independent parallel 

disturbed signaling pathway involved in limb development or whether HOXD13 might be 

an upstream or downstream target of the TGF-β/BMP signaling cascade. Suzuki et al. have 

found that both HOXA13 and HOXD13 transcription factors can enhance transcription of 

the BMP4 promoter and may thus increase BMP expression (Suzuki et al., 2003). Recently the 

group of Stefan Mundlos investigated the effect of the HOXD11, -12, -13 and HOXA13 genes 

on joint formation in mice and discovered that HOXD13 can directly bind and regulate the 

RUNX2 promoter, whose activation is crucial for formation of cortical bone (Villavicencio-

Lorini et al., 2010). Studies using mice with defective HOXA13 revealed that upon loss of 

HOXA13 function mRNA expression for GDF5 is downregulated, whereas mRNA for BMP2 

is upregulated (Perez et al., 2010). As HOXA and HOXD proteins might form regulatory 

complexes, BDE initiating mutations in HOXD13 may thus act via altering a defined 

concentration balance between GDF-5 and BMP-2 in the developing joint. 

3.1. Disrupted GDF-5 signaling correlates with impaired joint formation 

The other brachydactyly forms are caused by mutations in either GDF5, or other BMP genes, 

BMP receptors or modulator proteins thereby highlighting the central regulatory role of the 

GDF/BMP signals for proper joint formation. Mutations in the GDF5 gene are found in 

brachydactylies of the type BDA1, BDA2 and BDC, but also in symphalangism and multiple 

synostosis syndrome phenotypes as well as in chondrodysplasias of the Grebe, Hunter-

Thompson and DuPan type, which are more severe skeletal malformation diseases possibly 
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due to the fact that in the latter syndromes the mutations in GDF5 are homozygous or 

compound heterozygous (see Table 1). Mutations in the BMP type I receptor BMPR-IB as 

well as a duplication of an about 6kb element in the 3´ regulatory untranslated domain of 

the BMP2 gene also lead to brachydactyly of the type BDA2 (Lehmann et al., 2003, Lehmann 

et al., 2006, Dathe et al., 2009). Mutations in the orphan tyrosine receptor kinase ROR2, which 

might possibly act as a GDF-5 specific coreceptor thereby influencing receptor activation of 

this TGF-β member, lead to brachydactyly of the type BDB1 (Oldridge et al., 2000, Schwabe 

et al., 2000). Amino acid exchanges in the BMP modulator protein Noggin are observed in 

patients suffering from brachydactyly type B2 (BDB2) (Lehmann et al., 2007). As there is a 

wealth of structural and functional data available for almost all of the above-mentioned 

factors a more in-depth analysis can be performed to analyze the molecular mechanism 

behind these disease-causing mutations.  

3.2. Mutations interfering with BMPR-IB kinase activity and signaling 

So far three mutations in the BMP type I receptor BMPR-IB could be correlated with 

brachydactyly BDA2. In the BMP/GDF signaling pathway three type I receptors, BMPR-IA 

(Alk3), BMPR-IB (Alk6) and ActR-I (Alk2) can be addressed by the different ligands for 

binding and signaling (Sebald et al., 2004). In vitro interaction analyses show that GDF-5 can 

bind only to BMPR-IA and BMPR-IB with affinities in the nano-molar range (Nickel et al., 

2005), whereas it shows no measureable interaction with the type I receptor ActR-I 

(Heinecke et al., 2009). These and other in vitro studies also showed that GDF-5 interacts 

preferentially with BMPR-IB exhibiting a 10 to 15-fold higher affinity for BMPR-IB than for 

BMPR-IA (Nickel et al., 2005, Heinecke et al., 2009). Furthermore, performing a more in vivo-

like radioligand binding assay in order to analyze the interaction of radiolabeled GDF-5 via 

chemical crosslinking to cells that were either transfected with the different type I and type 

II receptors or endogenously express BMP receptors, an exclusive binding of GDF-5 to 

BMPR-IB could be detected (Nishitoh et al., 1996). Despite this rather strong binding 

specificity of GDF-5 to BMPR-IB on whole cells measuring transcriptional activation in mink 

lung cells transfected with different combinations of BMP type I and type II receptors 

showed that GDF-5 can activate SMAD signaling via BMPR-IB and BMPR-IA with almost 

identical efficiency (Nishitoh et al., 1996). However, BMPR-IA cannot substitute for BMPR-IB 

in all GDF-5 initiated signals, e.g. induction of the osteogenic marker alkaline phosphatase 

(ALP) by GDF-5 is observed in the murine pro-chondrogenic cell line ATDC5, which does 

not express BMPR-IB and thus in this case BMPR-IA can functionally replace BMPR-IB. 

Furthermore, in this cell line the concentration for half-maximal ALP induction is about 10-

fold lower than for BMP-2, which correlates very nicely with the difference in BMPR-IA 

affinity of both BMP factors (Nickel et al., 2005). In contrast, the mouse osteoblastic cell line 

MC3T3 or the mouse myoblastic cell line C2C12, which express BMPR-IA but not BMPR-IB, 

do not respond to GDF-5 in the alkaline phosphatase expression assay (but at the same time 

respond to BMP-2) (Nishitoh et al., 1996). Besides the fact that in the context of the 

developing joint BMPR-IA might not be the correct signaling receptor for GDF-5, the 

spatially highly defined expression pattern of GDF-5 and the two BMP type I receptors in 
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the junction between the growth plate and the developing joint suggests that at sites of high 

GDF-5 concentration only BMPR-IB is highly expressed whereas BMPR-IA expression is 

rather low (see Fig. 3) ((Wolfman et al., 1997, Zou et al., 1997, Sakou et al., 1999, Storm & 

Kingsley, 1999, Yi et al., 2001, Settle et al., 2003, Minina et al., 2005) for review see (Pogue & 

Lyons, 2006)).  

All BDA2 causing BMPR-IB mutations are located in the cytoplasmic kinase domain. One 

exchange - isoleucine 200 to lysine (I200K) - is placed within the so-called GS (glycine/serine-

rich) box, which is phosphorylated upon ligand binding and hetero-oligomerization of the 

type I and type II receptors (see Fig. 6A-C). Structural analysis of the kinase domains of the  

 

Figure 6. The kinase domain of the BMP receptor IB. A) Ribbon representation of a model of the BMPR-

IB kinase domain (adapted from PDB entry 3MDY, (Chaikuad et al., 2010a)). The elements important in 

kinase activity and or BMP signaling are indicated. Glycine/serine-rich (GS-)box: yellow; L45-loop for 

SMAD subgroup specificity: purple; phosphate binding loop: cyan; activation loop: green; active site 

with Asp332 in stick representation: magenta; NANDOR-region regulation downstream signal 

activation: red. B) Magnification of the GS-box with the relevant serine and threonine residues that 

become phosphorylated during BMP type I receptor activation shown as sticks. The location of Ile200 

mutated in BDA2 is indicated. C) Isoleucine 200, mutated to lysine in BDA2, is surrounded by 

hydrophobic residues. Threonine 199, which is required to become first phosphorylated to allow for 

further phosphorylation events in the GS-box, is located in close proximity, suggesting that mutation 
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I200K might also act via abrogating the initial activating phosphorylation at Thr199. D) Magnification 

into the NANDOR domain of BMPR-IB. The mutated residue Arg486 is located at the solvent-accessible 

surface, thus mutations R486W and R486Q (shown in grey) very likely do not cause conformational 

alterations. This suggests that the NANDOR domain constitutes a binding interface for so far unknown 

proteins involved in the receptor activation. 

