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1. Introduction 

During World War II, the british made a bomber De Havilland Mosquito which served in 

Europe, Middle and Far East and on the Russian front. Designed as a bomber, it excelled not 

only in this field but also as a fighter aircraft, mine layer, path finder in military transport 

and photo reconnaissence. It was constructed during the Battle of Britain and the first 

prototype made its maiden flight in november 1940, less than a year after the design project 

is started. From an engineering viewpoint, it has one spectacular feature - the fuselage is 

made of a molded plywood-balsa sandwich material, which is strong and yet lightweight 

and equally important in times of war, its components are readily available unlike 

aluminium ones. The importance of the Mosquito in the war effort proved the value of the 

new sandwich materials [1]. Sandwich composites are popular due to high specific strength 

and stiffness. The concept of sandwiches came in as early as the year 1849 AD but their 

potential realized mainly during Second World War as mentioned earlier. Sandwiches are 

composed of two stiff, strong and thin faces (skins) bonded to a light, thick weaker core. 

Faces sustain in-plane and bending loads, while the core resist transverse shear forces and 

keep the facings in place. These provide increased flexural rigidity and strength by virtue of 

their geometry. The high specific strength and stiffness make them ideal in structural design 

[2-3]. Developments in aviation posed requirement of lightweight, high strength and highly 

damage tolerant materials. Sandwich composites, fulfilling these requirements became the 

first choice for many applications including ground transport and marine vessels [4]. 

Sandwich panels are used in a variety of engineering applications including aircraft, 

construction and transportation where strong, stiff and light structures are required [5]. The 

applicability of sandwiches could be improved if it contains a FG core which might help to 

distribute the stresses due to bending or in progressive absorption of energy under impact 

loading [6]. It is required to study the behavior of sandwich panels under these types of 
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failures with a functionally graded material (FGM) as core to explore their new application 

in bullet proofing and crash worthiness. FGM’s are new class of materials where property is 

function of geometry such as thickness, length etc [7]. These are the materials whose 

composition and microstructure are not uniform in space, but gradually vary following a 

predetermined law [8-11]. FGM’s differ from composites in the sense that property is 

uniform in a particular direction throughout the composite. The concept of FGM’s is 

proposed as early as 1984 by material scientists as a means of preparing thermal barrier 

materials [12]. Closest to FGM’s is laminated composites with variation in laminate 

properties but they possess distinct interfaces across which properties change abruptly [13]. 

For example, a rocket motor casing can be made with a material system such that the inside 

is made of a refractory material, the outside is made of a strong metal, and the transition 

from the refractory material to the metal is gradual through the thickness [14]. FGM’s 

possess a number of advantages that make them attractive in many applications, including a 

potential reduction of in-plane and transverse through-the-thickness stresses, an improved 

residual stress distribution, enhanced thermal properties, higher fracture toughness, and 

reduced stress intensity factors. It is worth mentioning that the distribution of the material 

in functionally graded structures may be designed to various spatial specifications (1). 

Currently, advanced processing methods to introduce compositional gradients into various 

material systems are being developed by materials scientists [15-17]. A typical particulate 

composite with prescribed variation in distribution of constituent phases could be a 

representative FGM. The FGM concept could be borrowed in making sandwiches with FG 

core which exhibit resistance (stiffness) proportional to the applied load can serve some 

applications better than regular sandwiches, like a spring with varying stiffness. Such a 

sandwich could be realized by using a particulate composite with varying volume fraction 

of constituents.  

The flexural behavior of sandwich beams has been studied extensively by many 

investigators [18-23]. Studies on three point bend tests have been conducted in flexural [24-

25] and short beam shear test configurations [26]. An experimental investigation of failure of 

piecewise FG of sandwiches subjected to three point bending is carried out by Avila [27]. In 

addition, fiber reinforced syntactic foams [28-30] and syntactic foam core sandwich 

composites have also been studied for bending properties [31]. Specific properties of 

sandwich with complaint FG core needs attention as it is yet to be reported. 

2. Objectives and scope 

From the foregoing literature survey, clear is the fact that the research reports on 

development of low cost materials for bullet proofing and energy absorption is hardly 

available. A low cost ash filled functionally graded polymer system is proposed for 

applications like ballistic energy absorption. The perusal of sandwich literature review 

prompted a thorough and systematic study on these sandwiches by performing 

experimental characterization of flexural properties. Therefore the work undertaken pursues 

the following objectives:  



 
Flexural Behavior of Functionally Graded Sandwich Composite 133 

1. To prepare functionally graded rubber cores with varying fly ash reinforcement. 

2. To plan the experiments using DOE for processing FG sandwiches with different factors 

(weight fraction of fly ash, core to total sandwich thickness - C/H ratio and jute skin 

orientation) as per L9 orthogonal array at three levels. 

