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1. Introduction 

Numerical application to geomechanics is an area of research that has grown rapidly since 
its origins in the late 1960s. This growth led to new methodologies and analysis approaches 
that are nowadays commonly employed in geotechnical, mining or petroleum engineering 
practice.  

The circular tunnel boundary problem is frequently encountered in rock and soil mechanics, 
geotechnics and generally in mining and petroleum engineering. Consequently, there is a 
great interest in solving boundary problems involving the excavation of an underground 
opening. Moreover, time dependent behavior of geomaterials benefits by a special attention 
in constitutive and numerical approach. Regarding the constitutive modeling and analytical 
approach [1] concerns both with vertical and horizontal underground openings excavated in 
an elasto-viscoplastic rock mass, governed by the constitutive laws which go by his name 
and for which analytical solution for the displacement and viscoplastic strain are derived; 
[2] provides analytical results for circular and non-circular openings with thermal effects as 
well; [3-5] present results in approaching the problem both analytically (convergence-
confinement method) and numerically by FEM. 

The viscoplastic approach in FEM has been considered by many authors, in terms either of 
numerical stability of schemes used in viscoplasticity, see [6-8], or practical applications 
using FEM solutions in different areas. For instance, tunneling using FEM for viscoplastic 
materials has been investigated widely, as well, e.g. [9] approaches the problem with 
outstanding results in computational geomechanics, with special reference to earthquake 
engineering, in numerical modeling of dynamic soil and pore fluid interaction and 
earthquake-induced liquefaction and multiphase pollutant transport in partially saturated 
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porous media; Zienkiewicz provides outstanding numerically approaches in a wide range of 
problems, e.g., [10] is devoted to computational geomechanics; [11] focuses a great interest 
in the multi-disciplinarily aspect of the problem, taking into account also adjacent 
phenomenon occurring at the rock-support interaction; [12] deals with ductile damage and 
fracture FE modeling of viscoplastic voided materials for high strain rate problems,[13] 
provides a finite-strain viscoplastic law coupled with anisotropic damage both theoretical 
and numerical approach, [14] develops a FE procedure to model the tunnel installation and 
the liner to predict the likely extent of damage to surface structures caused by nearby 
shallow tunneling, [15] deals with FE modelling of excavation and advancement process of a 
shield tunnelling machine, [16] develops a FE micromechanical-based model for hydro-
mechanical coupling for tunnelling application, [17] applies a model based on plastic 
damage evolution and permeability to excavation-disturbed zone simulation of the 
mudstone shield tunnel; [18] analyses tunnel depth effect on the stress and strain state 
around the tunnel; [19], [20] studies the face tunnel influence in the analysis of a circular 
tunnel with a time-dependent behaviour, etc. 

This chapter deals with a FE code implementation of an elasto-viscoplastic constitutive law. 
The numerical calculations are performed with a finite element code called CESAR made in 
LCPC-Paris [21]. The viscoplastic module is coded and implemented in the FE code CESAR 
by the author. The validation of the numerical code is performed in different steps: with the 
boundary problem solution of the triaxial laboratory tests, with analytical solution of creep 
step, and of supported and unsupported underground openings in viscoplastic rock mass. 
This chapter is focused on further complex applications, such as the tunnel excavation 
successive phases and lining mounting which are approached using the viscoplastic 
constitutive module. 

2. The elasto-viscoplastic constitutive equation 

The constitutive law implemented in finite element code is proposed by Cristescu. The 
hypotheses for the constitutive equation formulation are (see [1]): 

i. The material is considered homogeneous and isotropic. Thus, the constitutive functions 
depend only on the invariants of the stress and strain tensors. The stress tensor and the 
strain tensor are denoted  and ε , respectively and the stress tensor principal 
components are denoted as:      1 2 3 1 2 3, , , , , . Among the stress invariants, those with 

an important physical meaning are:  

- the mean stress:   
     

  1 2 3

3
; 

- the equivalent stress                2 2 2 2
1 2 3 1 2 2 3 3 1 (or the octahedral shear stress 

   2 2
3 3

II with II being the second invariant of the stress deviator). 

ii. The displacements and the rotations are assumed small, so that      E I , where E

and    being the elastic strain rate and the irreversible strain rate respectively. 
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iii. The component of the elastic strain rate satisfies the Hooke law  

 
    
 

   
1 1 1

3 2 2
IE

K G G  

with K, G being the bulk and shear modulus, respectively and I being the identity tensor. 

iv. The component of the irreversible strain rate satisfies: 


 

  
 ( )

( , ) 1
( , )

ε σ
σ

I
I W t F

k d
H

, 

where: k represents the viscosity coefficient, that can depend on the stress state and the 
strain state, and probably on a damage parameter d describing the history of the micro 
cracking the rock was subjected to, and the bracket < > represents the positive part of 
respective function: 

    / 2A A A A  

The irreversible stress work is used as a hardening parameter or internal state variable, split 
into volumetric and deviatoric parts and it is given by the quantity: 

              
0

.σ ε
T

I I I I
v dW T t t dt W T W T   (1) 

We introduce the damage parameter d, see [1], defined by:  

       I I
v max vd t W t W t   (2) 

describing the energy released by micro-cracking during the entire dilatancy period. In (2)

maxt  represents the time for which I
vW is maximum. The failure threshold is considered to 

be the total energy released by micro cracking during the entire dilatancy process and it is 
characterized by the following parameter (constant): 

      .I I
f v max v failured W t W t   (3) 

H(σ ) represents the loading function, generally a function of stress tensorσ , with 
     , IH W t the creep stabilization boundary equation, the function H depending on the 

two stress invariants mentioned above. 

F(σ ) represents a viscoplastic potential, that establishes the orientation of    . 

v. The initial yield stress of the material is zero or very close to zero. 
vi. The applicable domain for the constitutive equation is considered for compressive 

stresses (positive) and bounded by the failure surface which may be incorporated in the 
constitutive equation.  

We consider therefore, the following constitutive equation: 
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  

         
 1 1 1 ( )

( , ) 1
3 2 2 ( , )

σI σ σ
σ

IW t F
k d

K G G H
  (4) 

For instance, for the model describing the Borod coal behavior (see [1]), the constitutive 
functions and material constants used are:  

                         

2
0 * 1 0*

0 0 *
0 1 02 * 1

sin( / ) if 0( / )
( , ) : /

if/

c c
H a b

c ca a
  (the yield surface) 

     ( , ) : ( , )F H   (5) 

where a0 = 7.65  10−4 MPa;  a1 = 0.55;  a2 = 8.159  10−3;  b0 = 0.001 MPa; c0 = 4.957  10−4 MPa;  
c1 = 4.8955  10−4 MPa;  =171.9270;0=1,0996MPa; k =6  10−6; s-1 (the viscosity coefficient); df = 
4.48  103 Jm−3; * =1 MPa and the elastic constants are: E = 798.385 MPa,  = 0,327. 