BMP receptor BMPR-IB (PDB entry 3MDY, (Chaikuad et al., 2010a)), of the TGF-β receptor 

TGFβR-I (Huse et al., 1999) or the Activin type I receptor ActR-I (PDB entry 3H9R, 

(Chaikuad et al., 2010b)) show that the GS-box domain in the inactivated state consists of 

two antiparallel α-helices. Functional analysis of the TGFβR-I receptor kinase revealed that 

phosphorylation of all conserved serine and threonine residues in the consensus motif 

(T/S)SGSGSG placed in the loop between the two helices is absolutely required for 

downstream signaling (Wieser et al., 1995) and SMAD protein binding (Huse et al., 2001). 

More importantly, threonine residue Thr200 in TGFβR-I (equivalent to Thr199 in BMPR-IB) 

adjacent to this consensus motif is absolutely conserved between TGF-β type I receptors and 

is crucial for ligand-dependent receptor activation. Mutagenesis showed that 

phosphorylation of this particular threonine residue is a pre-requisite for further 

phosphorylation of the GS-box motif located N-terminally of this residue (Wieser et al., 

1995). In the BDA2 associated mutation I200K in BMPR-IB the direct neighbor of Thr199 is 

exchanged from a hydrophobic isoleucine to a polar lysine residue. As the isoleucine is 

rather buried in this motif, the exchange might lead to local unfolding or the Ile to Lys 

substitution is such drastic that the recognition by the kinase responsible for 

phosphorylation of Thr199 and thus subsequent receptor activation is impeded (see Fig. 6A-

C). In vitro kinase assays indeed revealed a complete loss of kinase activity of BMPR-IB 

carrying the I200K mutation (Lehmann et al., 2003). 

The other mutations in BMPR-IB associated with BDA2, R486Q or R486W, are located in the 

so-called NANDOR region (for non-activating non-down-regulating) (see Fig. 6A/D). This 

region at the C-terminus of the kinase domain is highly conserved between TGF-β type I 

receptors but placed quite distantly from the regulatory important regions such as the GS-

box or the L45-loop, which mediate binding to R-SMAD proteins upon receptor activation 

or the active site of the kinase domain. Studies on the TGF-β receptors TGFβR-I (Garamszegi 

et al., 2001) and TSR-I (Alk1) (Ricard et al., 2010) show that mutations within this domain 

abrogate type I receptor endocytosis and signal transduction as R-SMAD proteins are not 

phosphorylated by these receptor mutants. In BMPR-IB the exchange of the surface-

accessible arginine 486 by either glutamine or tryptophan diminished not only SMAD1/5/8 

phosphorylation, but also led to strongly decreased expression of alkaline phosphatase in 

C2C12 cells transfected with BMPR-IB. This signaling-impaired phenotype could also be 

confirmed in a more physiological assay measuring chondrocyte differentiation in virally 

transduced chicken limb-bud micromass cultures (Lehmann et al., 2003, Lehmann et al., 

2006). The effects of these mutations on downstream SMAD-dependent and SMAD 

independent signaling pathways as well as receptor endocytosis suggests that this region 

likely constitutes a binding site for not yet identified signaling components required for 

general receptor activation. 
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Skeletal malformation diseases have also been linked to mutations in the BMP signaling 

modulator Noggin, which directly binds to various BMP as well as GDF ligands and, when 

harboring mutations interfering with ligand binding, can cause skeletal malformations of 

the brachydactyly type. Noggin initially identified as a dorsalizing factor expressed in the 

Spemann organizer (Smith & Harland, 1992) was found to be an efficient BMP antagonist, 

which - by binding to the BMP ligands in the extracellular space with extremely high affinity 

in the picomolar range - can completely abrogate receptor binding and thus BMP signaling 

(Holley et al., 1996, Zimmerman et al., 1996). Despite its role in establishing a long-range 

BMP-4 morphogen gradient for dorsal-ventral patterning during gastrulation, Noggin also 

has functions later in development of the embryo (for a recent review see (Krause et al., 

2011)). Noggin knockout mice are embryonically lethal and show a complex phenotype 

(McMahon et al., 1998), however it is important to note that mice being heterozygous for the 

Noggin null mutation develop normally (Brunet et al., 1998). This suggests that the defects 

seen upon Noggin deletion do not result from gene dosage effects. Due to its expression in 

the ectoderm, loss of Noggin resulted in a severe neural tube phenotype with a failure of 

neural tube closure and a dramatic reduction in the amount of posterior neural tissue. As 

Noggin seems essential for ventral cell fates in the CNS development, motor neurons and 

ventral interneurons were lacking (McMahon et al., 1998). Besides the neural abnormalities 

Noggin knockout mice showed also a drastically altered skeletal development (Brunet et al., 

1998, Tylzanowski et al., 2006). All skeletal elements are affected with the severity of the 

axial defects increasing towards the posterior direction. However, analysis for ossification 

shows that the time point for ossification in these elements seems unchanged. These 

observations suggest that the loss of Noggin in the knockout mice affects cartilage 

development. The ablation of Noggin also affects limb development, with null mice having 

shorter limbs and fusions of various joints. By the use of a heterozygous transgene, where 

the Noggin gene has been replaced by lacZ, expression of Noggin in the developing limb 

could be analyzed in detail (Brunet et al., 1998), showing that Noggin is strongly expressed 

in cartilage zones later forming bone, but is expressed at low levels or is absent in 

hypertrophic cartilage or joint cavities where GDF-5 expression is usually high. Analysis of 

the NOG-/- mice shows a massive overgrowth of cartilage in the limb, indicating that in 

wildtype mice Noggin represses the growth of these tissues in a negative feedback loop 

manner. It is known that in addition to GDF-5 a number of other BMPs, e.g. BMP-2, BMP-4, 

BMP-6 and BMP-7 are expressed in the limb and even the developing joints (Lyons et al., 

1989, Brunet et al., 1998). Differential signaling of these different BMPs is required to induce 

apoptosis in interdigital tissues (Macias et al., 1997) and in Drosophila sharp zones of activity 

of the fly BMP-homolog DPP, which do not necessarily correlate with the local DPP 

concentration, trigger local cell death to define joints (Manjon et al., 2007). The locally highly 

variable expression of Noggin in the developing limb could provide for such a BMP activity 

modulating mechanism as in vivo Noggin inhibition of BMP signaling has distinct BMP 

specificity profiles (Zimmerman et al., 1996, Seemann et al., 2009, Song et al., 2010). The 

important regulatory role of Noggin as an BMP antagonist is also highlighted by the fact 

that the Noggin gene is a mutational hotspot in several skeletal malformation diseases of the 

brachydactyly type BDB as well as the more severe multiple synostosis syndrome (SYNS1), 
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proximal symphalangism (SYM1), tarsal-carpal coalition (TCC) or SABTT (stapes ankylosis 

with broad thumbs and toes) syndromes (for a recent review see (Potti et al., 2011)).  

3.3. Noggin a BMP interacting hub during limb and joint formation 

Structure analysis of the complex of BMP-7 bound to Noggin provided insights into the 

molecular mechanism how Noggin antagonizes BMP signaling (Groppe et al., 2002). The 

homodimeric Noggin embraces the BMP ligand and simultaneously blocks type I and type 

II receptor binding via its C-terminal four-stranded β-sheet structure resembling a finger-

like structure as found in BMPs itself and a N-terminal peptide segment called clip (see Fig. 