3. To study the effect of above parameters on mechanical properties of sandwich three 

point loading condition. 

4. To identify the most influential factor governing the mechanical behavior of FG 

sandwiches. 

5. To validate the gradation observed through finite element (FE) modeling using spring 

analogy for variations in property like uniform, linear and piecewise linear. 

6. Comparison of Experimental and FE results for properties of sandwich under 

consideration. 

7. Visual inspection of fractured FG sandwiches under different tests. 

Developed FG cores are utilized in sandwiches to characterize FG sandwiches for their 

suitability in real world applications. Sandwiches are prepared as per design of experiments 

approach so that multiple factors (fly ash weight fraction, C/H ratio and jute skin 

orientation) at three different levels can be simultaneously analyzed. Further, these 

sandwiches are subjected to bending test. Another set of samples called confirmatory set is 

made with 25% and 35% filler by weight. Five samples are subjected to mechanical test and 

the response is averaged out for these five.  

Furthermore, experimental values are compared with results of FE analysis. ANSYS 5.4 

package is used to achieve this objective. Analysis are carried out with three gradation 

variations namely uniform, linear and piecewise linear. Young’s modulus is computed for 

FG cores using FE approach and is compared with experimental result. Specific bending 

strength is the properties focused in simulating sandwich behavior. Finally, elaborate 

discussion on fractured samples is presented as the last segment of this work. 

3. Processing details 

This section presents properties of starting material used, procedures followed for preparing 

FG composites and their sandwiches. Details of reagents / chemicals used at different stages 

like for sample curing are also described. Characteristics of the reinforcements used are also 

enlisted. As outlined in the objectives and scope of the work in the preceding section, the 

objective of the present investigation is to study the properties of functionally graded 

sandwiches. This section lists materials and their properties and methods adopted for 

processing composites with varying content of the filler.  

3.1. Plan of experiment 

In this work experiments are designed based on Taguchi’s DOE approach for FG 

sandwiches [32]. Factors and levels chosen for planning the experiments for FG sandwiches 

are presented in Table 1. Table 2 shows orthogonal array for sandwich. Table 3 presents 

coding of samples bearing varying content of filler, C/H ratio and jute orientation. 
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Details 
Wt Fraction of Fly ash % 

(Factor 1) 

Core to thickness ratio 

(Factor 2) 

Orientation of Jute 

Fabric (Factor 3) 

Level 1 20 0.4 00/900 

Level 2 30 0.6 300/600 

Level 3 40 0.8 450/450 

Table 1. Factors and Levels selected for sandwich with FG core 

 

Experiment 

No. 

Parameters 

Weight Fraction (%) C/H Ratio Orientation 

1 20 0.4 00/900 

2 20 0.6 300/600 

3 20 0.8 450/450 

4 30 0.4 300/600 

5 30 0.6 450/450 

6 30 0.8 00/900 

7 40 0.4 450/450 

8 40 0.6 00/900 

9 40 0.8 300/600 

Table 2. L9 Orthogonal array for FG Sandwich 

 

Sample code Description 

WaRbOc Sandwich specification 

W Indicates factor 1 (Wt. fraction of fly ash) 

a Levels of factor 1 in % (20, 30, 40) 

R Indicates factor 2 (C/H ratio) 

b Levels of factor 2 (0.4, 0.6, 0.8) 

O Indicates factor 3 (Fiber Orientation in skin) 

c Levels of factor 3 (00/900, 300/600, 450/450) 

Table 3. Description of sample codes used for sandwiches 

Experimentation is done with due considerations to all the above parameters with both 

configurations of gradation namely rubber up and ash up. In each trial minimum of five 

replicates are tested. Average of the measured parameters for each set of replicates is 

subjected to statistical ANOVA to find the most influential factor governing the behavior 

using Minitab release 14 statistical analysis tool. 

3.2. Materials 

Details of materials used for main constituents of sandwiches (core and skin) are presented 

hereafter. 
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3.2.1. Core for FG sandwich 

From the standpoint of cost, availability, and the scarce literature prompted for going in for 

an elastomeric material which is naturally occurring and known by the name ‘natural 

rubber’ as the matrix material. Further it is reinforced with fly ash and is used as core in 

sandwich. 

