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1. Introduction

Recent advances in communication technologies have great impact on location determination
systems. Location determination systems are deployed in almost every building, from
hospitals where the location of patients and doctors or any medical equipment can be
determined, or sending information to customers based on their location and capability, to
organize the traffic and reducing congestion in the highways.

Global Positioning System (GPS) is a standard location determination system that enables
the users to locate themselves in outdoor environments. Unfortunately, GPS does not work
well in indoor locations because it requires a line-of-sight between the mobile station and the
satellites. Hence, an alternative approach is to use a specialized positioning infrastructure that
was built exclusively for positioning purposes.

Although these systems generally provide high accuracy rate, but in many situations, they
suffer from high cost, and they require an extensive work to build and for maintenance.
On the other hand, recent researchers have taken advantages of the available wireless LANs
infrastructure, which was built solely for the communication purposes in the first place, and
try to develop their positioning systems on the top of the wireless LANs [4]. The main
advantages of this approach are low cost, easy to maintain and the availability of WLAN
in almost every building.

These systems are commonly called Off-the-shelf positioning systems. The basic idea of this
approach is to collect radio fingerprints at random or predetermined reference points to build
a radio map. These fingerprints are usually a collection of received signal strengths (RSS)
combined with their (x, y) coordinates. In the next phase, the system reads the current RSS
with unknown location and search for the nearest value in the radio map. The search for the
nearest value may include a single or a set of values.

Various positioning systems have been developed using different positioning techniques such
as Proximity Sensing, Lateration and Angulation techniques. But due to the complex nature of
the indoor environments, it represents an obstacle for such techniques to be applied for indoor
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2 Positioning Systems

positioning systems. This obstacle is known as the multipath phenomenon that includes
reflection, diffraction and scattering.

The improvements of the fingerprinting approach are the way of representing the reference

points in the radio map. These reference points could be represented either by a single value

or by a collection of RSSs values. Another way to improve this approach is to collect a large

number of fingerprints or to use other properties of the radio signals such as the Bit Error

Rate (BER), Signal-to-Noise Ratio (SNR), Time of Arrival (ToA), Time Difference of Arrival

(TDoA), Angle of Arrival (AoA) or Phase of Arrival (PoA). Some research have suggested

that by combining two or more radio signal properties, this resulted in a better performance

but an increased in system complexity.

Figure 1 shows the structure of the conventional location determination systems and the

single-phase systems. In the conventional systems, an off-line training phase is required in

order to build a radio map, the radio map is constructed either by empirically collecting a

single or multiple RSS fingerprints at predetermined or random anchor points, or by using a

model based indoor propagation model [15]. In the on- line phase, the location is estimated

by matching the RSS fingerprint stored in the radio map with the RSS measured in the real

time. Examples of such systems can be found in [2, 4].

Figure 1. Structure of location determination systems showing conventional system

Single-phase systems do not require an offline phase; instead, they use the online RSS

fingerprints to estimate the target’s location. Usually such systems compromise the offline

stage for the system’s accuracy. A zero configuration system proposed in [21] uses the

online RSS readings between WLAN Access Points (APs) and between mobile terminals and

their AP neighbors. The system suggests a singular value decommission (SVD) technique

to implement a mapping between RSS fingerprints and the true location. Table 1 shows a

comparison between conventional and single-phase location determination systems [35].
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System Type Observable Accuracy

RADAR[4] Conventional RSS 2 - 3 m

Ekahau Conventional RSS 3.1 m

Nibble[6] Conventional SNR 10 m

Lim H. et al.[21] Single-phase RSS 2.57 m

Mazeulas et al. [25] Single-phase RSS ~ 4 m.