7). Whereas the type II receptor-binding epitope of BMP-7 is blocked by the large and 

structured C-terminal part, type I receptor binding is only inhibited by the small clip 

segment (Gln28 to Asp39 of human Noggin). Very few polar interactions, mainly between 

the polar main chain atoms of the Noggin clip and residues from BMP-7, stabilize this 

interaction. In addition to the polar interactions, Pro35 of Noggin, which is found mutated 

in several skeletal malformation diseases (Gong et al., 1999, Dixon et al., 2001, Mangino et al., 

2002, Lehmann et al., 2007, Hirshoren et al., 2008), points into a hole in the type I receptor-

binding epitope of BMP-7 formed by hydrophobic residues thereby mimicking a key 

interaction in the BMP ligand-type I receptor interaction (Hatta et al., 2000, Kirsch et al., 2000, 

Kotzsch et al., 2009).  

The disease-causing mutations in Noggin known today can be clustered into three regions: 

the mutations located in the clip (P35A/S/R, A36P, P37R, P42A/R; (Gong et al., 1999, Dixon et 

al., 2001, Mangino et al., 2002, Debeer et al., 2004, Lehmann et al., 2007, Hirshoren et al., 2008, 

Oxley et al., 2008)), the β-sheet domain (E48K, P42A;P50R, R167G, L203P, R204L, W205C, 

W217G, I220N, Y222D/C, and P223L; (Gong et al., 1999, Dixon et al., 2001, Takahashi et al., 

2001, Kosaki et al., 2004, van den Ende et al., 2005, Weekamp et al., 2005, Dawson et al., 2006, 

Lehmann et al., 2007, Oxley et al., 2008, Emery et al., 2009)) or the dimerization domain 

(C184Y, P187S, G189C, M190V, and C232Y; (Gong et al., 1999, Takahashi et al., 2001, 

Lehmann et al., 2007, Oxley et al., 2008, Rudnik-Schoneborn et al., 2010)). The molecular 

mechanisms by which these mutations disrupt proper function of Noggin can be classified 

in part. Mutations of prolines or from other residues to proline, e.g. P42R, P50R, P187S, 

L203P, or P223L, will potentially lead to misfolding of the Noggin mutant, such that local 

structures cannot be maintained leading to a secondary loss of other Noggin-BMP 

interactions or to lower dimer stability (and hence to decreased secretion) if these exchanges 

occur in the dimerization domain (see Fig. 7) (e.g. P187S, (Lehmann et al., 2007)). Some 

mutations in Noggin involving proline residues and occurring in the clip region disrupt 

BMP-Noggin hydrogen bonds, e.g. A36P, P37R or introduce steric hindrance by replacing 

the proline residue for geometrically non-fitting amino acids, e.g. P35A, P35S, or P35R. 

Various amino acid exchanges observed in the β-sheet domain substituting a hydrophobic 

residue for a polar, e.g. I220N, or replacing a large hydrophobic amino acid in the 

hydrophobic core with a smaller one, e.g. W205C, W217G, Y222C, probably cause local 

unfolding and thus weaken the Noggin:BMP binding. The amino acid residues Glu48, 

Arg167 and Arg204 together form a hydrogen bond network, thus mutation of any of these  
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Figure 7. BMP inhibition by the modulator Noggin. A) Ribbon representation of the  

BMP-7:Noggin complex (PDB entry 1M4U, (Groppe et al., 2002)). The dimeric Noggin (grey and light 

green) consists of three domains: the clip region located at the N-terminus, the C-terminal finger or β-

sheet domain and a dimerization domain. By embracing the BMP ligand through the clip region and the 

C-terminal finger domain Noggin effectively blocks binding of type I and type II receptors thereby 

antagonizing BMP signaling. Mutations in Noggin identified in skeletal malformation diseases are 

shown as spheres color-coded according to their location in the aforementioned domains (green: clip  

region; cyan: finger/�-sheet domain; magenta: dimerization domain). B) Magnification into mutationally 

affected interactions between residues of the Noggin clip region and BMP-7 (shown as grey van der 

Waals surface representation). Mutation of the indicated residues (Pro35, Ala36, Pro37, and Pro42 are 

shown as stick representations with C-atoms in green) likely alters the conformation of the Noggin clip 

or disrupts polar interactions (indicated by stippled magenta lines) between Noggin and BMPs. C) 

Magnification into the interface between the Noggin finger domain and BMP-7. Residues in Noggin 

involved in skeletal malformation diseases upon mutation are shown as sticks (C-atoms are colored in 

cyan). Most mutations likely affect local folding of the finger domain thereby attenuating or disrupting 

Noggin binding to BMPs. D) Magnification into the dimerization domain of Noggin. Residues involved 

in disease-causing mutations are shown as sticks with the C-atoms colored in magenta. Mutation of 

most of the residues displayed will likely interfere with dimerization of Noggin, e.g. mutation of either 

Cys184 or Cys232 will directly disrupt the intermolecular disulfide bond or possibly shuffle the 

disulfide bond pattern in the dimerization domain. 
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three residues will disrupt this network likely causing local structure changes in the β-sheet 

domain of Noggin. Furthermore, all three charged residues are buried upon binding to BMP 

ligands, thus mutations resulting in unbalanced charges will probably lead to electrostatic 

repulsion upon ligand binding. The mutations in Noggin’s dimerization domain, e.g. 

C184Y, P187S, G189C, M190V, or C232W, all will very likely disturb efficient dimerization 

either by disrupting the intermolecular disulfide bond through the formation of non-native 

intramolecular disulfide pairs or through interfering with the homodimer interface (see Fig. 

7D) (Marcelino et al., 2001, Lehmann et al., 2007). 

Interestingly, mutations in Noggin represent a rather heterogeneous picture of skeletal 

malformations with different digits being affected and from a mild phenotype, e.g. BDB2 to 

more severe traits, e.g. SYM1 or SYNS1 (Lehmann et al., 2007, Potti et al., 2011). A direct 

correlation between the location of the mutation in Noggin and the severity of the 

malformation seems not apparent although mutations in the clip domain are diagnosed 

more frequently with BDB2 and mutations in the dimerization domain usually result in 

SYM1 or SYNS1 disease (Potti et al., 2011). From a structural point of view these possible 

differences might be explained due to the fact that destabilizing changes in the clip region of 

Noggin might affect only certain BMPs. Analysis of in vitro binding of BMP-7 to the Noggin 

mutant P35R showed a rather small 7-fold decrease in BMP binding affinity (Groppe et al., 

2002). For BMPs that exhibit high affinities for their type I receptors, e.g. BMP-2, BMP-4 or 

GDF-5 the weakened binding of the clip of Noggin to these ligands might allow for a 

competition mechanism in which the receptor binding to a Noggin:BMP complex 

subsequently strips off the antagonist. For those BMPs that have low binding affinities to 

their type I receptors, e.g. BMP-5, BMP-6 and BMP-7 even the decreased binding of the 

Noggin clip to the ligand is still sufficient to block receptor binding and hence signaling of 

these BMPs. The mutations in the β-sheet region of Noggin, however, should affect all BMP 

ligands similarly and the severity of the phenotype should principally correlate with the loss 

of BMP binding affinity. The amino acid substitutions in the Noggin dimerization domain 

are expected to exhibit the strongest phenotype as these mutations strongly affect 

dimerization and secretion efficiency of the Noggin protein. Even if a monomeric Noggin 

variant protein might be secreted, its binding to BMPs as a monomer will be severely 

impaired due to the loss of avidity. Thus the mutations in the clip of Noggin might only 

affect a subset of the different BMPs present in the developing joint thereby causing a 

distinct phenotype, whereas the other Noggin mutations more likely resemble the 

phenotype of a Noggin null mutation. With respect to the direct effect of Noggin on GDF-5 

it is important to note that in mice even though the strongest expression of GDF5 mRNA is 

found in the joint, Noggin mRNA here is absent at these late stages of joint development. 