As many of the polymeric systems for developing FGM’s are generally with the tag of 

expensiveness associated, it is decided to examine the gradation in composition and its 

subsequent mechanical behavior when an abundantly available lower density possessing fly 

ashes are the filler materials for the core. Fly ashes are fine particulate waste products 

derived during generation of power in a thermal power plant. These have aspect ratios 

closer to unity and hence are expected to display near isotropic characteristics. These 

inexpensive and possessing good mechanical properties, when used with well established 

matrix systems help to reduce the cost of the system and at the same time either retain or 

improve specific and desirable mechanical properties. Fly ash has attracted interest [33-34] 

lately, because of the abundance in terms of the volume of the material generated and the 

environmental-linked problems in the subsequent disposal. Fly ash mainly consists of 

alumina and silica, which are expected to improve the composite properties. Fly ash also 

consists to some extent hollow spherical particles termed as cenosphere which aid in 

maintenance of lower density values for the composite, a feature of considerable 

significance in weight-specific applications [35-36]. Again, as the fillers do not come under 

irregular shape, the resin spread, is better and as the ashes are essentially a mixture of solid, 

hollow and composite particles displaying near isotropic properties, developing newer and 

utilitarian systems using them should be an interesting and challenging task [37]. 

Compositional details of a fly ash particle are tabulated in Table 4.  

 

Constituent Wt. % 

SiO2 63 

Al2O3 26.55 

CaO 0.42 

Fe2O3 6.7 

TiO2 2.47 

Table 4. Compositional details of fly ash particle 

3.2.2. Skin used in sandwich 

Further on, in this effort, for the skins too, it is decided to employ instead of the well 

explored man-made fibers like glass, carbon or aramid a fairly strong but naturally 

occurring one going by the name ‘jute fiber’ and known for its inexpensiveness. Jute is an 

attractive natural fiber for use as reinforcement in composite because of its low cost, 

renewable nature and much lower energy requirement for processing. In comparison to 

glass fibers jute has higher specific modulus and lower specific gravity as against that of 
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glass fiber. Jute reinforced plastics offer attractive propositions for cost-effective applications 

[38]. These in the form of laminates have much better properties than their neat resin 

counterparts [39]. Better properties of woven jute fabric reinforced composites demonstrated 

their potential for use in a number of consumable goods in an earlier literature [40]. 

Substantial increases in flexural modulus and strength with small amounts of reinforcement 

of unidirectional jute have also been reported [41]. Keeping these things in mind a bi-

directionally woven jute fabric is used in different orientations. Table 5 gives the brief 

overview of comparison between glass fibers and jute fibers. 

 

Property E-glass Jute 

Specific Gravity 2.5 1.3 

Tensile Strength (MN/m2) 3400 442 

Young’s Modulus (MN/m2) 72 55.5 

Specific Strength (MN/m2) 1360 340 

Specific Modulus (GN/m2) 28.8 42.7 

Table 5. Mechanical Properties of Glass and Jute Fibers 

The major drawback of natural fiber reinforced composites is due to its affinity towards 

moisture. Many experimental studies have shown that compatible coupling agents are 

capable of either slowing down or preventing the de-bonding process and hence moisture 

absorption even under severe environmental conditions such as exposure to boiling water. 

Jute fibers/fabrics can be modified chemically through graft co-polymerization and through 

incorporation of different resin systems by different approaches. 

3.2.3. Matrix for skin 

For fabricating both the skins and core a matrix system is required. A thermosetting epoxy is 

chosen for this purpose as far as the skins are concerned. The adhesive used in present work 

consists of a medium viscosity epoxy resin (LAPOX L-12) and a room temperature curing 

polyamine hardener (K-6) supplied by ATUL India Ltd. Epoxy resin is selected as the 

material for the matrix system because of its wide application, good mechanical properties, 

excellent corrosion resistance and ease of processing. Some details including density of the 

constituents of the matrix system chosen are listed in Table 6.  

 

Constituent Trade name
Chemical

name

Epoxide 

equivalent

Density 

(kg/m3)
Supplier 

Parts by 

weight 

Resin 
LAPOX 

L-12 

Diglycidyl Ether 

of bisphenol A 

(DGEBA)

182 - 192 1162 
ATUL India 

Ltd. 
100 

Hardener K-6 

Tri ethylene 

Tetra amine 

(TETA)

---- 954 - do - 10-12* 

*As suggested in the manufacturer’s catalogue 

Table 6. Details of the constituents of matrix used for skin in sandwich 
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With these materials in hand, FG sandwiches are prepared for mechanical testing. 

4. Processing of FG sandwich 

FG cores used in the present work are produced using the following procedure. The 

gradation in the core is expected due to differential settling of the particles with different 

densities at different depths in the rubber matrix. A measured quantity of natural latex is 

mixed with pre-weighed amounts of fly ash, sulphur (vulcanizer) and zinc oxide (catalyst) 

[42] by adopting gentle stirring for about 1 hour. The mold employed for preparation of core 

specimen is completely covered on all sides with teflon sheet. Subsequently, silicone 

releasing agent is applied to facilitate ease of removal of the cast sample at a later stage. The 

mixture is then slowly decanted into the mold cavity followed by curing at 90°C in an oven 

for about 5-6 hours. The cured rigid plate sample is withdrawn from the mold and the edges 

trimmed. Figure 1 presents one such FG sample which in turn will be used as core in 

sandwiches. 