The relation (5) shows that the viscoplastic potential equals the loading function, fact that 
determines an associated flow rule. 

For the model describing the saturated sand behaviour, the constitutive functions and 
material constants are:  

 


      
 
   
 

7

53

( )
( , ) :

3

H a b c   (the yield surface) 

 

   

 

 

3
2

3 3
2 2

31 1
2 2 21

2

3 5
2 2 1

2

1
1 3

1 1

2 1
2 32

( , ) : 2
2 3 2 2

1 1 2 1
3 3 3

2 ln
2 2

2 1
3

h
F fh

f f f

f

h fh
f f

f

                     
 
 

                                                 
                     

 

1
2

3
0 1 the plastic potentialg g






  

 

where  -7 1=4.834 10  (kPa)a ,  3=1.33 10b ,  3=1.058 10c ,



1

2
1=2.34 10 (kPa)h , 0 =0.005g , 

 -6 -2
1=0.62 10 (kPa)g , f=0.562,  =1.34,  -6 1=3.6 10 sk (the viscosity coefficient) and the elastic 

constants are: E = 205300 kPa,  = 0.33.  

For this model, as the viscoplastic potential differs to the loading function, determines a non-

associated flow rule. 
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3. The numerical integration of the elasto-viscoplastic equation 

In this paragraph the way to implement the elasto-viscoplastic law presented in previous 
paragraph in finite element code is described. The interface with the program is performed 
by the calling of the subroutine that carries out the numerical integration of the proposed 
constitutive law, at a Gauss integration point level. The implicit form for the constitutive law 
is used and two solving methods, namely: Euler semi implicit method (   scheme) and 
Runge - Kutta method of fourth order.  

The numerical integration of equation (4) is performed alternatively by two methods: 

a. Semi implicit Euler method (   scheme) in which the evaluation of the viscoplastic 

strain increment is done with the rule:            1 2( 1 ) ) , [0,1]vp vp vp t where

  1 ( )σvp f W ,          2 1 1( , ) and ,σ σ σvp f W W W are the stress increment and 

associated irreversible work increment calculated with the standard scheme, 

corresponding to the viscoplastic strain increment 1
vp ; ,σ W are the known values of 

stress and irreversible work at the beginning of the step and function 

     
 




 
, , 1

,
σ σ

σ

IW t F
f W k d

H
.  

b. Runge-Kutta method performs more evaluations of the function inside each time step 
dt, propagating thus on an interval a solution that is a combination of a few Euler type 
steps (each of it implies an evaluation of function f) and further using the obtained 
information to match an expansion in Taylor series of higher orders.  

In particular, Runge-Kutta method of fourth order employed to integrate the proposed 
constitutive equation uses four evaluations of function f for the considered time step:          

 
 
 
 



    

    

    

















1

2 1 1

3 2 2

4 3 3

,

,

,

,

σ

σ σ

σ σ

σ σ

vp

vp

vp

vp

f W

f W W

f W W

f W W

 

with        1 2 3 1 2 3, ,σ σ σ W W W the intermediate evaluations of the stress increment, and 
the irreversible work increment respectively. 

Runge-Kutta method of fourth order is used for the numerically integration of equation 
(4) to evaluate the viscoplastic strain increment and it is also used to evaluate the 
irreversible work (1) from the evolution differential equation of the hardening parameter
 iW .  
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4. The numerical solution of nonlinear problems 

The classical solution algorithms used in finite element method are displacement type, 
incremental and iterative ones that often present some convergence difficulties related to the 
applied loading and the searching of the limit loading.  

Generally, the solution algorithms of nonlinear problems will depend on the specific 
problem under consideration. At the same time, the algorithms are made up of two levels: 
one global level, of the general scheme of solving, that enables the calculation of the 
displacement field at the nodal points of the discretized structure; and a local level, of the 
integration scheme of a nonlinear constitutive equation, which enables at a point, as starting 
with the stress and strain history at that point, a new state of stress to be calculated.  

The two schemes have a great reciprocal influence upon the solving process. Concerning the 
integration of the constitutive law, it may be done through explicit or implicit schemes. 

The treating of a nonlinear problem with finite element method leads to the solving of a 
system of equations that may be put in the form: 

      , ( ) ( )u R u Pt   (6) 

where: u represents the displacement vector in the nodal points of the structure under 
consideration, R(u) is the nodal forces vector corresponding to the stresses at moment t, P 
designates the total loading applied to the structure and ( )t represents the loading factor 

applied at moment t. 

The solution of the system of equations (6) is in fact the pair (u, ( )t ) associated to the 

displacement response of the structure at the loading which it is subjected to. Generally it is 
impossible to obtain a solution with a direct solution technique, so an iterative process has 
to be adopted. Often, the used iterative process is based by the linearization of the nonlinear 
equations to be solved.  

The iterative process assumes that the constitutive equation can enable the calculation of the 
exact value of the inequilibrium (residual) with respect to the only unknown entity, which is 
the present displacement u1. For this reason it is necessary to perform an incremental 
loading of the structure. 

The algorithm for solving a static nonlinear problem with the initial stress method used in 
the framework of the finite element program is: 

 
 

1

1

0
initialization

P

u
 

j = 1 loop on the increments 
The incrementation of the loading P 

i = 1 loop on the iterations (We assumed i state known and i+1 state has to be 
calculated).  
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Setting up the term     dBj t
i i iF P v  that has to be calculated as accurate as possible. 

The calculation of the global stiffness matrix   dK B DBt v , where the matrix D needs not be 

quite accurate and can be:  

- elastic matrix (the initial stress method) 

- the constitutive matrix Devp (the tangent stiffness method)  

The solving of the algebraic system   FK i iu (nonlinear if K=K(u)) 

  1 FKi iu  solving the system of equations 

   1i i iu u u  updating displacement 

   1Bi u  displacement-strain relations 

    1i i i  calculation of the incremental stresses with the constitutive law;   can be 

calculated as: 

- elasticity:   De
i i . 

- viscoplasticity: *     ( )D vpe
i i i , with    /vp

i f ,proportional with the 

derivative of the    viscoplastic potential. 

   * Devp
i i   (explicit form). 