Thus it is unclear at which timepoints the BMP antagonist Noggin directly modulates GDF-5 

during joint formation in vivo (Brunet et al., 1998). Furthermore, it has been shown that the 

loss of Noggin in homozygous null mice leads to a strong downregulation of the GDF5 

mRNA message (Brunet et al., 1998), which would be compatible with the observed effect in 

loss-of-function Noggin mutants. 
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3.4. GDF-5: A key molecule in joint development and maintenance 

Besides Noggin, the GDF5 gene has been identified as a mutational hotspot in skeletal 

malformation diseases. To date, 14 missense mutations as well as a multitude of frameshift 

mutations have been identified in the translated region of the GDF5 gene. Furthermore 

single nucleotide polymorphisms (SNPs) in the 5’ and 3’ untranslated region of the GDF5 

gene, three of which could be linked to enhanced susceptibility of developing osteoarthritis 

(OA), suggest that tempero-spatially highly defined gene expression of GDF-5 is required 

throughout life and is not limited to limb and joint development during embryogenesis (see 

Table 1 and Fig. 8).  

Two SNPs in the 5’ untranslated regions (UTR) of GDF5, rs143383 and further downstream 

rs143384, share both a T-to-C transition in the GDF5 core promoter. Functional studies using 

RNA extracted from the articular cartilage of OA patients harboring the SNP rs143383 

revealed a significant, up to 27% reduced expression level of the osteoarthritis-associated T-

allele relative to the C-allele, a phenomenon termed differential allelic expression (DAE) 

(Southam et al., 2007). This allelic expression imbalance of GDF5 could be extended to other 

soft tissues of the whole synovial joint, emphasizing that the single nucleotide  

 

Figure 8. Localization of GDF5 mutations. Arrowheads indicate the location of all currently known 

mutations linked to human skeletal malformation diseases affecting the limb. The specific inherited 

disease caused by each mutation is displayed in the legend underneath.  

A GDF-5 monomer consists of an N-terminal signal peptide domain (black box), a prodomain (dark 

grey box) and the C-terminal mature part (light grey box) containing six highly conserved cysteine 

residues forming the cystine knot motif, whereas the seventh cysteine connects two monomers via an 

intermolecular disulfide bond. Italic type indicates nucleotide nomenclature; normal type represents 

single amino acid nomenclature. For references see Table 1. 
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mutation location hetero-

/homozygous

disease OMIM # reference 

rs143383 5´UTR gdf5 gene heterozygous Osteoarthritis 

susceptibility

# 612400 (Miyamoto 

et al., 2007) 

rs143384 5´UTR gdf5 gene heterozygous Osteoarthritis 

susceptibility

# 612400 (Rouault et 

al., 2010) 

2250ct 

 

3´UTR gdf5 gene heterozygous Osteoarthritis 

susceptibility

# 612400 (Egli et al., 

2009) 

121delG prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Polinkovsky 

et al., 1997) 

158delT prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Everman et 

al., 2002) 

158insC prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Everman et 

al., 2002) 

206insG prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Polinkovsky 

et al., 1997) 

206insG prodomain gdf5 gene homozygous Chondrodysplasia, 

Grebe type

# 200700 (Stelzer et al., 

2003) 

297insC prodomain gdf5 gene homozygous Chondrodysplasia, 

Grebe type 

# 200700 (Faiyaz-Ul-

Haque et al., 

2002a) 

493delC prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Galjaard et 

al., 2001) 

M173V prodomain gdf5 gene homozygous Brachydactyly type C # 113100 (Schwabe et 

al., 2004) 

S204R prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Everman et 

al., 2002) 

759delG prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Polinkovsky 

et al., 1997) 

811ins23 prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 Everman, D. 

B. et al. 2002) 

830delT prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 Everman, D. 

B. et al. 2002) 

R301X prodomain gdf5 gene heterozygous Brachydactyly type C # 113100 (Polinkovsky 

et al., 1997) 

1114insGAGT prodomain gdf5 gene homozygous Chondrodysplasia, 

Grebe type

# 200700 (Basit et al., 

2008) 

R378Q/P436T prodomain gdf5 gene; 

processing site / 

mature domain

compound 

heterozygous 

Acromesomelic 

dysplasia, DuPan 

syndrome

# 601146 (Douzgou et 

al., 2008) 

R380Q prodomain gdf5 gene; 

processing site 

heterozygous Brachydactyly type A2 # 112600 (Ploger et al., 

2008) 

R399C mature domain heterozygous Brachydactyly type A1 # 112500 (Byrnes et al., 

2010) 

C400Y mature domain; no 

processing/secretion

heterozygous Brachydactyly type C # 113100 (Thomas et 

al., 1997) 

C400Y mature domain; no 

processing/secretion

homozygous Chondrodysplasia, 

Grebe type

# 200700 (Thomas et 

al., 1997) 

C400Y/del1144G mature domain/ compound Chondrodysplasia, # 200700 (Thomas et 
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prodomain; no 

processing/secretion

heterozygous Grebe type al., 1997) 

mW408R  

(hW414R) 

 

mature domain; 

location in type I 

receptor binding site

heterozygous Brachypodism (Masuya et 

al., 2007) 

mW408R  

(hW414R) 

 

mature domain; 

location in type I 

receptor binding site

homozygous severe Brachypodism, 

Osteoarthritis 

(Masuya et 

al., 2007) 

C429R mature domain homozygous Chondrodysplasia, 

Grebe type 

# 200700 (Faiyaz-Ul-

Haque et al., 

2008) 

Table 1. Table of all known mutations in GDF5 gene linked to skeletal malformation diseases affecting 

the limb. Mutations depicted in red represent single nuclear polymorphisms (SNPs) located in 5´ or 3´ 

regulatory regions of GDF5 gene. Shown in black are mutations situated in the prodomain, whereas 

mutations in the mature part are represented in blue. Frameshift mutations are highlighted in italics, 

non-sense mutations are underlined.  

polymorphism is not restricted to cartilage (Egli et al., 2009). In addition, recent analysis 

showed that expression of GDF-5 could be further modulated epigenetically as both C-

alleles of the SNPs rs143383 and rs143384 form CpG sites thereby explaining the intra- and 

inter-individual variations observed (Reynard et al., 2011). A third SNP influencing GDF-5 

expression, 2250ct, is found in the 3’ UTR of GDF5. It acts independently from the 5’ SNP 

rs143383 and can similarly reduce protein expression levels by 20-25% (Egli et al., 2009). The 

independent reduction in expression by these SNPs can be additive thereby showing that 

even moderate imbalances in the allelic expression levels of GDF5 can result in severe 

disturbances in synovial joint maintenance. This idea is further emphasized by the 

identification of a duplication in the 3´ UTR of the BMP2 gene including a distant enhancer 

of BMP2 expression in BDA2 patients. The phenotype described by Dathe et al. resembles 

those caused by specific mutations in the GDF5 or the BMPR1B gene (Dathe et al., 2009). As 

BMP-2 is expressed in regions surrounding future joints as well as in the joint interzone 

during the development of interphalangeal joints in close proximity to GDF-5 expression, 

one could hypothesize that by either increasing BMP-2 levels due to the duplication of an 

enhancer or by decreasing the GDF-5 expression due to regulatory SNPs as described above, 

the fine-tuned balance between signals from different BMPs may be severely disturbed. 