 

Figure 1. Functionally graded core sample drawn out of mold 

As regards the sandwich skins, a bi-directional woven jute fabric procured from M/S Barde 

Agencies, Belgaum, Karnataka, India is used. This fabric is cut into layers of dimensions 

depending on the sandwich sample size in required orientation. Thickness of each fabric 

piece is 0.5 mm. All the layers of jute fabric are heated in an oven at 700C for 5-10 minutes to 

remove moisture present. The jute stack thickness to form the thin skin, on either side of FG 

core, is computed. This enables one to arrive at the required number of fabric layers to be 

used, as thickness of each layer is known. Based on required C/H ratio number of fabric 

layers to be used are determined (Table 7).  

 

C/H 

Ratio 

Core thickness - 

C (mm) 

Number of jute 

layers below core 

Number of jute 

layers above core 

Sandwich thickness 

- H (mm) 

0.4 4 6 6 10 

0.6 6 4 4 10 

0.8 8 2 2 10 

Table 7. Jute layer arrangement for achieving C/H ratios in sandwich 

With this background data on hand to begin with, the required fabric pieces are dipped in 

mixture of epoxy and K-6 hardener and placed on base plate forming the bottom stack of the 
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sandwich. Now, the earlier mentioned procedure-wise made FG core dipped in resin 

mixture is placed on the bottom stack of skins. Finally, over such an arrangement, the 

remaining layers of jute fabrics having undergone the same procedure for fabrication are 

stacked to constitute the top skin. A procedure of this nature should help in ensuring a 

greater degree of spread of the resin on the fibrillar jute. Following this, the excess resin is 

made to come out by a squeezing operation that is aided by tightening of the mold top plate. 

The mold assembly is then cured at room temperature for about 24-26 hours. The sandwich 

sample is withdrawn from the mold and trimmed to the required size. Similarly numbers of 

samples are made with various core thickness and orientation in skin as schematically 

illustrated in Figure 2. Figure 2 (a) shows top view with different orientations and while the 

front view with varying core thickness to total sandwich thickness (C/H ratio) is presented 

in Figure 2 (b). 

 

Figure 2. (a). Orientation of jute strands in the sandwich skins, (b). Variation of C/H ratio considered for 

analysis 

5. Experimental details 

The mechanical testing of sandwich composites to obtain parameters such as strength, 

stiffness etc. is a time consuming and often difficult process. It is, however, an essential 

process, and can be somewhat simplified by the testing of simple structures such as flat 

coupons. The data obtained from these tests can then be directly related with varying 

degrees of simplicity and accuracy to any structural shape. The test methods outlined in this 

section merely represent a small selection available to the composites scientist. Various FG 

sandwiches fabricated are characterized for three point bending condition. Influence of 

rubber up (rubber rich region towards the top) and ash up (ash rich region below the 

loading point) configurations are critically analyzed. Expected gradation in FG cores is 

presented in Figure 3 (rubber up and ash up). 

The three point bending test is carried out in accordance with ASTM C 393 [42] using 

Instron universal testing machine of model 4206 with loading capacity ranging from 0.1 N to 

150 kN. Figure 4 shows the sandwich sample mounted on flexural test set-up. The thickness 
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to span ratio of the tested sandwich samples is 1:16. The crosshead displacement rate is 

maintained at 2 mm/min. The load deflection data is recorded at equal intervals up to a 

point at which the specimen shows the first sign of failure.  

 

Figure 3.  (a). Rubber Up condition in FG core, (b). Ash Up condition in FG core 

 

Figure 4. Sandwich sample mounted on flexural test set-up 

From load deflection data, bending modulus and strength are estimated using relations 1 

and 2 respectively and the mean of five samples in each sandwich configuration is used for 

inference. 

 
Flexural modulus

Specific bending modulus  
Weight density x 

bendingE

g
   (1)  

 
 

Ultimate strength
Specific bending strength

Weight density

bendingu

x g




   (2) 
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where 
3

6
bendingu

M

B H
   and 

4

FL
M   

5.1. Details of finite element modelling 

As outlined earlier, FE model helps to model the constituents of the FG composites and their 

sandwiches to study the interactions of these in load transfer and mechanisms influencing 

their failure. To understand and predict the effect of material as well as geometrical 

parameters on the mechanical behavior of FG fly ash filled rubber composites and their 

sandwiches finite element analysis can be a very effective technique. Towards this, a simple 

disctretized model is built in the software ANSYS® representing FG composites with 

properties varying from top layer to bottom representing gradation.  