From the law   ( )i if (implicit form), the numerical integration may be done with θ 
scheme, with Runge-Kutta method, the consistent matrix, etc. 

   1 1( ) dR Bt
i iu v  calculation of the residue  

   1 1P ( )Rj
i iu  equilibrium check            

Convergence test:  
no  i = i+1  (next iteration) 
yes  j = j+1  (next step) 

where u represents the vector of nodal displacements, v is the vector of out of balance nodal 
forces, B designates the matrix of the shape functions for strain, P j represents the vector of 
the known nodal applied forces, ( )R iu  is the vector of the equivalent nodal forces, due to 
the stresses i . These nodal forces are consistent with the current value of unknown u. 

Returning again on the fact that it can be also deduced from the algorithm above, namely 
that two calculation levels can be distinguished: 

- local level: the application of the constitutive law for a material point (in fact, Gauss 
integration point in finite element analysis) for the calculation of  the constitutive matrix 
D,   ( )D and the stresses  1i   . 

- global level: the application of the iterative process upon the vector of nodal 
displacements. 
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In order to ensure the convergence of the iterative process, the non-equilibrium of the 
structure (the residual), the displacement variation and the work variation done during the 
iteration have to be tested at every iteration. So, the testing is done upon the following 
quantities: 

- testing the residue 


 
 0

( )
;

( )
i

R

u

u
 

- testing the displacement


  ;i
D

i

u

u
 

- testing the work 
 

 
 0 0

( ) .
.

( ) .

T
i i

WT

u u

u u
 

It has to be mentioned the fact that an iteration has no physical meaning: in fact, at the 
beginning of the iteration, the equilibrium is satisfied, but, at the end of one iteration, the 
constitutive law is satisfied in preference to the equilibrium. Therefore, only at the end of an 
incremental stage, the solution can converge to a physical sense for the studied structure. 

5. Comparison of the numerical and analytical solution for the creep step           

In order to test the subroutine which performs the numerical integration of the elasto-
viscoplastic constitutive equation, a comparison of the numerical solution with the 
analytical formula for the creep step is performed. For this purpose, an analytical formula is 
used for the calculation of the strain rate in the case of the application of a number of 
successive steps at constant stress, namely: it is assumed that at moment 0t the stress state is 
increased suddenly to the value of  0σ t and it is kept constant.  

5.1. Determination of the analytical solution for creep step 

To establish the formulae that describe the creep deformation, we will write firstly the 
formula which supplies the variation of  IW t when all stress components are constant; it is 
easily obtained by integration of the constitutive law (4) (see [1]):  

 
 

 
 

   
                 

0
01 1 exp

, ,
σ

σ

I IW t W t k F
t t

HH H
  (7) 

where      0σ σt t constant and  0
IW t is the initial value of IW for  0t t , denoted 

further IPW .  

This is the relation that describes the variation in time of  IW t under a constant stress. The 
variation in time of  IW t is longer or shorter depending especially on the value of the 
viscosity parameter k.  
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Introducing the left hand side of the relation (7) into the constitutive equation (4), we get the 
total strain under constant stress:  

 

 
 

 

   
                 





0

0
0

1
,

1 exp
1

σ
ε ε σ

σσ
σ

IW t F

H k F
t t

F H

H

   (8) 

using the initial conditions: 

 
 

       
 

 0
0 0 0

1 1 1
; 0;

3 2 2
ε ε I σIt t

K G G
  (9) 

where     0σ σt t  is the initial stress state, reached instantaneously and taken with respect 

to the state at 0t  when the loading is applied (it represents the elastic response). It is 

observed that the value of irreversible strain rate during the creep is governed by the 

expression 
 

 
 

1 .
,

IW t

H
 

If we wish to have a stress path made up of small stress increments σ , followed by time 
intervals of constant stress, we get for the strain increments some formulae similar with (8), 
namely:  

 

   
 

 
 

   
 

 
 

   
                  


   
                  







0

11
1 0

0

22
2 0

1
,

1 exp ,
12

1
,

1 exp ,
12

σ
σσ

σ

σ
σσ

σ

I

I

W t F

Ht k F
t t t

FG H

H

W t F

Ht k F
t t t

FG H

H

  (10) 

where 1σ and 2σ being the principal stresses and where during the time interval   0 ,t t t  the 

state of stress is constant and  0
IW t  is calculated at moment 0t , just before of a new stress 

increment σ that occurs at 0t .  

5.2. Comparison of the numerical results with the analytical solution 

The numerical solution is obtained for the same loading path as in the calculation of the 
analytical solution. Since the calculation of the analytical solution uses the hypothesis of an 
instantaneous loading, for the numerical solution the loading is applied in a very small time 
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interval t , namely 1010 s. Similar to the calculation of the analytical solution in the 
hypothesis of a constant stress, for the numerical solution, at every time step, null loading 
increment is applied.  

To perform a comparison between the analytical solution and the numerical results obtained 
using the Euler method (θ  scheme) and Runge-Kutta method of fourth order, we present as 
example, one step loading path, with a null initial state of strain and an initial stress state of 
     0 0 0

1 2 30.7kPa, 0.1kPa, 0.1kPa. The numerical results obtained using Runge-Kutta 
method of fourth order shows the superiority of this method. 

For instance, in the case of t  = 0.01 s, the analytical solution for the strain components 
gives: 

     -6 -7 -7
1 2 3=  3.08839  10 ,  =-7.99371  10 , =-7.99371 10 ;analytic analytic analytic  

while the same components using θ  scheme are: 

     -6 -7 -7
1 2 3=  3.08841  10 ,  =-7.99383  10 ,  =-7.99383  10 ;Euler Euler Euler  

and using Runge-Kutta of fourth order methods, are: 

       -6 -7 -7
1 2 3=  3.08840  10 ,  =-7.99378  10 ,  =-7.99378  10 .R K R K R K  

6. Comparison of the numerical solution of the triaxial test boundary 

problem and the experimental data 

The numerical solution is performed using the elasto-viscoplastic constitutive law presented 
above and represents the triaxial test for a cylindrical sample of saturated sand

    1 2 3increasing,  under axi-symmetric hypothesis, see [20].  

A quarter of a sample was considered because of the symmetries, requiring only one 
quadrilateral finite element with 8 nodal points. So, the mesh is a very simple one, like in 
Figure 1, the width being denoted with a and the length l. In this case, we consider a = l = 1. 