3.5. Proper folding and processing of pro-GDF-5 is essential for GDF-5 signaling  

Like other ligands of the TGF-β superfamily GDF-5 is expressed and secreted as a dimeric 

pro-protein consisting of a large (354aa per monomer) pro-part and a smaller (120aa per 

monomer) mature part at the C-terminus. The C-terminal mature part harbors the 

characteristic motif present in all TGF-β ligands comprising of seven (BMPs, GDFs) highly 

conserved cysteine residues (Activins, TGF-βs have two further Cys residues at the N-

terminus of the mature part) of which six form the so-called cystine knot. The seventh 

cysteine residue is involved in an intermolecular disulfide bond thereby stabilizing the 

(usually homo-)dimeric ligand assembly. The dimeric mature part of TGF-β ligand exhibits 
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a butterfly shaped assembly with the monomeric subunits adopting an architecture 

resembling a left hand (Sebald et al., 2004). The dimer interface is formed by the palm of the 

hand, two two-stranded β-sheets resembling two fingers emanate from the cystine knot 

containing palm. Mutagenesis was used to determine the receptor binding epitopes (Kirsch 

et al., 2000). The BMP type I receptors bind to the so-called wrist epitope, the type II 

receptors bind to the so-called knuckle epitope (Kirsch et al., 2000). The location of these 

receptor binding epitopes were then confirmed by structure analyses of various BMP 

ligand-receptor complexes (Kirsch et al., 2000, Greenwald et al., 2003, Allendorph et al., 2006, 

Weber et al., 2007, Kotzsch et al., 2009). 

Homozygous non-sense or frame-shift mutations in the pro- or mature part of GDF5 will 

result in a complete knockout of GDF5. However, also heterozygous non-sense and frame-

shift mutations in GDF5 will severely lower the level of intact protein; assuming equal 

transcriptional and translational efficiency from both alleles by statistics only 25% of the 

protein produced will be intact due to its dimeric nature. Hence the complete knockout or 

partial knockdown of GDF5 achieved by this type of mutation leads to rather severe skeletal 

malformation phenotypes such as brachydactyly type C (BDC), symphalangism (SYM1) or 

multiple synostosis syndrome (SYNS1). One potentially underappreciated possibility is also 

the formation of nonfunctional heterodimeric ligands if a cell produces more than one TGF-

β factor at a time and thus a possible influence of non-sense GDF-5 mutations onto other 

BMP signals. It is a known fact that in Drosophila the BMP-2 and BMP-7 orthologs Dpp and 

Screw can form heterodimers with unique functions required for proper development of 

certain tissues (Shimmi et al., 2005, O'Connor et al., 2006), however in vertebrates existence of 

such BMP heterodimers has only been postulated or recombinant proteins have been used 

in the analysis, but existence of such heterodimers has not really been proven in vivo 

(Schmid et al., 2000, Butler & Dodd, 2003) thus a potential “cross”-influence of non-

functional GDF-5 mutations on other BMPs can only be hypothesized. 

Of the 14 missense mutations known in the GDF5 gene four are located within the pro-part 

of the GDF-5 protein. Whereas for the TGF-βs the pro-part fulfills an important regulatory 

role, termed latency, its role for the BMP and GDF subgroup of the TGF-β superfamily is 

much less clear. Latency was discovered for TGF-β1 in 1984 showing that TGF-β proteins are 

secreted as large protein complexes that require activation for TGF-β signaling (Lawrence et 

al., 1984). It is known today that upon secretion the pro-part of TGF-βs is cleaved in the 

Golgi apparatus by furin proteases at a site between the pro- and mature part containing a 

consensus RXXR motif (other proteases might substitute for furin proteases but providing 

for TGF-β proteins with different N-termini) (Dubois et al., 1995). The pro-part also called 

latency-associated peptide (LAP) however is still non-covalently attached thereby 

interfering with TGF-β signaling. Activation corresponding to release of the mature part 

from this intermediate latent complex is achieved either by physicochemical changes in the 

environment, e.g. acidification or by further proteolysis. Proteins specifically binding LAP 

have been identified (Miyazono et al., 1988), these latent TGF-β binding proteins (LTBP) 

interact with the extracellular matrix and play an important role in the TGF-β activation 

process (for review see (Annes et al., 2003)). For BMPs a process identical to latency as 
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observed for TGF-βs is not known, but the pro-part of the BMPs possibly enhances the 

otherwise poor solubility of BMPs under physiolocigal conditions and thus might provide 

for or enhance their long-range activity (Sengle et al., 2008, Sengle et al., 2011). Recent 

determination of the structure of the TGF-β1 pro-protein now provides for an insight in the 

regulatory mechanism of the pro-part at atomic level (Shi et al., 2011). The pro-part embraces 

the mature part of TGF-β like a straitjacket, a long N-terminal α-helix binds into the type I 

receptor-binding site (in BMPs and GDFs called wrist epitope) thereby blocking receptor 

access to this epitope. A proline-rich loop termed latency lasso and a second α-helix 

encompass the fingertips and the back of the second finger of the mature part of TGF-β 

hence also blocking the type II receptor epitope. The pro-domain monomers form a 

dimerization site in the C-terminal region called bowtie, which is located above the 

butterfly-shaped dimeric TGF-β mature part. Two intermolecular disulfide bonds 

additionally stabilize the dimerization between the pro-domain subunits. Strikingly, the 

arrangement of the pro- and mature domain resembles the overall architecture found for the 

Noggin-BMP7 interaction (Groppe et al., 2002). Both receptor-binding epitopes are tightly 

blocked from receptor access and the binding of the modulator/pro-domain is strongly 

enhanced through avidity by forming a covalently linked dimer. The importance of the 

covalent dimer linkage becomes obvious in the rare bone disorder Camurati-Engelmann 

disease in which these cysteine residues in the TGF-β1 pro-part are mutated resulting in a 

disrupted dimerization and leading to increased ligand activation (Janssens et al., 2003, 

Walton et al., 2010).  

Although the sequence homology (as well as differences in the length) between the pro-

domains of the various TGF-β members is certainly lower than between their mature parts 

alignments clearly show that all pro-domains will adopt a similar fold (Shi et al., 2011). A 

homology model for pro-GDF-5 build on the basis of pro-TGF-β1 structure instantly 

provides for possible explanations to why the effect of latency is quite different between 

TGF-βs and members of the BMP subgroup. Particularly for GDF-5 (also true for GDF-6 and 

-7) many loops in the pro-domain are extended possibly creating further sites for proteolytic 

activation or degradation, secondly BMPs and GDFs lack the two cysteine residues present 

in the pro-domain being responsible for covalent linkage (see Fig. 9A). This suggests that the 

pro-domain association is much less stable for BMPs and GDFs (see mutations of cysteines 

in the Curati-Engelmann disease) and the release of the mature growth factor domain is 

facilitated without further need of processing. The four mutations in the GDF-5 pro-domain 

cluster in three different skeletal malformation phenotypes: M173V – BDC, S204R – BDC, 

R378Q/P436T (compound heterozygous) – Acromesomelic dysplasia, DuPan syndrome, 

R380Q – BDA2) indicating a loss-of-GDF-5 function in all cases (Everman et al., 2002, 