Static analysis is performed using FEM software ANSYS 5.4. In this analysis a two 

dimensional model of a FG system is constructed and meshed with 4-node PLANE42 

element. Three different mesh sizes are tested with 4-node elements to check the 

convergence of the model, based on which medium mesh size (element edge length is taken 

as 0.5) is selected. Number of nodes and elements used in the analysis are 800 and 5000 

respectively. 

Finite element values are compared with experimental ones for bending behavior of FG 

sandwich. At the contact surfaces of the layers and between layers and faces of sandwich 

glue conditions are applied to eliminate relative movement of layers with respect of each 

other. Furthermore, nodes are merged at the interface allowing proper coupling between 

layers and interfaces. Figure 5 shows finite element mesh with boundary conditions as a 

typical case considered for three point bending analysis. Skins are being represented by top 

and bottom portions of the structure whereas in between are the four layers having graded 

properties. 

 

Figure 5. Finite element mesh with boundary condition for FG sandwich 

While modeling gradation in ANSYS 5.4, the analogy of springs is used having differing 

stiffness (K1 < K2 < K3 < K4) from the top layer to bottom (Figure 6).  

Sandwiches with FG core are modeled in FEA package ANSYS 5.4 [43] as emphasized 

before. Three different gradations of filler U (uniform), L (linear) and PL (piecewise linear) 

are considered during modeling of FG cores (Figure 7). Young’s modulus and density of FG 

cores are determined for different weight fractions of fly ash from constituent properties are 

provided as input to FEA (Table 8).  
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Figure 6. Spring analogy for gradation in modulus of core material 

 

Figure 7. FG rubber core configurations used in FEA 

Fly ash distributions taken into account for uniform configuration are 20%, 30% and 40% 

through the thickness. For these weight fractions Young’s modulus is estimated using 

inverse rule of mixtures For skins, young’s modulus is estimated by preparing five tensile 

samples of jute/epoxy with orientations of 00/900, 300/600 and 450/450 which are subsequently 

tested as per ASTM D3039 [44] guidelines. Density of skins is determined experimentally 

using procedure outlined in ASTM D792 [45]. Table 8 presents properties of core and skin 

used in the FE analysis. Results of FE analysis are compared with experimental values. 

 

FG Core 

Element Wt. % of 

fly ash 

Young’s modulus (GPa) Density (Kg/m3) 

U L PL* U L PL* 

20% 0.7575 

0.65 

(upper) 

0.75 

(middle) 

0.88 

(bottom) 

0.65 (L1) 

1168.4 

1163.9 (L1)

1167.5 (L2)

1172.5 (L3)

1162.8 (L1) 

2D 

Plane 42 

0.71 (L2) 1165.2 (L2) 

0.79 (L3) 1168.2 (L3) 

0.88 (L4) 1173.5 (L4) 
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FG Core 

Element Wt. % of 

fly ash 

Young’s modulus (GPa) Density (Kg/m3) 

U L PL* U L PL* 

30% 0.89 

0.68 

(upper) 

0.865 

(middle) 

1.15 

(bottom) 

0.68 (L1) 

1330.2 

1324.5 (L1)

1331.1 (L2)

1336.9 (L3)

1323.9 (L1) 

0.79 (L2) 1328.4 (L2) 

0.94 (L3) 1334.6 (L3) 

1.15 (L4) 1337.2 (L4) 

40% 1.1 

0.71 

(upper) 

1.015 

(middle) 

1.66 

(bottom) 

0.71 (L1) 

1444.7 

1435.2 (L1)

1445.7 (L2)

1452.6 (L3)

1434.9 (L1) 

0.88 (L2) 1442.8 (L2) 

1.15 (L3) 1450.6 (L3) 

1.66 (L4) 1455.2 (L4) 

Jute / Epoxy skin 

Orientation Ex (GPa) Ey (GPa) Density (Kg/m3) 

00/900 3.25 2.5 1468 

300/600 1.63 1.25 1451.2 

450/450 2.29 1.77 1444.3 

L-layer, *L1-top layer (rubber rich), L4-bottom layer (ash rich) 

Table 8. Core and skin properties used in FEA 

Bending tested samples are subjected to visual observation using regular photography 

technique for FG sandwich. These methods came in handy during the characterization of 

failures especially in impact failed samples. 

6. Results and discussion 

FG sandwiches are tested for Density, the results of which are presented in Table 9.  