(0,1)

(0,.5)

(0,0)

1 2 3

4 5

6 7 8

(.5,0) (1,0)

(1,.5)

(1,1)

(.5,1)

 
Figure 1. The mesh for the simulation of the triaxial test for a cylindrical sample 
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The stress state in element being uniform, the 8 nodal points of the element present the same 
state of stress and strain. For validation we deal only with 8th nodal point element, which has 
the advantage that since its height being equal with unity, its vertical displacement is equal 
with the longitudinal strain, and its horizontal displacement is equal with the radial strain. 

The initial boundary problem is then: 

     
     
     
     

       
       
        
        

inner face 0 and 0, 0, 0, 0.

left lateral surface 0, and 0 0, 0, 0.

right lateral surface 0, and ( ), 0, 0.

outer face and 0, ( ), 0, 0.

r rz

r rz

rr rz

zz rz

z r a u t t t

z l r u t t t

z l r a t f t t t

z l r a t g t t t

  

We consider for the functions f and g some particular forms that can simulate the triaxial test 
in two stages, namely: 

- the hydrostatic stage when both lateral pressure and the vertical one are increased (in 
steps for this test) until a certain value is reached. 

- the deviatoric stage, when the lateral pressure remains constant at while the vertical one 
is increased (in steps as well) until failure. 

The following functions are used for the two stages: 

 

 


   
  


           

for 0 (the hydrostatic stage)

for (the deviatoric stage)

for 0 (the hydrostatic stage)

for (the deviatoric stage)

h

h

h

h h

t
t T

f t T
T t

t
t T

T
g t

t T
T t

 

with a linear variation during the hydrostatic stage.  ,h ,T are constants that characterize 

the loading. 

We are going to consider as well a quadratic variation with respect to the time of the loading 
through the functions: 

 

 


     

  


  
  

        

2

2

2

2

2

for 0 (the hydrostatic stage)

for (the deviatoric stage)

for 0 (the hydrostatic stage)

for (the deviatoric stage)

h

h

h

h h

t
t T

f t T
T t

t
t T

T
g t

t T
T t
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Let us consider now a hydrostatic stage of a classical triaxial test (we consider for the 
functions f, g, f', g' the upper branch of the function form defined above). We will try to find 
again some of the important constitutive features of the material with the numerical 
solution. 

The comparison of the results for a linear incremental in time loading (considering the 
functions f, respective g) and a quadratic incremental in time loading (considering the 
functions f', respective g') are made for two different duration of creep time step, 10s and 
30s respectively. In both cases, the volumetric strain corresponding to the quadratic loading 
is bigger than in the case of the linear one in time, the difference being more marked at 
smaller loading rates. 

A comparison with respect to the loading rates for 7 loading steps, and 14 loading steps 
hydrostatic test respectively is made too. In both cases one can observe grater strains in the 
case of smaller loading rates, the strains being as great as the test performed with more 
loading steps. 

For the deviatoric stage of the classical triaxial test (the lower branches of the functions f, 
g, f', g') in which the stress state that was reached in the hydrostatic stage is maintained 
constant and only the vertical component of the stress is increased, a comparison 
between the numerical results and the experimental data is achieved for saturated sand 
(see [22]). 

There are two sets of tests with the confining pressure of 14.7 kPa and 29.4 kPa respectively. 
Figures 2a,b represents the experimental data, while Figures 3 a, b presents the numerical 
results for the two tests mentioned above, respectively. 

 

     

 
 

Figure 2. a), b). Experimental data for 2 tests with confining pressure of 14.7 kPa , 29.4 kPa respectively 

(a) (b)
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Figure 3. a), b). Numerical solutions for 2 tests with confining pressure of 14.7 kPa,29.4 kPa, 
respectively 

7. Comparison of numerical and analytical solution for underground 

openings    

In this paragraph, a comparison between the numerical results and an available analytical 
solution for the problem of underground openings in viscoplastic rock mass is performed 
and it represents the next step of validation of the numerical code. The approach 
presented here concerns the applications of supported and unsupported underground 
openings in viscoplastic rock mass with the assumption of constant primary stress in the 
whole domain. 

7.1. Problem formulation                     

The proposed boundary problem is as follows: it is assumed that the rock mass is an 
infinite body in which circular opening is made. Therefore only plane strain condition is 
considered. 

Assuming further that the underground opening is at a certain depth where the horizontal 
and vertical components of the primary (initial) stress h and v are known and, generally, 
distinct. It is also assumed that in the neighbourhood of the opening these components are 
constant and equal with their corresponding value for the opening axis depth. The influence 
of the ground surface is neglected, so that the opening is imagined as a cylindrical cavity of 
infinite length, excavated in an infinite space. 

Cylindrical coordinate system is chosen for convenience with axis Oz being the symmetry 
axis of the opening (Figure 4). 

(a) (b)
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Figure 4. The domain of the boundary value problem 

A pressure loading p(t) is considered on the surface r = a of the opening, that could be due to 
different causes. Therefore, the boundary conditions are: 

 
     


: , 0,
any

S S
rr r

r a
p

z  
      


/ /: , ,
any

S S
xx h yy v

r

z
  (11) 

with Ox and Oy the horizontal and the vertical axis respectively. 

The conditions (9) can be written in the cylindrical coordinates as follows (see [1]): 

   
   
 



  

  

           

           

        

1 1
/ 2 2

1 1
/ 2 2

1
/ 2

cos2 ,

cos2 ,

sin 2 .

S P
rr rr h v h v

S P
h v h v

S P
r r h v

 

The superscripts S, P, R mean the secondary, primary and relative components of the stress, 
displacement and strain respectively. 

Further, the fundamental equations of the problem are presented. 

The equilibrium equations written in the relative components are: 

 

   



     
   

  
   

   
  
   

   
  

1
0;

1
2 0;

1
0.

rr r rz rr

z

r z r

z

rz z zz rz

z

r r r

r r r

r r r

 

The components of the small strains: 
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   
         

  
     

      
                

θ θ
θ

θ θ
θθ θ zz

rr r

z

1 1
, ;

2

1
;

2

1 1 1
, , .

2

r r

r z z

r z
rz

u u u u

r r r r

u u

z r

u u u u u

r r r z z

 

and the compatibility equations in cylindrical coordinates has to be added, as well:  

   

 

   


      
   

   

        
     

      
     

  
   

           
        

         

2 22

2 2

2 2 2
2

2 2

2 2 2

2 2

2 2 2 2

2

2 0,

2 2 0,

2 0,

1
2

rr
r rr

z zz rz zz

rz zz rr

rz r z rz r rr
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      

  



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     

       
        

      
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Due to the plane strain hypothesis, we have 

 


0 , 0 ,R

zu
z

and then, according to the 

components of the small strains, zero values are founded for the relative strains 

      0 .R R R
zz rz z  

A viscoplastic constitutive equation as presented in the previous paragraph is considered. 