Schwabe et al., 2004, Douzgou et al., 2008, Ploger et al., 2008). On the basis of our own model 

methionine 173 is placed in close proximity to the first helix element blocking type I receptor 

binding, whereas serine 204 is placed in the so-called arm domain providing the structural 

scaffold for the straitjacket architecture. Both missense mutations likely lead to (local) 

unfolding and thus destabilize the pro-protein complex. This might subsequently lead to 

lower secretion efficiency and the observed loss-of-function phenotype. The mutation  
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Figure 9. Mutations in GDF-5 and its effect on structure or interactions. A) Homology model of pro-

GDF-5 based on the structure of pro-TGF-β1 in ribbon representation (Shi et al., 2011). The mature part 

of GDF-5 (shown in blue and yellow) is embraced by the pro-part with the N-terminal part resembling a 

straitjacket (in red and orange). This element comprising of two helices block access to both type I and 

type II receptor binding epitopes. In contrast to the pro-part of TGF-βs the pro-domains of BMPs and 

GDFs likely do not have intermolecular disulfides (the potential positions of Cys268 and Cys310 are 

shown) suggesting that the pro/mature part assembly of BMPs and GDFs might be less stable compared 

to TGF-βs. Four missense mutations in the pro-part are found to be associated with skeletal 

malformation diseases: M173V, S204R, R378Q, and R380Q. The first two mutations (marked by green 
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spheres) possibly cause misfolding of the pro-domain thereby weakening the pro-protein and leading to 

lower secretion efficiency. The latter two mutations are located in the furin protease site (marked as 

light-blue spheres) and were shown to lower or abrogate proteolytic processing of the pro-protein. B) 

Homology model of the Noggin:GDF-5 complex (Schwaerzer et al., 2011) based on the crystal structure 

of the Noggin:BMP-7 complex (Groppe et al., 2002). Noggin, by a similar mechanism but different 

structural architecture, embraces GDF-5 thereby blocking receptor binding of either subtype through its 

clip and finger domains. Three missense mutations in GDF-5 associated with symphalangism were 

shown to have impaired GDF-5 – Noggin interaction: N445T/K, S475N, and E491K. All three mutations 

are in close proximity of the Noggin clip region suggesting that through loss of interaction with this 

element GDF-5 binding to Noggin is attenuated. C) Ribbon representation of the mature part of GDF-5 

with the two monomeric subunits shown in blue and yellow. The architecture of a GDF-5 dimer 

resembles a left hand, the α-helix forming the palm, the two β-sheets depicting two fingers and the N-

terminus marking the thumb. Consequentally, the receptor binding epitopes were named wrist (type I 

receptor), formed by the dorsal side of the fingers and the palm, and knuckle (type II receptor), formed by 

the ventral side of finger 1 and 2. The location of all known mutations associated with skeletal 

malformation diseases is depicted by spheres, with color-coding according to their belonging to either 

cystine knot mutations (red), pre-helix loop mutations (green) or mutations affecting Noggin-binding 

(magenta). D) As in C but rotated clockwise around the x-axis by 90°. E) Ribbon representation of the 

complex of GDF-5 (in blue and yellow) bound to the extracellular domain of BMPR-IB (grey). The 

overview clearly shows that affected residues in the pre-helix loop are in contact with receptor elements 

suggesting that these mutations alter type I receptor binding. F) Magnification of the interaction between 

residues in the pre-helix loop of GDF-5 and residues in the binding epitope of BMPR-IB. The complete pre-

helix loop is tightly packed to residues in the threestranded β-sheet of BMPR-IB. GDF-5 Arg438 is involved 

in hydrogen bonds to His24 located in the β1β2-loop of BMPR-IB. The tight turn structures at the N- and C-

terminal end of the pre-helix loop also indicate that the mutations involving the exchange of a proline 

(P436T) or introduction of a proline (L441P) will likely destroy the conformation of the pre-helix loop 

thereby affecting receptor binding even if these two residues do not form direct contacts with GDF-5. 

R380Q targets the pro-domain cleavage site by destroying or attenuating proteolytic 

processing via furin proteases (Ploger et al., 2008). The now covalent linkage of pro- and 

mature part of GDF-5 R380Q very likely enhances the competition of the pro-domain with 

receptor binding and thus leads to loss of or attenuated GDF-5 activity (Ploger et al., 2008). 

The mechanism by which the double mutation R378Q/P436T causes the skeletal 

malformation is more complex. As the mutation is compound heterozygous, three GDF-5 

variants are potentially produced in the patient. Statistically 50% of the GDF-5 protein 

would carry both exchanges as a heterodimer and the other 50% would consist of 

homodimers with either one of the two mutations. Heterozygous carriers of the individual 

missense mutations R378Q or P436T did not exhibit any skeletal phenotype thus preventing 

to point towards a particular mutation as disease-causing if found in a homozygous 

background. For the mutation R378Q it can be assumed that processing of the pro-protein is 

at least impaired and thus the portion of GDF-5 R378Q homodimer is likely to be inactive as 

found for R380Q (see Fig. 9) blank (Ploger et al., 2008). The missense mutation P436T is 

located in the mature part of GDF-5 in the so-called pre-helix loop of the GDF-5 type I 

receptor-binding epitope (Nickel et al., 2005). Mutation of the equivalent proline residue in 

BMP-2 strongly decreased binding of this BMP-2 variant to both type I receptors, BMPR-IA 

and BMPR-IB thus leading to a loss of BMP signaling (Kirsch et al., 2000). 
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Of the other eight known disease-related amino acid exchanges in the mature part of GDF-5, 

several mutations involve the exchange of a cysteine residue participating in the formation 

of the cystine knot, e.g. C400Y, C429R, C498S or introduce additional cysteine residues, e.g. 

R399C, R438C, which will interfere with proper formation of the cystine knot, thereby 

leading to a misfolded inactive protein. Several studies show that under conditions 

mimicking a homozygous background no secretion of the GDF-5 variant is observed 

(Everman et al., 2002, Dawson et al., 2006). However, mutations involving cysteines can also 

act dominant-negatively (see Fig. 9). Thomas et al. tested the effect of the GDF-5 mutation 

C400Y, which is found homozygous in chondrodysplasia Grebe type (Thomas et al., 1997). 

Upon transfection of only the mutated gene into COS-7 cells resembling a homozygous 

background no GDF-5 protein could be detected in the cell supernatant, however co-

transfection of the genes for wildtype GDF-5 and the variant GDF-5 C400Y clearly 

attenuated GDF-5 protein levels in the supernatant. This effect was dose-dependent 

indicating that for heterozygous carriers through differential allelic expression a highly 

variable phenotype could possibly be observed (Thomas et al., 1997). Furthermore, this 

study also indicated that the mutation might act dominant negative onto other BMPs by 

selective heterodimerization. By co-transfection of the gene encoding for GDF-5 C400Y 

together with either BMP-2, BMP-3 or BMP-7, heterodimers could be isolated from the cell 

supernatant that will most likely be non-functional (Thomas et al., 1997). 