 

Sandwich code Trial-1 Trial-2 Trial-3 Trial-4 Trial-5 Density (Kg/m3) 

W20R0.4O0 1325.6 1328.9 1329.4 1332.8 1330.8 1329.5 

W20R0.6O30 1333.5 1334.8 1336.2 1336.4 1331.6 1334.5 

W20R0.8O45 1342.8 1350.7 1348.6 1345.5 1348.9 1347.3 

W30R0.4O30 1465.8 1464.6 1460.3 1462.1 1463.2 1463.2 

W30R0.6O45 1435.2 1435.9 1431.9 1432.8 1433.7 1433.9 

W30R0.8O0 1467.1 1466.9 1469.3 1470.5 1467.2 1468.2 

W40R0.4O45 1547.6 1549.8 1551.7 1550.6 1548.8 1549.7 

W40R0.6O0 1599.5 1598.8 1595.6 1594.4 1596.2 1596.9 

W40R0.8O30 1564.1 1561.8 1562.4 1560.9 1563.8 1562.6 

Table 9. Density results of FG sandwiches 
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Experimental density values are subjected to statistical analysis (MINITAB 14) to propose 

regression equation which is presented in equation 3.  

 
 3Density Kg / m 1099 11.6  Fly ash weight %

29.7  C / H Ratio [0.459 Jute Orientation]

     

     
 (3) 

Equation 3 comes handy, which predicts density for large number of samples with varying 

combination of factors within the range of chosen levels without experimentation. Density 

increases with filler content as well as with C/H ratio (core to thickness ratio) being positive 

coefficients while shows a decreasing trend with increase in jute orientation. Obvious reason 

for this might be lower specific weight with increasing skin orientation. 

Three point bending behavior of a FG sandwich composite is investigated under flexural 

loading condition. Results are analyzed for specific modulus and specific bending strength. 

Load deflection data is traced all along the path. The load and corresponding deflection data 

is noted at equal intervals up to a maximum load at which the specimen shows the first sign 

of failure (point ‘A’). The load and deflections obtained during testing are plotted. A typical 

load deflection curve is shown in Figure 8.   

Load-displacement consists of an initial linear part followed by a nonlinear portion (Figure 

8). A nonlinear mechanics of materials analysis that accounts for the combined effect of the 

nonlinear behavior of the facings and core materials (material nonlinearity) and the large 

deflections of the beam (geometric nonlinearity) are observed. The nonlinear load-deflection 

behavior of the beams is attributed to the combined effect of material and geometric 

nonlinearity. The material nonlinearity of the sandwich beam is due to the nonlinear normal 

stress-strain behavior of the facing material and the FG core. For long beam spans, even 

though there is a geometric nonlinearity effect, the overall load-deflection curve of the beam 

does not deviate much from linearity. 

For long beam spans the nonlinearity of the load-deflection curve is mainly due to the 

combined effect of the facings nonlinearity and the large deflections of the beam. Both 

effects, however, have a small contribution to the load-deflection behavior, which shows a 

small deviation from linearity. Some of the general observations made are listed below.  

1. The load decreases sharply after the end of the elastic region due to failure initiation in 

sandwich composites (A to B).  

2. All samples have shown small linear region (B to C) before skin failure in compressive 

side.  

3. Variation in displacement value at which peak load is observed for various types of FG 

sandwiches is considerable.  

4. The failure originates on the tensile side.  

6.1. Specific bending modulus 

From load deflection data the average specific modulus and strength for five samples (Table 

10) are estimated using equations 1 and 2.  
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Figure 8. Load-deflection behavior under three point bend test for sandwich 

 

Sample 

coding 

Sp. flexural modulus (MPa/Nm-1) Sp. flexural strength (MPa/Nm-1) 

Rubber 

Up 
Avg. Ash Up Avg. Rubber Up Avg. Ash Up Avg. 

W20R0.4O0 

3945.23 

3953.07 

3410.9 

3410.29 

132.7 

128.1 

103.55 

98.81 

3933.7 3404.2 128.1 105.32 

3961.5 3419.16 127.7 95.47 

3963.7 3416.4 128.1 99.1 

3961.2 3400.8 123.9 90.61 

W20R0.6O30 

5322.6 

5319.4 

4540.15 

4545.36 

85.3 

88.1 

72.3 

70.7 

5306.8 4545.39 88.1 70.7 

5321.3 4539.4 83.5 71.9 

5322.9 4544.95 92.4 70.7 

5323.4 4556.9 91.2 67.9 

W20R0.8O45 

7391.4 

7387.91 

6150.4 

6155.14 

54.59 

54.59 

45.23 

48.75 

7387.91 6160.73 54.5 50.4 

7377.4 6155.14 57.7 47.9 

7393.4 6155.14 58.1 46.8 

7389.42 6154.28 48.06 53.42 

W30R0.4O30 

2996.2 

3001.3 

2390.31 

2398.92 

141.4 

141.4 

115.43 

113.26 

3003.1 2398.92 141.4 116.23 

3004.5 2398.92 145.5 113.26 

3001.3 2398.92 149.1 111.59 

3001.4 2407.53 129.6 109.79 

W30R0.6O45 

4043.3 

4045.36 

3533.59 

3533.57 

94.76 

101.23 

80.17 

78.75 

4047.6 3528.61 99.14 81.34 

4042.4 3531.75 95.35 75.46 

4045.36 3523.16 106.4 79.1 

4048.12 3550.73 110.5 77.68 
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Sample 