Table 1. Comparison between conventional and single-phase location determination systems

Mazeulas et al. [25] presented a single phase indoor location determination system that first

searches for the best propagation model that is proper for the current environment, and then

estimates the target’s location from the online RSSs obtained by the mobile target from the

available APs using lateration techniques. The system estimates the distance d from each AP

by calculating the maximum likelihood as follows:

d̂ = 10(α−PRi )/10ni (1)

where α is a constant depends on various indoor phenomenon’s such as multipath and

shadowing, PRi
is the RSS from the ith AP and defined as follows:

PR = α − 10 · n · log10 (d) + X (2)

where n is the multipath exponent. The system achieved an average location error lower

than 4 m. Off-the shelf location determination systems use the existing wireless LAN

infrastructure deployed in almost every building. The main advantage of these kinds of

indoor location determination systems is the ease of installation and deployment. A popular

location determination system of this category is the Horus system proposed in [37], it is

a probabilistic positioning system that uses a location clustering technique to reduce the

computational cost by grouping the locations in the radio map based on the APs covering

them. During the on-line stage, the system uses discrete space estimator which estimates the

target’s location x by finding value that maximizes the probability of obtaining location x

given a signal strength vector s, P(x|s). Correlation between RSS fingerprints from each AP

was introduced to improve the system performance.

Specialized location determination systems do not use the building WLAN infrastructure,

instead they developed a sophisticated devices such as Active Badges [36], Bats [10] and

Crickets [30]. The Cricket location system is an example of specialized indoor positioning

systems, it consists of a number of crickets, which serve as listeners that scan for data

coming from anchor points called beacons deployed through the building. The system uses a

combination of ultrasound and radio signals emitted from these beacons to locate the target.

Since the RF signals are faster the ultrasound impulse, it is used as indication for the arrival

of this ultrasound impulse, which can be used to calculate the distance between listeners

and beacons [20]. A sensor fusion technique was proposed in [26] in order to improve the

accuracy of the Cricket system by using multi-sensor of four listeners covering a horizontal

plane angled at 90◦ from each other, a 0.3 m accuracy was achieved using the sensor fusion

technique compared to 10.8 m location error in the original Cricket system. Although the small

location errors achieved by specialized systems, the high cost of such systems represents an
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System Type Accuracy Cost

Cricket [30] Specialized Low High

Mitilineos et al. [26] Specialized High High

Bats [10] Specialized Medium High

Horus [37] off-the-shelf Medium Low

Table 2. A comparison between specialized and off-the-shelf location determination systems

obstacle for such systems to be used. Table 2 shows a comparison between specialized and

off-the- shelf location determination systems.

Our main objective in this research is to design and evaluate an indoor location determination

system that is capable to locate a mobile terminal in a multi-floored building using

probabilistic Bayesian graphical models, the proposed system will be compared with similar

positioning systems.

2. Positioning systems overview

Pahlavan et al [28] presented a general block diagram for the common components of a

positioning system as shown in Figure 2. Firstly, the different positioning systems use different

types of received signals ranging from radio signals, ultrasound to infrared. Location sensors

such as mobile terminals collect these signals in order to produce an informative data. These

informative data can be in form of Received Signal Strength (RSS), Angle of Arrival (AOA) or

Time of Arrival (TOA). The produced data will be used to compute the location of the mobile

terminal using positioning algorithms, which can be either a Deterministic or Probabilistic

method. The estimated location can be symbolized by an (x, y) coordinates or a descriptive

location. Finally, the display system displays the estimated mobile terminal’s location in a

textual of graphical form.

3. Received signal technologies

There are different sensing technologies used in indoor positioning systems. These

technologies are affected by the indoor multipath phenomenon, which includes diffraction,

reflection and scattering. The most common used sensing technologies are [34]:

3.1. Radio Frequency (RF)

The ability of RF signals to penetrate the walls and floors attract researchers to develop their

positioning systems based on RF technology. RF Signals have also a good coverage area of 10

to 30 m compared to other technologies, which means fewer numbers number of sensors are

required to cover a certain area. RF signals also have a high speed of 3 × 1 08 m/s. Since most

buildings are equipped with wireless LAN technology, such systems can then be developed

on top of these networks without extra equipment. This indicates the ability to develop a low

cost positioning systems. Another advantage to using WLAN based positioning systems is

that most of these networks operate in 2.4 GHz unlicensed frequency, which can reduce the

interference with other devices [34].
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Figure 2. The basic structure for positioning systems [28].

3.2. Infrared

Although infrared signals have the same high speed as the RF signals of 3 × 1 08 m/s, Infrared

signals are interfered with the ambient light. The properties of Infrared signals which are

inability to penetrate walls and a limited range of 5 m may be considered as an advantage in

some systems where it can provide coarse grained area accuracy by implementing special

devices in each room. These devices are called beacons, they transmit signals every 10

seconds, which makes these devices consume low power.