3.6. GDF-5 activity is tightly regulated by the BMP antagonist Noggin 

All other missense mutations in the GDF5 gene cluster in two regions of the GDF-5 structure 

(see Fig. 9C/D). Three missense mutations cluster in close proximity of finger 2 of GDF-5, 

N445T/K (Seemann et al., 2009), S475N (Akarsu et al., 1999, Schwaerzer et al., 2011) and E491K 

(Wang et al., 2006). The heterozygous mutations N445T and N445K in GDF-5 were identified 

in patients suffering from multiple synostosis syndrome (SYNS1) characterized by fusion of 

carpal bones and proximal symphalangism in fingers II to V (Seemann et al., 2009). Analysis of 

the recombinant GDF-5 variant in BMPR-IB transfected myoblastic C2C12 cells indicated that 

the mutation did not lead to a loss of GDF-5 function. In fact analyzing the expression of the 

osteogenic marker alkaline phosphatase in non-transfected C2C12 cells revealed even a gain of 

activity exemplified by a small but measureable ALP induction when stimulating with GDF-5 

N445T but no induction of ALP expression when using wildtype GDF-5. As this activating 

mutation is located within the wrist (type I receptor binding) epitope of GDF-5 differences in 

binding to the BMP type I receptors were assumed. However, competition assays using 

soluble receptor ectodomains showed that binding of the GDF-5 variant N445T to BMPR-IA as 

well as BMPR-IB is unaltered (Seemann et al., 2009). Sequence comparison with other BMP 

factors indicated that one of the mutations found, the exchange of Asn445 to lysine, is native in 

BMP-9 and BMP-10. As the latter factors are insensitive to Noggin inhibition, Seemann et al. 

assumed that this mutation also renders GDF-5 insensitive to inhibition by Noggin. In vitro 

assays indeed confirmed that GDF-5 N445T is not antagonized by recombinant Noggin 

protein leading to an increase in GDF-5 signaling activity during early stages of limb and joint 

development where Noggin and GDF5 expression patterns overlap (Seemann et al., 2005, 

Seemann et al., 2009). Another mutation in GDF-5 leading to proximal symphalangism is 
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E491K discovered in two large Chinese families (Wang et al., 2006). The skeletal malformation 

phenotype resembles the one seen in aforementioned patients having either the mutation 

N445T/K (Seemann et al., 2009) or R438L (Seemann et al., 2005) in the GDF5 gene. Nothing is 

known about receptor or modulator protein binding of this particular GDF-5 variant, however 

in the GDF-5 structure Glu491 is in close proximity to Asn445. Moreover, the sidechain 

carboxamide group of Asn445 is forming a hydrogen bond to the backbone carbonyl of Glu491 

possibly suggesting a similar disease-causing molecular mechanism through the loss of 

inhibition by Noggin as described above by Seemann et al. (2009). Modeling of a GDF-

5:Noggin complex based on the structure of the BMP-7:Noggin interaction (Groppe et al., 2002) 

does however not indicate a direct interference of a GDF-5:Noggin interaction by exchanging 

Glu491 by lysine (see Fig. 9). 

The mutation S475N is another mutation in the mature part of GDF-5, which causes multiple 

synostosis syndrome (SYNS1), a phenotypic description of these heterozygous missense 

mutations was first reported by Akarsu et al. (1999). The phenotype again suggests a gain-of-

function in GDF-5 signaling. A detailed analysis of the signaling properties of this GDF-5 

variant indeed revealed that GDF-5 S475N is significantly more potent in the chondrogenic 

differentiation in chicken micromass culture compared to wildtype GDF-5 (Schwaerzer et al., 

2011). The mutation is located in the knuckle (type II receptor) epitope of GDF-5 (see Fig. 

9C/D). Although no direct structural data is currently available for GDF-5 bound to type I and 

type II receptors, structure data available on ternary complexes of BMP-2 (Allendorph et al., 

2006, Weber et al., 2007) indicated that this highly conserved serine residue is at the center of 

the BMP/GDF type II receptor interaction. Despite its location exchange of this residue in BMP-

2 affected type II receptor binding only marginally (Weber et al., 2007) suggesting that other 

residues in the BMP-type II receptor interface are more important for the ligand-receptor 

interaction. However, in GDF-5 Ser475 seems more important for the binding of BMPR-II as 

indicated by a 7-fold decrease in the binding affinity upon mutation to asparagine, which 

seems surprising given the fact that this mutant shows an elevated activity compared to 

wildtype GDF-5 (Schwaerzer et al., 2011). As the BMP type II receptor epitope overlaps heavily 

with that of Noggin, also the change in binding to Noggin was determined showing that also 

Noggin binding affinity is similarly decreased by 4-fold. When the effect of Noggin inhibition 

on BMP factors was investigated by analyzing BMP-induced alkaline phosphatase expression 

or chondrogenic differentiation in chicken micromass culture in the presence of Noggin, GDF-

5 S475N was clearly resistant to antagonizing effects by Noggin, whereas signals from 

wildtype GDF-5 could be efficiently blocked with Noggin (Schwaerzer et al., 2011). This 

possibly indicates that the loss in BMP type II receptor binding affinity seen for this variant is 

overcompensated by the deprivation of Noggin-mediated inhibition (Schwaerzer et al., 2011).  

3.7. Type I receptor binding as well as receptor specificity is essential for correct  

GDF-5 function 

A clear hotspot for disease-related mutations is found for the so-called pre-helix loop 

located in the wrist epitope of GDF-5 (Nickel et al., 2005). This loop is the key interaction 

element for BMP-type I receptor interaction (Kirsch et al., 2000, Keller et al., 2004, Kotzsch et 
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al., 2008). For BMP-2 and GDF-5 this segment contains the so-called main binding 

determinant a highly conserved leucine residue, whose polar main chain atoms makes a pair 

of hydrogen bonds with a conserved glutamine residue present in the BMP type I receptors 

IA and IB. Mutation of either the leucine to a proline in BMP-2 or GDF-5 or the glutamine 

residue in BMPR-IA or BMPR-IB leads to a strongly reduced type I receptor affinity (Keller 

et al., 2004, Kotzsch et al., 2009). In the unbound state this pre-helix loop segment is also 

rather flexible allowing for geometrical adaptability to different receptor surface geometries. 

This observation together with the disordered and flexible ligand-binding epitope seen in 

the BMP type I receptors provides a mechanism for the pronounced ligand-receptor 

promiscuity seen in the BMP/GDF-subgroup of the TGF-β superfamily (Keller et al., 2004, 

Allendorph et al., 2007, Klages et al., 2008, Kotzsch et al., 2008, Saremba et al., 2008). Despite 

structural analyses showed that the pre-helix is flexible before receptor binding, the 

mutation L441P suggests that in the bound state a geometrically defined conformation is 

required for (high affinity) binding of BMP type I receptors (Kotzsch et al., 2009). Residue 

Leu441 is located at the C-terminal end of the pre-helix loop forming a sharp turn together 

with Ser439 and His440 (see Fig. 9E/F). The sidechain of Leu441 is oriented into the interior 

of GDF-5 making it implausible that its exchange to proline affects type I receptor binding 

through altering direct interactions. However, the different backbone torsion angle 

restraints of a non-proline compared to a proline residue suggest that the L441P mutation 

alters the conformation of the C-terminal end of the pre-helix loop and that hereby 

important non-covalent interactions between GDF-5 and its type I receptors are strongly 

impaired. Although earlier reports claim that the mutation L441P in GDF-5 affects binding 

to the BMP receptor IB (Faiyaz-Ul-Haque et al., 2002b, Seemann et al., 2005) our own data 

shows that binding to both BMP type I receptors is strongly attenuated (Kotzsch et al., 2009). 

A rather complex mutation discovered by Szczaluba et al. in patients suffering from DuPan 

syndrome shows shortening of all toes as well as all fingers but the thumb (Szczaluba et al., 

2005). Here in the GDF-5 protein residue Leu437 is deleted and the adjacent residues Ser439 

and His440 are mutated to threonine and leucine respectively (see Fig. 9). As these changes 

grossly alter the sequence as well as conformation of the pre-helix loop, it is not surprising 

that this GDF-5 compound variant shows no type I receptor binding at all (Kotzsch et al., 

2009). Interestingly, although the mutation was found to be heterozygous in the carrier it 

has a dominant-negative effect (Szczaluba et al., 2005). Misfolding of the mutant protein and 

hence impaired secretion can be excluded as explanation, as the protein could be 

recombinantly produced and exhibits wildtype-like affinity to BMP type II receptors. One 

possible explanation for the quite strong skeletal phenotype might be that this GDF-5 

variant is not only inactive but possibly still retains its Noggin-binding capability and 

therefore can act as a Noggin scavenger similar as to what was described for the BMP-2 

variant L51P (Keller et al., 2004). 