coding 

Sp. flexural modulus (MPa/Nm-1) Sp. flexural strength (MPa/Nm-1) 

Rubber 

Up 
Avg. Ash Up Avg. Rubber Up Avg. Ash Up Avg. 

W30R0.8O0 

6559.3 

6562.65 

6018.2 

6018.2 

148.7 

153.1 

120.1 

119.3 

6562.8 6018.2 149.2 121.3 

6570.4 6018.2 157.3 118.3 

6560.55 6020.9 151.2 121.54 

6560.21 6015.5 159.1 115.26 

W40R0.4O45 

2134.3 

2138.92 

1702 

1692.71 

149.3 

151.4 

110.34 

117.17 

2138.69 1692.67 148.7 121.56 

2141.92 1688.2 152.4 117.17 

2139.26 1690.4 159.3 120.23 

2140.42 1690.3 147.3 116.55 

W40R0.6O0 

4372.5 

4365.98 

4060.12 

4065.98 

188.98 

192.21 

159.21 

154.45 

4370.28 4068.63 193.5 155.29 

4365.39 4065.98 199.7 152.8 

4360.87 4059.3 191.49 155.7 

4360.86 4075.86 187.38 149.25 

W40R0.8O30 

6515.5 

6518.2 

6050.3 

6062.65 

155.23 

159.53 

121.44 

125.45 

6520.7 6070.4 151.8 123.3 

6521.4 6060.9 161.32 127.56 

6518.2 6058.5 164.2 128.9 

6515.2 6073.15 165.1 126.05 

Table 10. Specific bending modulus and strength for FG sandwich 

It can be clearly seen from the table that, rubber up configuration registered higher results 

compared to ash up condition for both the properties in the range of 7 to 30%. Constrained 

straining and resisting forces set up in the FG core might be the reasons for such an 

observation in bending test as depicted in Figure 9. 

 

 

 
 

Figure 9. Loads acting on FG sandwich in bending test 
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Rubber up condition of FG core in sandwich represents ash rich region on tensile side. Crack 

initiation is observed to be from tensile region to compressive region in pre sent loading 

case. In rubber up condition, as stiffer zone is near tensile region, sandwich can take up 

higher loads resulting in better performance compared to homogenous cores and ash up 

condition in FG core. Thereby, such sandwiches are excellent examples of optimized 

designs.  

Developed FG sandwiches can be used in practical cases wherein structures are 

continuously subjected to bending loads. Depending upon whether load is acting 

downwards or upwards sandwiches can be suitable placed with either rubber up or ash up 

configuration as regards to FG cores. 

Figure 10 shows the signal to noise (SN) response plot for specific bending modulus with 

respect to the parameters under study. Response of SN ratio in Specific bending modulus 

for Rubber Up condition is presented in Table 11. 

 

 

Figure 10. Variation of SN ratio in specific bending modulus (Rubber Up) 

 

 Fly ash weight % C/H ratio Orientation 

Level 1 74.61 69.36 73.69 

Level 2 72.68 73.15 73.45 

Level 3 71.90 76.66 72.04 

Effect 2.71 7.30 1.66 

Rank 2 1 3 

Table 11. SN ratio table for specific bending modulus (Rubber Up) 

From the data analysis, vide response Table 11, it is seen that C/H ratio and fly ash % exhibit 

greater influence compared to the orientation. It is further observed from the Table and 

Figure 10 that samples with fly ash content of 20%, C/H of 0.8 and an orientation of 00/900 

possess highest specific bending modulus. This could be due to higher C/H ratio implying 

larger rubber rich region imparting higher modulus to sandwich system.  
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6.2. Specific bending strength 

Results of specific bending strength from Table 10 are statistically analyzed and are used to 

rank the variables as presented in Table 12. 

 Fly ash weight % C/H ratio Orientation 

Level 1 38.6 42.92 43.84 

Level 2 42.27 41.56 41.99 

Level 3 44.44 40.83 39.48 

Effect 5.85 2.09 4.36 

Rank 1 3 2 

Table 12. SN ratio table for specific bending strength (Rubber Up) 

From SN response Table, it can be seen that specific bending strength behavior is 

prominently governed by fly ash weight % followed by orientation and C/H ratio. Figure 11 

presents SN plot for specific bending strength incase of rubber up condition.  