The disadvantages of developing an Infrared based positioning system lies in maintenance

time required to keep these beacons work properly and the high installation cost.

3.3. Ultrasound

Since ultrasound wave travels at a low speed of about 345 m/s, it is used in positioning

systems by measuring the travel time between the transmitter and the receiver. These signals

usually operate between 40 and 180 kHz. The same as Infrared signals, Ultrasound waves

have a short coverage range of about 3 to 10 m and could be reflected by the walls. In addition,

Ultrasound waves also affected by the environment temperature.
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4. WLAN indoor positioning techniques

Indoor positioning techniques can be summarized into four main positioning methods [3]:

(a) Proximity sensing.

(b) Triangulation

(i) Lateration

(ii) Angulation

(c) Fingerprinting

(d) Hybrid techniques

4.1. Proximity sensing

Proximity sensing is considered to be the simplest positioning technique because it does not

require any modification to the existing network infrastructure, it can be either used in the

cellular networks or WLAN. It depends on the small coverage range of the radio, the idea

behind proximity sensing is that it obtains the location of the target from the position of the

base station that has the highest RSS.

The disadvantage of this positioning method is that it provides accuracy depending on the

AP density in indoor environments as shown in Figure 3 where the real location of the mobile

terminal (blue circle) is estimated to be the same (x, y) coordinates of AP4.

Figure 3. Proximity sensing technique showing the real location in blue and the estimated Bayesiand
location in red [3].

4.2. Triangulation

The triangulation methods calculate the location of the mobile terminal either by a set of radial

distances (Lateration) or a set of angles (Angulation).
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4.2.1. Lateration

Lateration positioning method measures the distance between the mobile terminal and a set

of at least three reference points (RP) as shown in Figure 4. Different signal metrics are used to

estimate the location such as Time of Arrival (TOA), Time Difference of Arrival (TDOA) and

others.

Lateration technique assumes that the distance di between the mobile terminal and a number

i = 1, 2, . . . , n of RPs is known. In Figure 4(a) where there is only one RP, then the estimated

location is considered to be any location point on the circle’s perimeter. In Figure 4(b), the

intersect between the two circles representing RP1 and RP2 reduces the mobile terminal’s

location uncertainty to only two possible locations. By adding another RP as shown in

Figure 4(c) it can produce a single location estimation in which can be calculated by using

the Euclidian distance equation:

di =

√

(Xi − x)2 + (Yi − y)2 (3)

where (Xi, Yi) is the coordinates of the ith RP and (x, y) is the coordinates of the mobile

terminal.

4.2.2. Angulation

Angulation technique calculates the angle θi between the target the the ith RP. θ is called Angle

of Arrival (AOA) or Direction of Arrival (DOA). Unlike the lateration technique, this method

requires at least two RPs to locate a mobile terminal as shown in Figure 5.

In Figure 5(a), θ1 is the angle of the transmitted signal calculated at the RP. Although it is

known the direction from which this signal has been sent, but the distance is unknown and

considered to be at any point along the line between the mobile terminal and the RP. By adding

another RP as in Figure 5(b), then the estimated location is the intersection between the two

lines.

Triangulation techniques usually require a line -of-sight between the transmitter and the

receiver, which is unavailable in indoor environments most of the times. Therefore, they

cause the multipath phenomenon where the signals are received from multiple sources. This

disadvantage of triangulation techniques prevent the researchers from developing indoor

positioning systems based on this techniques.

4.3. Fingerprinting

Fingerprinting techniques is also called pattern recognition techniques. In general, every

fingerprinting techniques woks in two stages, Offline and Online stages.

In the offline stage, the test bed is covered by a set of predetermined or random points called

reference points. At each reference point, the user must collect a set of readings, each set

contains the coordinates of that point and signal to noise ratio (SNR) or in the most popular

systems the received signal strength (RSS) values from multiple APs and then store these

readings in a server - in case of network based systems - or in the target device. In the online
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(a) (b)

(c)

Figure 4. Lateration positioning method where the blue circles represent the reference points and the red
circles symbolize the mobile terminal in (a) single reference point (b) two reference points and (c) three
reference points[3].

stage and when the target’s location is needed, the target collects a set of RSS readings and try

to match them with the stored fingerprints from the offline stage.