7.2. Analytical solution                       

It is assumed that the opening (or only a part of it) is excavated in a very short time interval 
  00,t t and then it is exploited in a much longer time interval   0 1,t t t . It is also assumed 

that during the first time interval the response of the rock is "instantaneous" and during the 
second one different time effects are possible, such as: creep and a slow variation in time of 
stress. 

Consequently, if the tunnel is excavated at 0t , then immediately after excavation, the stress, 
the strain and the displacement of the rock are given by the elastic solution. Concerning the 
second interval  0 1,t t  a possible solution will be present, obtained under a number of 
assumptions that would simplify a lot the analytical solution thus making it amenable to 
analysis.  
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The main hypothesis is that the same distribution of stresses for the elasto-viscoplastic 
model is assumed as in the elastic model: by considering that in the interval  0 1,t t  the 
stress components    , ,rr r remain constant and equal with those given by the elastic 
solution (see [1]). 

Due to the fact of the plane strain hypothesis   0R
zz  it has to be accepted that zz varies 

during this interval and therefore it satisfies the differential equation: 

   
            

1 1 1
1 .

3 3

I

zz
zz

W F
k

K G H
 

This differential equation may be integrated numerically using the initial conditions
  zz h . It was found that a very small variation in time (negligible) ofzz was exhibited 
and a very fast stabilization of this variation. Therefore, it can be assumed that all stress 
components could be constant during the rock creep around the opening. 

In order to arrive at the expression that describes the creep strain, the equation (7) that 
supplies the variation of  IW t when all stress components are constant is used.  

The time taken for  IW t to reach the asymptotic value depends mainly on the value of the 
constitutive parameter k, the viscosity. A reasonable correct value for k can be obtained only 
observing the convergence of a tunnel wall in time. 

Then one can obtain, similarly as in the previous paragraph, the formulae (10) for the strain 
variation by integrating the constitutive equation (4) taking into account (7) and using the 
initial conditions (9). 

In the case of   h v  one can deduce a formula for the wall opening convergence as: 

   

  
                  



 




0
0

1
,

1 exp
1

IP

R

W F

H k F
u u t t r

F H

H

with R   0.u   

 
Figure 5. Domain used in numerical formulation        
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7.3. The numerical solution              

In the case of numerical approach, the domain to be discretized and the boundary 
conditions, see Figure 5 and the FEM mesh, see Figure 6, are: 

 
Figure 6. FEM mesh 

In this case a quarter of the domain needs to be considered as the principal components of 
the primary stressh and v are assumed constant over the entire domain. 

For this problem a mesh of 6 nodded triangles was used. The presence of the lining is 
simulated either by an internal pressure acting on the tunnel walls or by introducing some 
elements (8 nodded  quadrilaterals) in contact with the tunnel walls, with the mechanical 
characteristics of the lining material (Figure 6).  

In the following examples the lining was considered made of concrete with Young modulus 
E = 200000 kPa and Poisson coefficient   = 0.3. 

There were considered the cases whenh = v = 2000 kPa and the case   h v , namely h = 
1500 kPa and v = 2000 kPa. The tunnel radius is 1 m. 

It is well known that the choice of the time step is quite important in viscoplasticity 
problems. This choice must be correlated with the viscosity parameter k as well, so that the 
value of k dt to ensure a good convergence of the numerical scheme. 

In the model under consideration of saturated sand it was observed that values for k t

which exceeds the magnitude order of 310 produce a divergence of the numeric calculation 
with the present method (the initial stress method and the initial stress method combined 
with different methods of acceleration). So, some stronger methods have to be implemented, 
in order to offer a faster convergence of the numerical calculus, e.g. the method of consistent 
tangential operator, backward Euler method, etc.). 
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The next Figures present other aspects of the numerical solution both in the case of an 
internal pressure acting on the tunnel wall, and for the case of concrete lining, that cannot be 
represented by the analytical solution. 

7.3.1. Numerical solution for the case of internal pressure acting on the tunnel wall 

The following Figures represents the numerical solution for the case of a tunnel subjected to 
a hydrostatic primary stress of h = v = 2000 kPa and an internal pressure on the tunnel 
walls p = 1000 kPa which simulates the lining.   

Figures 7a and 7b represent the evolution of the Euclidian norm of the viscoplastic strain 

ij
vp  for the first time step and after 130 time steps with one time step 10000 s, respectively.  

 
 

 
 

Figure 7. a), b). Contours of ij
vp evolution of tunnel with an internal pressure in the case of a 

hydrostatic primary stress after the first time step and after the 130th time step, respectively 

A tunnel driven in a rock mass with a non-hydrostatic primary stress of h = 1500 kPa and

v = 2000 kPa, exhibits for instance, a development of a viscoplastic zone in the tunnel wall 

that increases from 1.13E-4 for ij
vp after the first time step Figure 8 to 5.13E-3 for ij

vp after 

130 time steps.  

The radial stress component rr presents a very slow variation in time and it is presented in 

Figure 9. 

(a) (b)
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Figure 8. Contours of ij
vp after the first time step         

 

 

 

Figure 9. Contours of rr after the first time step 

For the same boundary problem the evolution of the hoop stress  is designed in Figures 
10a for the first time step and 10b for the 130th time step. 
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Figure 10. a) Contours  after the first time step, b) Contours  after the 130th time step 

7.3.2. Numerical solution for the case concrete lining 

In this subparagraph, the numerical solution for a concrete lining as a distinct material and 
mesh elements group is presented. 

For a case of a lined tunnel by a concrete lining with Young modulus E = 200000 kPa and 
Poisson coefficient   = 0.3 for the same type of rock mass subjected to a primary stress of h

= 1500 kPa and v = 2000 kPa the diagrams of variation are presented as follows: the total 

displacement  2 2
total x yu u u in Figures 11a and 11b, and the norm of the viscoplastic strain

ij
vp  in Figures 12a and 12b respectively. 

The evolution of the equivalent stress  and hoop stress   is also studied. Both in the case 

of the equivalent stress and of the hoop stress  , an increasing of the smaller value zone 

from the roof, and a decreasing of the big value zone from the tunnel wall are observed. 