The probably most interesting mutation in GDF-5 is the exchange of Arg438 to leucine 

found in patients suffering from proximal symphalangism (Seemann et al., 2005). Based on a 

structural-function analysis to determine the GDF-5 type I receptor specificity this amino 

acid position – 438 if the complete pre-pro-protein is considered and position 57 if 
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numbering starts with the mature part of GDF-5 - was shown before to be solely responsible 

for the BMPR-IB binding preference of GDF-5 (see Fig. 9E/F) (Nickel et al., 2005). The 

equivalent residue in BMP-2, which binds both BMP type I receptors, BMPR-IA and BMPR-IB, 

with equally high affinity is alanine. In contrast, in GDF-5 this position is occupied by a large 

positively charged arginine being also the largest difference in amino acid sequence within the 

central type I receptor-binding epitope. Upon exchange of Arg438 in GDF-5 to alanine, GDF-5 

R438A bound both type I receptors with the same affinity and with binding characteristics 

indistinguishable from those of BMP-2 (Nickel et al., 2005). Recent structure analysis of GDF-5 

bound to its type I receptor BMPR-IB revealed a molecular mechanism by which GDF-5 

“discriminates” between both type I receptors (Kotzsch et al., 2009). A loop between the two N-

terminal β-strands of the BMP type I receptors can adopt different conformations dependent 

on the amino acid sequence. As this loop is in contact to the “GDF-5 specificity determining” 

amino acid Arg438 BMP type I receptors can be selected through the presence or absence of a 

steric hindrance. BMPs with large bulky sidechains at this position such as GDF-5 of the pre-

helix loop can only bind to BMPR-IB, whereas BMPs with small sidechains such as BMP-2 or 

BMP-4 can bind both BMP type I receptors equally well (Kotzsch et al., 2009). 

Analysis of this BMP-2 like GDF-5 variant revealed that in a cell line (ATDC5) having pro-

chondrogenic properties and not expressing the BMPR-IB receptor this variant now has the 

same signaling properties and efficiency as BMP-2 (Nickel et al., 2005). Thus under these 

conditions GDF-5 can signal via the BMPR-IA receptor and signaling efficiency is only 

decreased by the lower affinity of wildtype GDF-5 for BMPR-IA. Most interestingly, despite 

having the same receptor binding properties as BMP-2, GDF-5 R438A still does not induce 

ALP expression in the myoblastic cell line C2C12 (Klammert et al., 2011). As RT-PCR 

analysis did not reveal significant differences in BMP receptor expression between both cell 

lines, ATDC5 and C2C12, other mechanism must exist that determine whether GDF-5 can 

fully signal through a particular BMP type I receptor. This observation also indicates that 

GDF-5 by binding to BMPR-IA can activate signaling on some cell types whereas on other 

cell types it might compete with BMP-2 for BMPR-IA and act as an antagonist (Klammert et 

al., 2011). The mutation found in SYM1 affected humans, R438L, does not show a complete 

loss in BMP type I receptor specificity, the larger leucine sidechain in comparison to alanine 

leads to a 6 to 9-fold higher affinity to BMPR-IB compared to BMPR-IA (Seemann et al., 2005, 

Kotzsch et al., 2009). However, the result will likely be similar as above in that the mutation 

R438L renders GDF-5 into a protein that has BMP-2 like receptor binding properties. As 

BMP-2 is assumed to induce or at least regulate apoptosis in the interdigital mesenchyme 

(Yokouchi et al., 1996, Merino et al., 1999a), one would first expect increased apoptosis in 

patients carrying the mutation R438L in GDF-5 due to the presence of an additional BMP-2 

like factor (Seemann et al., 2005). However, our latest observation that increased BMPR-IA 

binding by GDF-5 R438A might not induce full signaling in all cell types possibly indicates 

that here the gain-of-function mutation in GDF-5 surprisingly leads to a loss of BMP-2 

signaling in certain areas of the developing joint by competing for the binding to the same 

receptor BMPR-IA thereby might impede BMP-2 induced apoptosis which finally results in 

joint fusion (Klammert et al., 2011). 
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4. Conclusion 

When GDF-5 was discovered, due to its highly defined expression pattern during limb 

development, which precisely correlates with the location of all future joints throughout the 

limb, it was assumed immediately that this particular TGF-β factor takes the center stage in 

the development of all synovial joints. It thus came as a surprise when the GDF5 knockout 

mice despite being affected in joint and limb development still showed multiple joints being 

developed quite normally. Genetic and functional analyses of human skeletal malformation 

diseases such as brachydactyly or chondroplasia showed that not only a number of other 

genes can lead to loss of joints or limb deformations similar to those seen in the GDF5 null 

mice, but that also different mutations in GDF-5 can result in very distinct malformation 

phenotypes. Further studies revealed that often these different factors, many of them acting 

as morphogens themselves, such as Wnts and its (co-)receptors, members of the Sonic 

Hedgehog family or the FGFs, do not act independently but can be upstream or 

downstream of the TGF-β signaling cascade or even form positive or negative feedback 

loops with signaling components of the TGF-β superfamily. This complex regulatory 

network is further complicated by the fact that components of the TGF-β superfamily - 

ligands, receptors as well as antagonists – are known to function via highly promiscuous 

protein-protein interactions. Even if we restrict our focus onto the regulatory signaling 

network of GDF-5, its highly overlapping receptor binding specificities with other BMPs, 

such as BMP-2, BMP-6 or BMP-7, all of which are expressed in the direct neighborhood of 

the developing joint, make immediately clear that mutations altering binding of one 

particular ligand-receptor pair will ultimately affect the signaling output of other BMP 

members even when those are not affected by mutations themselves. 

One mutation in GDF-5 – R438L – best exemplifies the dilemma. This mutation enables GDF-5 

to now efficiently bind to a second BMP type I receptor, BMPR-IA. However this receptor is 

usually utilized by BMP-2 also present during joint development. As it is not known whether 

the GDF-5 variant with the altered type I receptor specificity delivers the same signal via this 

receptor as BMP-2 or whether it can signal at all through this BMP receptor in the present 

cellular context, developing a molecular disease mechanism explaining the mode of operation 

for this mutant seems impossible. In addition to this fuzzy BMP ligand-receptor network 

modulators like Noggin act like hub proteins interacting with multiple BMP ligands with a 

distinct BMP specificity profile. These interactions are again often linked to feedback loops 

leading to a precisely defined equilibrium of BMPs, BMP receptors and other modulators, 

which as a sum deliver a defined biological outcome. Classical morphogens such as the BMPs 

are considered to function via a concentration gradient, which is then interpreted by the 

different cells by responding to a particular morphogen threshold. However, the discrepancy 

of strong GDF5 expression in all future joint locations and the highly localized effect seen in 

GDF5 knockouts suggests that responsiveness to or the differentiation program run by GDF-5 

is encoded along the digital ray by the various other morphogens in a temperospatial manner, 

thus allowing to run the differentiation program for joint formation by GDF-5 only at certain 

times at very defined places, whereas at other places or at earlier or later developmental stages 

as defined other factors will take over the GDF-5 function. 
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