5. Category of indoor positioning systems

Indoor positioning systems can be divided into two main categories. Either by the

infrastructure they implemented in or by the positioning algorithms. Each of these categories

are subdivided into many sections.

5.1. Based on infrastructure

Figure 6 shows the categories of indoor positioning systems based on the their infrastructure.

They are divided into infrastructure based and infrastructure-less or decentralized. In

the Infrastructure based positioning systems, the target’s location is determined using the

installed network infrastructure in the testbed whereas the decentralized indoor positioning

systems locate the target’s location in an ad-hoc network setup.
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(a) (b)

Figure 5. Angulation technique where the blue circles represent the reference points and the red circles
symbolize the mobile terminal in (a) one reference point and (b) two reference points [3].

Figure 6. Category of Positioning systems based on their measurement platform [16].

5.1.1. Infrastructure based positioning systems

This category can be divided into three subcategories as shown in Figure 6. The main

differences between these three categories are based on the device used to transmits the signal,

the devices used for measurements and estimation [16].

In terminal based systems [29]. The signals are sent by base stations, the mobile terminals

are then collect the signals, store them and estimate their location. The advantage of these

systems is the privacy they provide where the location of the mobile terminal is exclusive to

the users only. In terminal assisted systems [6], the signals are also sent by the base stations

but the mobile terminals only collect the signals and send them to a network server where

the estimation process occur. Finally, in network based systems [19], the signals are sent and
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collected by both base stations and mobile terminals. The data are then sent to a network

server where the data will be stored and location will be estimated. This property can be

beneficial in reducing the computation cost and power consumption on the mobile terminals.

5.1.2. Decentralized positioning systems

In decentralized systems, a special devices act as base stations spread all over the targeted

areas in a grid like [30] or randomly distributed [22] in an ad-hoc setups. The purpose of

developing such systems is to enable localizing without a prior knowledge about the building

layout. This is important in situations where the WLAN infrastructure of a building get

damaged because of fire. This category is divided into two categories, terminal based where

the beacons send signals to a server terminal to calculate the target’s location and collaborative

systems in which the beacons send the signals in order to perform the estimation process.

5.2. Based on positioning algorithm

This category is divided into two subcategories [17], deterministic and probabilistic algorithms.

The main difference between these two subcategories is the way they model the signal

properties.

5.2.1. Deterministic systems

In deterministic methods, the estimated locations are represented by a single value such as

the average RSS.

Nearest Neighbor in Signal Space (NNSS) is one example of deterministic methods, the

target’s location is estimated by applying the Euclidian distance algorithm between the

nearest value of the signal property stored in the radio map and the current one. The drawback

of this method lies in some conditions where the replication of the same stored values for

different locations due to multipath phenomenon.

k-Nearest Neighbor (k-NN) was introduced to overcome the limitation of NNSS algorithm

where k is set of number of signal properties. k-NN works by first searching for the k-values

in the radio map having the smallest error mean with the current signal property [17].

5.2.2. Probabilistic systems

T. Roos et al [31] have introduced a probabilistic approach for the location estimation problem.

The approach is based on calculating the conditional probability distribution of getting a

location l given a signal value SV using the Bayes’ theorem:

P (l | SV) =
P (SV | l) P (l)

P (SV)
(4)

The Bayes’ theorem consist of three probability distributions:

(a) Posterior distribution P (l | SV): is the knowledge about unknown parameters. It is the

product of the prior distribution and the likelihood function [8].
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(b) Prior distribution P (l): represents the previous knowledge about the random variable l

before obtaining any new information.

(c) Likelihood Function P (SV | l): the probability value for random variable SV after

obtaining additional information about the location variable l.

The Bayes’ theorem will search for the location l which will maximize the posterior

distribution P (l | SV) and consider this value as the estimated location:

argmaxl [P (l | SV)] = argmaxl

[

P (SV | l) P (l)

P (Sv)

]

(5)

6. Characteristics of RSS in indoor environments

Signal strength in indoor environments is difficult to predict due to some multipath

phenomenon such as reflection, diffraction and scattering. The indoor multipath phenomenon

occurs when the signals are sent from the transmitter arrive at the receiver from multiple

directions. Generally, there are three main phenomenon as shown in Figure 7

1. Reflection: it occurs when the signal waves collide on a smooth surface object that has

dimensions larger than the signal’s wavelength.