(a) (b)
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Figure 11. a), b) Contours of totalu evolution in a supported tunnel excavated in a rock mass with non-

hydrostatic primary stress, after the first time step and after 130th time step, respectively 

 

 
 

Figure 12. a), b) Contours of ij
vp evolution in a supported tunnel excavated in a rock mass with non-

hydrostatic primary stress, after the first time step and after the130th time step, respectively 

(a) (b)

(a) (b)
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7.4. Comparisons between the numerical and analytical solutions    

Although the analytical solution was obtained under the assumptions of constant stress 
during the creep, it represents a good benchmark for the numerical calculation, supplying 
important information  both  quantitatively  and qualitatively.  

On the other hand, the numerical solution introduces certain truncation due to its 
discretisation errors. Nevertheless, the comparison between the two solutions could lead to 
some constructive conclusions for both solutions. 

In Figure 13a the variation with respect to the distance in radial direction of the radial 
displacement in a tunnel excavated in  condition  of primary stress h = v = 2000 kPa, with 
an internal pressure on  the  tunnel wall p = 1000 kPa, at a chosen time, namely after 5  time  
steps ( one  time step is considered 10000 ) is presented. A good agreement in the 
neighbourhood of the opening is observed, then the two solutions begin to differ, taking 
into account on one hand the assumptions of constant stress for the analytical solution and 
on the other hand the errors accumulated during the numerical process, due to the course 
mash at great distance. Figure 4b represents a comparison between the two displacements at 
two locations (the polar radius r = a and the polar angle   = 0) at tunnel boundary, under 
the same condition as above, but with respect to time. One can observe that for small 
numbers of time steps, the numerical solution is superior, but for larger number of time 
steps (i.e. more than 10 time steps), the analytical solution becomes larger. 

 
Figure 13.  a), b). Tunnel outline total displacement with respect to distance and time, respectively, for 
the numerical and analytical solutions  

In the case of the viscoplastic strain, the analytical solution predicts greater values than the 
numerical one, even from the beginning of time analysis. That can be observed in Figure 14, 
for the case of a tunnel excavated in a rock mass with a non-hydrostatic primary stress of h

= 1500 kPa, v  = 2000 kPa, and the internal pressure p = 1000 kPa. 

(a) (b)
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Figure 14.  The time evolution of viscoplastic strain of tunnel walls for numerical and analytical 
solutions 

7.5. Final remarks                            

Concerning the analytical solution for the problem under consideration the main remark is that 
it is difficult to obtain the analytical solution and it can be obtained using some (apparently) 
severe assumptions such as the same stress distribution is used for linear elastic and elasto-
viscoplastic condition and has to be invariant in time. On contrary, the numerical solution via 
Finite Element does not impose such restriction and the results are exhibiting a much slower 
variation with time during creep. Thus this could attenuate the severity of the assumption of the 
analytical solution, assumption that could not be considered totally unrealistic.  

Since the analytical solution is the exact solution of the governing equations under some 
restrictions, it can be used to benchmark the FE analysis before putting it in general 
applications. 

Some remarks can also be drawn taking into account the features exhibited by the numerical 
solution. 

Comparison between the numerical solutions obtained in the case of hydrostatic and 
nonhydrostatic primary stress respectively, shows that a much greater increase in time for 
the viscoplastic strain in the nonhydrostatic case, and a larger zone in the rock mass is 
exhibiting viscoplastic behaviour too. 

A very slower decrease in time of the radial stress is observed, while the hoop stress has a 
tendency to increase in time.  

In a more realistic case of the lining being simulated as a distinct zone of material with 
specific mechanical characteristics (concrete in the cases under consideration), instead of 
being applied as an internal pressure on the tunnel walls, some remarks could be made too. 
With the concrete lining modelled as elements, the displacement is greatly reduced and the 
viscoplastic strain is much less than the case of the internal pressure being applied on the 
tunnel walls. The amount accumulated in time is 5 times smaller than the other ones. 
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All these features are in good accordance with the practical observation, so, more involved 
boundary problems could be envisaged to be solved with this code. 

8. Numerical solution of the three phases tunnel excavation and lining 

mounting problem 

A finite element solution for the problem of a circular tunnel excavated in a homogeneous 
isotropic elasto-viscoplastic rock mass is presented. The numerical model consists of the 
successive phases of the excavation and support mounting, emphasizing the role of two 
important factors of the analysis, namely the time and the tunnel face influence and taking 
into account the 3D aspect of the problem. 

The behavior of rock mass is considered viscoplastic, while the concrete lining is elastic. A 
possible behavior of sliding at the rock-support interface, which requests some additional 
contact elements of the mesh, is neglected. The rock mass is homogeneous, for the simplicity 
of data input, though introducing another rock/soil layer, with different mechanical 
characteristics represents no difficulty. 

It is convenient to lead calculation to a 2D, plane strain or axisymmetrical, if it is possible, 
since it is less costly in data input and running time than a 3D analysis. 

8.1. Formulation of the problem 

Let us consider the following boundary problem: the rock mass is an infinite body in which 
a circular opening is made, assuming then that the underground opening is at a certain 
depth characterized by a hydrostatic primary (initial) stress, σP PI where P = h, h is the 
depth at which the tunnel is dug,  is the specific gravity of the rock and   is the unity 
tensor.  

As the tunnel possesses a circular geometry, the rock-mass and the lining mechanical 
properties do not depend on the angular coordinate  and the far stress field in situ is 
hydrostatic (primary stress components v , h are assumed equal), the problem is an 
axisymmetrical one in Orz plane (Figure 15). 

Consequently, the primary stress componentsv , h are assumed equal. The boundary 
conditions are: 

     On . . [ , ] and : and 0.AB i e z z z r a prr rzA B   

     On . . [ , ]and : 0 and  0.B C rr rzBC i e z z z r a  

      On . . and [0, ] : 0 and 0.C D rr rzCD i e z z z r a  

    On . . [ , ] and 0 : 0 and 0.D E r rzDE i e z z z r u   

       On . . and [0, ] : and 0.E F F zz v rzEF i e z z z r r  

       On . . and : and 0.F G F rr v rzFG i e z z z r r       

      On . . and [ , ] : and 0.A A G zz v rzGA i e z z r r r       
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Figure 15. Domain and boundary conditions for the problem study in Orz plane along the tunnel axis. 

Cristescu's elasto-viscoplastic constitutive law is used for the rock-mass and elastic behavior 
for the concrete lining.  

An important factor of the analysis is the time effect and it is involved by two different 
aspects: the rheological behavior of the rock mass on and the excavation history. Moreover, 
the tunnel support mounting determines a problem of interaction, getting thus a more 
involved calculus. Another important factor of the analysis of ground-support interaction 
during the tunnel excavation is the face tunnel. For instance, since the behavior of the rock-
mass is viscplastic, rock pressure on the lining increases in time. On the other hand, closer 
the lining is installed to the tunnel face, more the pressure at the rock-lining interface 
increases with the advancing of the tunnel face.  