2. Diffraction: when the signal waves hit an objects with sharp edges, it causes them to

diffract off these objects to various directions.

3. Scattering: when the signals impinge on an object that has a rough surface causing them

to scatter.

Figure 7. Indoor Multipath Radio Propagation

The RSS distribution in indoor environments are believed to follow a lognormal distribution

[32] due to the similar values for the mean, median and mode. Figures [8, 9] and Table 3 ,

show the RSS histograms at the same location and the statistics from two APs in the first floor

of WCC building, respectively.

There are three factors that have an impact on the RSS propagation in multi-floored buildings

[33]:
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Figure 8. RSS histogram at fixed location for five minutes from AP1

Figure 9. RSS histogram at fixed location for five minutes from AP2

• Floor Attenuation Factor: the radio signal that arrives at the receiver after passing through

floors.

• Multiple diffraction at window frames: the diffracted signals at window frames from

different floors.

• Reflected signals from nearby buildings: the reflected signals from adjacent buildings.

A concrete floor can reduce the RSS approximately 15 dBm to 35 dBm [18], to investigate this,

we conduct a measurement at two vertically location in two different floors from the same

AP, the AP5 is placed in the center of the building as shown in Figure ??, Table 5 shows the
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AP1 AP2

Minimum (dBm) -77 -76

Maximum (dBm) -63 -63

Mean (dBm) -68.25 -67.75

Median (dBm) -67 -66

Mode (dBm) -65 -66

Table 3. Statistical values for two APs in the first floor showing the similarity between the mean, median
and mode.

Centre 1st floor Centre 2nd floor

Mean (dBm) -72.18 -47.21

Median (dBm) -72 -47

Std. Deviation 3.592 1.467

Table 4. The floor attenuation factor effect in the centre of the building from AP5

statistics of FAF effect at the centre of the building from AP5, the attenuation on the RSS in

the first floor was about 25 dB as shown in Figure 13. The APs installed are DWL-2000 APs

operate at frequency between 2.4 GHz and 2.4835 GHz.

Figure 10. First floor layout with 3 APs

Figure 13 shows the effect of FAF in addition to the diffracted signals arriving from AP4 which

is placed near a window in second floor, the receiver was in a vertical place from AP4 in first

floor. From Table 5, the attenuation on the RSS near windows was similar to the attenuation

achieved in the centre.

175One Stage Indoor Location Determination Systems



14 Positioning Systems

Figure 11. Second floor layout with 2 APs
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Figure 12. Floor attenuation factor at two vertically location in two different floors from AP5

7. Probabilistic Bayesian graphical models

7.1. Bayes’ theorem

Bayes’ theorem describes the relationship between the conditional probability and the joint

probability of random variables [27]. Let α and β be two random variables in which P(β) > 0,
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Figure 13. Floor attenuation factor at two vertically location in two different floors from AP4.

Window 1st floor Window 2nd floor

Mean (dBm) -62.89 -36.79

Median (dBm) -63 -37

Std. Deviation 1.315 0.6753

Table 5. The floor attenuation factor effect in the centre of the building from AP5

then the conditional probability of an event α given event β is :

P (α | β) =
P (β | α) P (α)

P (β)
(6)

P (α | β) is called a posterior distribution which is a result of the prior distribution

P (α) multiplied by the likelihood P (β | α), the prior distribution represents the previous

knowledge about a random variable before obtaining any new information, where the

likelihood is the probability value for a certain random variable after obtaining additional

information.

7.2. Bayesian networks

A Bayesian Network [13] represents a set of probability distributions, Figure 14 shows a

simple graphical model, the nodes symbolize random variables α, β and γ, where the arrows

represent the relationships between these random variables. The joint density for random

variables in Figure 14 is:

P (α, β, γ) = P (β | α, γ) P (γ | α) P (α) (7)

From Equation 7, the random variable α is considered to the a parent for node γ, and γ is

a child for node α. A parent variable is the direct influence on its children, the joint density
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between parent nodes and their children could be expressed as follows:

P (Δ) = ∏
δ∈Δ

P (δ | parent (δ)) (8)

In some graphical models, we use a plate to handle the replication of random variables. In

α

γ
β

Figure 14. A simple graphical model showing three random variables represented by circles and
relationships symbolized by arrows

Figure 15, we show the same graphical model where the replication of random variable μ in

15(a) was handled in 15(b) by a plate notation to some index l.