The state of stress and strain around a lined tunnel depends explicitly on: 

- The mechanical and geometrical characteristic of the rock-mass and the support; 
- The excavation conditions, such as excavation rate, generally the excavation phases; 
- The support mounting conditions, namely the support mounting time after the 

excavation and the distance between the lining and the tunnel face. 

Concerning the geometry and the loading, the successive phases of the tunnel excavation 
and support mounting is a three-dimensional problem. However, there are certain cases when 
the problem may be simplified assuming the hypothesis that close to the tunnel face, on the 
tunnel walls, r=a, the decompression of the primary stress component is occurring 
gradually.  

The calculation of tunnel excavation and lining mounting is a complex problem. On one 
hand, the excavation is a three-dimensional problem that imposes taking into consideration 
the tunnel face influence that means a gradual decompression of the primary stress h of the 
rock mass on the opening walls. On the other hand, the support mounting determines the 
problem to be a massive-lining interaction one, mainly based on the behavior of the rock-
lining interaction. 

The lining is often installed quickly enough after the excavation and at a relatively small 
distance from the tunnel face that induces a complex combination of the effects mentioned 
above. 
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Consequently, it is very important to take into consideration both time and tunnel face effect 
in the excavation and lining mounting problem. Essentially in this study is the calculation of 
lining pressure and the convergence of the tunnel walls. 

8.2. The numerical solution of the successive phases tunnel excavation 

The domain discretization of the boundary value problem is presented in Figure 16. As 
usual, in the tunnel surface region the mesh must be quite refine, while elsewhere a 
minimum possible number of elements is considered. It is used an 8 nodded-quadrilateral 
mesh, at least 2 layers of quadrilateral elements in the concrete lining. 

We consider the tunnel radius a = 1.2 m and the lining thickness 0.2 m. The depth at which 
the tunnel is excavated is 273.5 m. One phase duration is 12 hours and respectively 1 day. 

For the rock mass the Borod coal is used, whose material constants were presented 
previously. For the concrete the following material constants are used: Young modulus E = 
20000 MPa, Poisson coefficient = 0.3 and the volumetric weight  = 0.02 MN/m2.  

  
Figure 16. The domain discretization of the boundary value problem.  

It is used a numbering of elements group as they are activated/deactivated in the excavation 
and lining installing processes, as follows: 

- 1st group is the rock-mass considered infinite 
- 2nd group corresponds to the already mounted lining 
- 3rd group is in the first phase the rock-mass that is going to be excavated and in the 

second phase is replaced by the concrete 
- 4th group is in the first phase the rock-mass that is going to be excavated 
- 5th group is in the first two phases the rock-mass that is going to be excavated in the 

third phase and eventually replaced by concrete in a possible fourth phase 
- 6th group is in the first two phases the rock-mass that is going to be excavated in the 

third phase 

Numerical model concerns three successive phases’ tunnel excavation and lining mounting. 
Let us detail the progression of phases of the example:   



 
Finite Element Analysis for the Problem of Tunnel Excavation Successive Phases and Lining Mounting 327 

- Phase 1: tunnel excavation and calculation of strain, stress, damage parameter, without 
lining mounting on new excavated zone (Excavation of element group 3 and 4). 
Structure elements corresponding to the support are inactive (null mechanical 
characteristics). Output storage for the following phase (phase 2) is performed as well. 

- Phase 2: lining installing at a certain given time T0, on the unexcavated zone in phase 1. 
Displacement and stress initialization starting from the previous phase output storage 
and output storage for the following phase (phase 3) are performed as well. 

- Phase 3: tunnel face advancing on a distance of unit radius, namely 1.2 m. Realization 
of a new excavation is simulated by inactivation of element group 5 and 6, considering 
null mechanical characteristic. Displacement and stress initialization with the 2nd phase 
state is performed as well. 

In the following, we present some important results of the calculation concerning, for 
instance, the normal stress, the equivalent stress or the damage parameter df.  

In Figures 17a, b, c isovalues zones for the damage parameter corresponding to the three 
phases are presented, respectively. It is observed that in tunnel face zone the damage is 
maximum (white area). 

 
Figure 17. a), b), c) Isovalues zones for damage parameter for the first, second, third phase, respectively 

Isovalues zones for normal stress corresponding to the three phases are presented in Figures 
18a, 18b, 18c. Great concentrations are observed in tunnel face zone (white area). 

Figures 19a, b, c present isovalues zones for equivalent stress corresponding to the three 
phases, observing small tractions in the second, respectively the third phase. That signifies 
the possibility of fracture by exceeding the traction resistance, since it is known that it is 
very low for the rocks. 

(a) (b) (c)
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Figure 18. a), b), c) Isovalues zones for normal stress for the first, second, respectively third phase. 

 
 

 
 

Figure 19. a), b), c). Isovalues zones for equivalent stress the first, second, respectively third phase. 

(a) (b) (c) 

(a) (b) (c)
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8.3. Parametric analysis: Influence of tunnel depth, lining stiffness and lining 

mounting time 

8.3.1. Support rigidity influence 

The numerical solution is used to analyze the influence of different parameters that 
intervene in the excavation process. In this chapter we present the influence of lining 
rigidity and depth at which the tunnel is excavated.  

The conclusion is that the displacement and the damage through dilatancy, as it was 
incorporated in the constitutive law, are decreasing with the increasing of the lining rigidity 
and increasing with depth increasing. In this paragraph we exhibit these features of the 
solution by several Figures and observations.   

The support rigidity can be calculated by the following formula [1], [20]:  

 



      

2 2

2 2

( )

(1 ) 1 2

E b c
q

b c
 

The previous calculation was performed for a value of Young modulus E=20000 Mpa, 
Poisson coefficient  = 0.3, external radius b = 1.2 m and internal radius c = 1 m. We perform 
the calculation for E=2500 Mpa, too. Figures 20a, b present the isovalues zones of damage 
parameter d defined in relation (2) and show that the dilatancy, as it was incorporated in the 
constitutive law, is decreasing with the increasing of the lining rigidity. The same results are 
obtained by author by analytical means in [20], [18]. 