θ

μ1 μ2 μ3

(a)

I

θ

μi

(b)

Figure 15. Bayesian graphical models with (a) replication on the children nodes (μ1, μ2, μ3) and in (b)
with the plate notation to some index I.

7.3. Markov Chain Monte Carlo sampling techniques

Figure 16 shows an example of a Markov Chain (MC) sampling technique, the rejection

sampler, here we want to draw samples from a target distribution P (z) which is not a standard

distribution, therefore, we draw samples from a proposal distribution Q (z), which we are able

to evaluate from, up to some normalizing constant c where:

cQ (z) ≥ P (z) (9)
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then, a candidate sample (z, b) is randomly generated in the area below cQ (z), if this sample

lied under P (z) then it will be accepted [23].

Figure 16. An example of the rejection sampler were point z will be accepted if it lies under P(z) and
rejected otherwise [23]

Although the rejection sampler technique is considered to be simple to implement, it suffers

from some limitation in cases where a bad choice of Q, or a proper Q with a poor constant

c. This will lead to a high rejection rate. To solve this problem, we will use Markov Chain

Monte Carlo (MCMC) techniques where the target distribution will eventually converge to

the proposal distribution.

7.3.1. The Gibbs sampling technique

Geman and Geman [9] introduced the Gibbs sampler where the samples are drawn

sequentially from the full conditional distribution. Suppose we want to draw samples from:

P (Γ) = P (γ1, γ2, . . . , γz) (10)

then, the Gibbs sampler replaces the value of γi from a sample value drawn from the

conditional distribution P (γi | Γ) as follows [5, 12]:

γ(π+1) ∼ P
(

γ1 | γ
(π)
2 , γ

(π)
3 , . . . , γ

(π)
Z

)

...

γ
(π+1)
τ ∼ P

(

γτ | γ
(π+1)
1 , . . . , γ

(π+1)
τ−1 , . . . , γ

(π)
Z

)

(11)

...

γ
(π+1)
Z ∼ P

(

γZ | γ
(π+1)
1 , γ

(π+1)
2 , . . . , γ

(π+1)
Z−1

)

7.3.2. The Metropolis-Hasting sampling technique

The Metropolis-Hasting sampling techniques was introduced in [11], it solves the limitation of

the rejection sampler where the rejected samples will not be discarded but they are weighted

according to an acceptance rate α [23].
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Parameter Specification

Environment Single/Multi-floor

Estimation technique Fingerprinting techniques

Fingerprint type RSS

Sensing device Mobile terminal

Calculation device Mobile terminal

Packet scanning Passive

Estimation algorithm Bayesian graphical model

Location report Physical

Table 6. Proposed system specifications

Figure 17 shows an illustration of the Metropolis-Hasting sampler. Suppose we want to draw

samples from target distribution P(z), then a candidate sample z∗ is drawn from the proposal

distribution Q(z, zt). Later α will determine whether this candidate sample z∗ is accepted or

weighted as follows:

α = min

(

1,
P (z∗)

P (zt)

Q
(

zt; z∗
)

Q (z∗; zt)

)

(12)

if the candidate sample was accepted then zt+1 is set to z∗ otherwise it will be set to the same

state zt.

Figure 17. The Metropolis-Hasting sampling technique

8. Model design and measurement setup

8.1. System specification

The proposed system is capable to locate a target in a single or multi- floor buildings using

RSS fingerprinting technique, both sensing and calculating processes are done by a mobile

terminal equipped with a WLAN card. The system collects RSS fingerprints form the APs

and feed them to a BGM which in turn tries to infer the target’s location. Table 6 shows the

specifications of the proposed system.
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Hardware Specification

Brand Apple MacBook
Model Late 2008

Notebook WLAN card AirPort Extreme card
IEEE standards IEEE 802.11 a/b/g/n

Operating system Windows XP SP3

Brand D-Link
Access Point Model DWL-2000AP

Operating frequency 2.4 GHz - 2.4835 GHz
Transmit power 15 dBm

Table 7. Experimental hardware specifications.