 
Figure 20. a), b). Isovalues zones for damage parameter for E=2500 Mpa, E=20000 Mpa, respectively 

(a) (b)



 
Finite Element Analysis – New Trends and Developments 330 

 
Figure 21. a), b), c). Isovalues zones of dilatancy for tunnel depth of 150 m, 273.5 m, 850 m, respectively  

 
Figure 22. a), b). Isovalues zones for the normal stress for tunnel depth of 150 m, 850 m, respectively 

8.3.2 Tunnel depth influence 

To analyze the depth influence on the processes we perform the calculation for different 
values of the depth at which the tunnel is excavated. At the previous calculation performed 
initially for a depth of 273.5 m, we add another two calculations for 150 m and 850 m depth 
respectively. The conclusion is that both displacement and damage increase with depth such 

(a) (b) (c) 

(a) (b)
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that: the maximum radial displacement is 6.65 cm at a depth of 150 m, 6.83 cm at a depth of 
273.5 m and 7.31 cm at a depth of 850 m. Concerning the damage, for instance, let us observe 
the Figures 21a, b, c presenting the isovalues zones of the damage parameter for a depth of 
150 m, 273.5 and 850 m, respectively. The damage is more pronounced at a depth of 850 m 
(the white zone is more extended).  

Figures 22a, b present isovalues zones of the normal stressrr for instance, for the same 

depths of 150 m and 850 m, respectively. It is observed that the normal stress decreases with 
the depth increase in compression and consequently, it appears the risk of traction at smaller 
depth, which may induces rock or lining fracture. 

9. Conclusions 

The complex problem of a lined tunnel excavation in a viscoplastic rock mass is approached 
in this chapter both numerically by a FE code proposed by the author and by an analytical 
approach too. A good agreement between the numerical and the analytical solutions is 
obtained. 

Both solutions are studied then for further specific features. All these features are in good 
agrrement with the practical observation, so, more involved boundary problems could be 
developed with this code and further improvements for the analytical solution. 

A special study is devoted to the finite element solution for the simulation of a tunnel 
excavation with successive tunnel face advancing and the lining mounting. Due to the 
symmetry of the geometry and loadings, the problem is treated as an axisymmetrical one 
with an additional emphasis of the three-dimensional aspect of the problem, namely the 
tunnel face advancing and its proximity influence. So, the approach of a tunnel calculation 
in two-dimensional analysis along the tunnel axes, simulating thus the three-dimensional 
aspect of the problem, is more realistic than the classical cross section analysis and obviously 
less costly than an actual three-dimensional analysis. The parametric analysis performed in 
this study by the numerical solution is in good accordance with the results obtained by the 
author by analytical means [19], [20]. 

Author details 

Simona Roatesi 
Military Technical Academy, Bucharest, Romania 

10. References 

[1] Cristescu N (1989) Rock rheology, Kluwer Academic Publishers, Dordrecht, Holland. 
[2] Simionescu O (1999) Mathematical methods in underground structure termomechanics, 

Romanian Academy Publ., Bucharest. 
[3] Bernaud D (1991) Tunnels profonds dans les milieux viscoplastique: approches expérimentale et 

numérique. Thése. École National des Ponts et Chaussées, France. 



 
Finite Element Analysis – New Trends and Developments 332 

[4] Panet M (1974) Stabilité et soutenement des tunnels. La méc.des roches appl. aux ouvrages de 

génie civil,Ch.IX,ENPC. 
[5] Sulem J, Panet M, Guenot A (1987) An analytical solution for time-dependent  displacements 

in a circular tunnel, Int.J. Rock Mech. Min. Sci.& Geomech. Abstr., Vol.24, No.3, 
pp.155−164. 

[6] Zienkiewicz O C, Cormeau I C (1974) Visco-plasticity - plasticity and  creep in elastic solids - 

A  unified numerical solution approach, Int.J.Num.Meth.Engng.,8,pp. 821-845. 
[7] Cormeau, I.C., Numerical stability in quasi-static elasto/visco-plasticity (1975) Int. J. 

Num. Meth.Engng., Vol.9, pp.109−127. 
[8] Ionescu I R, Sofonea M (1993) Functional and numerical methods in viscoplasticity, Oxford 

Univ. Press Oxford.  
[9] Chan A H, Ou J (2008) Three-Dimensional Numerical Analysis of a Dynamic Structure, 

Saturated Soil and Pore Fluid Interaction Problem, Trends in Eng. Comput. Techn., pp. 335-
353. 

[10] Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A, Shiomi T (1999) Computational 

Geomechanics with Special Refernces to Earthquake Engineering, J. Wiley & Sons, Chicester, 
1999. 

[11] Gioda G (1993) Finite element analysis of time dependent effects in tunnels, Advanced school 
on visco-plastic behaviour of geomaterials, CISM, Udine, Oct. 

[12] Lauro F, Bennani B, Drazetic P, Oudin J, Ni X (1997) Ductile damage and fracture finite 

element modelling of elasto-viscoplastic voided materials, Computational Materials Science, 
Vol. 7, Issue 3, pp. 295-307.  

[13] Lin R C, Brocks W (2006) On a finite-strain viscoplastic law coupled with anisotropic damage: 

theoretical formulations and numerical applications, Archive of Appl.Mech.,Vol.75, 6-7, 315-
325. 

[14] Augarde C E, Burd H J (2001) 3D FE analysis of lined tunnels, Int. J. Num. Analyt. Meth. 
in Geomechanics, 25: 243–262. 

[15] Komiya K, Soga K, Akagi H, Hagiwara T, Bolton M D (1999) FE, modeling of excavation 

and advancement process of a shield tunnelling machine, Soil &Foundations, Vol. 39, No.3, 
37-52. 

[16] Leem J, Kemeny J M (1999) Finite element micromechanical-based model for hydro-mechanical 

coupling, The 37th U.S. Symp. on Rock Mech. (USRMS), June 7-9, Balkema, Vail, CO.  
[17] Wang J, Wang W (2009) Multi-field Coupled Model&Num.Sim. During Excav.Tunnel 

Modeling, WMSO08,pp.334–337.  
[18] Roateşi S, Ariciuc M (2005), Study on depth dependency in tunnel calculation, Scientifical 

Bulletin, UTCB, 1, pp.16-30. 
[19] Roateşi S (1996) The tunnel face influence in the analysis of a circular tunnel with a time-

dependent behaviour, Rev.Roum.Sci.Tech. Mec.Appl., no 3-4, pp. 247-263. 
[20] Roateşi S (2005) Mathematical modeling and FEM problems in tunnel calculation, Romanian 

Academy Publisher, Bucharest. 
[21] CESAR − LCPC Documentation, Version 3.0.x, Publication LCPC, 1992.  
[22] Lade P V, Nelson R B, Ito Y M (1987) Nonassociated flow and stability of granular materials, 

J.Engng.Mech., 113, pp. 1302-1318. 