8.2. Experimental hardware

A notebook is used as our mobile terminal, the notebook is a MacBook with an AirPort

Extreme card that supports IEEE 802 11 a/b/g/n standards running Windows XP SP3.

The mobile terminal collects RSS fingerprints from five D-link DWL-2000 APs operate

from 2.4 GHz to 2.4835 GHz, each AP has 15 dBm transmission power. Table 7 shows the

experimental hardware specifications.

8.3. Experimental test bed

Figure 10 shows the first floor layouts for WCC building at UTM and the second floor layout

in Figure 11, the building has 2 floors, the first floor is about 36 m by 30 m and the second floor

is 21 m by 28 m. The building is equipped with five APs (AP1, AP2, ..., AP5), three in the first

floor and two in the second floor, the building’s walls are made of concrete and some plaster

board walls, the walls thickness is 15 cm and the floor thickness is 80 cm.

8.4. Experimental software

For the Feed and Infer algorithm, we have to use two software applications for each part of

the algorithm. For feeding part, the system requires RSS fingerprints at random locations to

be collected in order to feed the BGM, therefore we developed UTM WiFi Scanner, a network

sniffer written in c sharp based on InSSIDer by MetaGeek.

In the inferring part, WinBUGS [7] (Bayesian inference Using Gibbs Sampling) is used to

estimate the target’s location using Bayesian graphical models, WinBUGS uses Markov Chain

Monte Carlo (MCMC) sampling techniques to estimate the posterior distribution, the current

RSS fingerprint will be used in WinBUGS as a likelihood for the graphical model.

8.5. Model design

A single unshaded circle represents a continuous random variable and a shaded circle

symbolizes a discrete random variable, double circle refers to a logical variable while a square

represents a constant, we will provide the prior distributions for each random variable in our

model. Figure 18 shows the proposed model which we introduced in [2], Nodes Xi and Yi
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represent the user’s location at the ith point and they are assigned to a continuous uniform

distribution as follows:

Xi ∼ duni f (0, L) (13)

Yi ∼ duni f (0, W) (14)

where L and W represent the length and the width of the test bed respectively. Node Zi is the

floor number and it is assigned to a discrete uniform distribution since we are not interested

in the height of the APs instead the floor number of which the ith AP is located in:

Zi ∼ DiscreteUin f (1, N) (15)

but since WinBugs does not support discrete uniform distributions, we had to construct Zi as

a categorical distribution as follows:

p [i] ← 1/N (16)

Zi ∼ dcat (p [])

Categorical distribution is a generalization of the Bernoulli distribution with sample space

{1, 2, . . . , n}.

Dij = log

(

1 +

√

(

Xi − x̄j

)2
+

(

Yi − ȳj

)2
)

(17)

Dij is the Euclidean distance between the jth AP and the ith RSS fingerprint, we exploited the

fact that the RSS distribution in indoor environments follows a log-normal distribution [14],

we also added 1 to the equation because we do not want to have zero as an argument of the

log function.

Sij ∼ dnorm
(

mij, τj

)

(18)

where

mij = b0j + b1jDij + b2jZi + b3jw FAF (19)

and

τj ∼ dgamma (0.1, 0.1) (20)

The random variable mij is the mean for the normal distribution assigned to Sij which

symbolizes the RSS obtained at the ith location point from the jth AP. mij is a regression model

with four parameters (b0, b1, b2, b3) and four independent variables Dij,Zi,wi and, FAF (Floor

Attenuation Factor). w is a binary variable that takes two values, 0 if the collected RSS is in

the same floor with the AP which will cancel the effect of FAF and 1 otherwise.

8.6. Feed and infer algorithm

In Figure 19, we show the flow chart of the proposed feed and infer algorithm, it starts by

defining a Bayesian model shown in Figure 18 using WinBUGS, defining a model requires

the specification of the location variables Xi, Yi and Zi, the floor attenuation factor, the signal

strength and the parameters of the regression model.
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Figure 18. The proposed Bayesian model using WinBUGS plate notation.

In the next step, setting a value for the plate index i which represent the size of the RSS

fingerprints collected, i = 1 will be set as initial value and will be increasing depending

on the RSS sampling time. Next, checking the model error is done by the specification tool

in WinBUGS, the specification tool also allows us to specify the initial values for random

variables b,τ and μ. After compiling the model, we then specify the size of the burn-in samples

which are the samples that will be initially generated and then ignored to allow the Markov

chain to reach the stabilization state.

Next, using the inference samples tool in WinBUGS, we choose the random variables that will

be later evaluated. Then, we draw samples for the random variables specified in the previous

step using update model tool, also in this step we may choose the over-relax which means

generating multiple random values and selecting the sample that is negatively correlated

with the current sample [27]. Using save state tool, we feed the values again to the model

and update the index i = i + 1. After collecting sufficient number of RSSs, we check the

posterior summary using check state tool and produce the visual kernel estimate of the

posterior distribution using the density tool.

8.7. Data analysis

8.7.1. Moving target

Figures 20 and 21 show the location error and the accuracy cumulative distribution function

for the three windows (c1, c2, c3) for a moving target inside WCC building, the target

was moving throughout the corridors in two different floors. The proposed model started
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Figure 19. The feed and infer algorithm flowchart.

performing poorly with the first collected RSS, then the accuracy improved while the number

of RSS increased, hence we divided the system performance into three windows (c1, c2, c3),
each window contains different portions of RSS samples. Window c1 contains all the 90 RSS

fingerprints that were collected while testing the system, the mean accuracy obtained is about
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Window Number of values 75% percentile Std. Deviation Mean

c1 90 8.482 4.470 6.385

c2 50 5.946 2.689 4.214

c3 21 2.601 0.7292 2.272

Table 8. Location error statistics for the three windows

6.38 m. A better accuracy of 4.2 m was obtained from the second window c2 which starts from

the 50th fingerprint and discarding the previously collected RSSs. In window c3, only last 21

RSS samples were included, the location error was much improved with mean error of 2.27 m.

Table 9 shows the location error statistics for the three windows.
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Figure 20. Location error results with all RSS fingerprints included.

Figure 21. Cumulative distribution function of location error for the three windows.
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Location 1 Location 2 Location 3

Minimum 1.23 1.034 1.822

75% Percentile 2.613 2.809 2.195

Std. Deviation 0.4605 0.8748 0.3154

Mean 2.205 1.989 2.139

Table 9. Location error statistics at three fixed locations

8.7.2. Fixed target

Now we shall consider the system performance when the target is not moving, the system was

tested at three random fixed locations, Figures [ 22-24] show the estimated location of 20 RSS

fingerprints at the same location. The system performed slightly different at each location, the

mean accuracy acquired was 2.2 m, 1.9 m, and 2.1 m at locations 1, 2 and 3 respectively. Table

9 shows the accuracy statistics at the three fixed locations.

Figure 22. Location error at random location 1

Figure 23. Location error at random location 2
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Figure 24. Location error at random location 3

Madigan Hyuk L. Proposed system

Single-Phase Partially Yes Yes

Accuracy 20 feet 2.57 m 2.27 m

Multi-Floor No No Yes

Table 10. Comparison with other indoor location determination systems

In Table 10 we compare the proposed system with other well known single-phase systems, a

Bayesian model proposed by [24] and a zero configuration model by [21].

9. Conclusion

This chapter presented a single-phase location determination system using Bayesian graphical

models. The proposed system [1] does not require an offline phase to build the radio

map. Instead, it uses the online RSS gathered in real time to estimate the user’s location in

multi-floor environments.

The results showed that the system was capable to locate a mobile target in a multi-floor

environment without the need for a time consuming offline training stage to build the radio

map. Instead of using Monte Carlo sampling techniques such as rejection sampling which

suffer from low performance in complex Bayesian networks, MCMC sampling techniques

were used to sample from the posterior distribution for the location random variables X, Y

and Z.

Rather than using a single sampling technique, the system uses a collection of MCMC

sampling techniques to draw samples from the posterior distribution. The Bayesian graphical

model presented a visual approach to visualize the relationships between the random

variables.

The Feed and Infer Algorithm presented a way to directly sample from the posterior

distribution each time the Bayesian network was fed with a new inferred value from the

previous step in order to facilitate the elimination of the training stage. Although the
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performance of this algorithm was not good enough in the first two windows (c1, c2), the

final systems performance was based only on the third window c3 that showed an excellent

mean accuracy of about 2.27 m.
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