 

 

 

 

Figure 11. Plot of SN ratio in specific bending strength (Rubber Up)  

From SN response plot shown in Figure 11, the best combination for specific strength is a 

sample with fly ash content of 40%, C/H of 0.4 and orientation of 00/900. Reasons for this 

could be stiffening effect due to high modulus filler and larger skin-epoxy component for 

lower C/H ratios. Similar results are observed for ash up configuration. Even though 

W20R0.8O45 and W40R0.6O0 are showing higher values (Table 10) for modulus and strength 

respectively, inference on basis of these will not lead to an appropriate conclusion. The 

reason being these values are merely based on average of means. Inference on the grounds 

of SN analysis leads to a meaningful conclusion as it takes means and data spread into 

account. By the SN ratio analysis the best sandwich configurations are W20R0.8O0 and 

W40R0.4O0 for specific modulus and strength respectively. Similar observation is noted for ash 
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up configuration. Regression equation is proposed based on the experimental data for 

specific bending properties are presented in equations 4-7. 

 
 Specific Bending Modulus Rubber Up 1151 – 60.6  Weight % of Fly ash

480  C / H Ratio – 8.38  Jute Orientation

    
        

 (4) 

 
 Specific Bending Strength Rubber Up 70.4 3.87  Weight % of Fly ash

– 44.7  C / H Ratio – 1.19  Jute Orientation

     
       

 (5) 

 
 Specific Bending Modulus Ash Up 342 – 38.2  Weight % of Fly ash

8945  C / H Ratio – 14.2  Jute Orientation

    
        

 (6) 

 
 Specific Bending Strength Ash Up 54.2 2.98  Weight % of Fly ash

– 29.8  C / H Ratio – 0.912  Jute Orientation

     
       

 (7) 

6.3. Finite element analysis 

Specific bending strength is estimated by simulating the sample and loading (Gupta et al. 

2008) in FEA. Figure 12 represents the plot for bending stress in the sample for one typical 

loading case.  

 
 

 

 

 

Figure 12. Bending stress in x-direction for typical case in FG sandwich 
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The breaking load taken from experiment is applied on FE model. For this applied load, 

maximum stress (von misses criteria) is recorded and finally specific strength is determined 

by taking the ratio of maximum stress to the weight of sample. The specific strength values 

obtained from FEA for three variations in gradation (Uniform-U, Linear-L and Piecewise 

linear-PL) and with experimental approach is presented in Table 13.  

 

Sandwich 

configuration 

FEA 
Experimental % Error with PL 

U L PL 

W20R0.4O0 115.4 119.6 132.75 128.1 3.50 

W20R0.6O30 78.2 81.5 92.58 88.1 4.84 

W20R0.8O45 46.9 48.9 58.58 54.59 6.81 

W30R0.4O30 125.1 130.2 147.34 141.4 4.03 

W30R0.6O45 84.4 88.8 110.38 101.23 8.29 

W30R0.8O0 129.7 137.6 160.88 153.1 4.84 

W40R0.4O45 126.6 131.3 169.11 151.4 10.47 

W40R0.6O0 175.2 179.5 201.42 192.21 4.57 

W40R0.8O30 140.2 145.6 165.7 159.53 3.72 

Table 13. Specific bending strength (MPa/Nm-1) results for sandwich 

It is significant to note that the experimental results for specific bending strength match well 

with FEA values especially for the ones with PL gradation. It is observed that bending 

strength obtained from FEA is slightly higher than experimental values. This could be due 

to inability of modeling inhomogenities creeping in during the processing of samples which 

may result in lowering specific strength.  

6.4. Discussion on fractured samples 

Within the elastic region of the load-displacement curve (Figure 8), where no damage is 

induced, the responses of all specimens to the applied loads are quite similar. This is visible 

in the form of nearly constant slope in the elastic region of the load-displacement curves. It 

is observed that the failure starts in the form of crack origination on the tensile side of the 

specimen as displacement increases. On further loading, the skin of the sandwich composite 

that is on the tensile side tends to fracture, causing the final failure of the specimen. 

However, it is not significant enough to lead to the final failure of the specimen. It is 

observed that the entire specimen fractures at a much later instant of skin fracture. 

Appearance of small linear region (B to C in Figure 8) at the end in the load-displacement 

curves is due to stiffening of FG core before final failure. During the loading process, 

deformation also takes place in the compression side of the specimen. Cracks initiate from 

the tensile side and propagate to the compressive side within the core in all sandwiches.  

It is worth discussing the mode of failure. Sandwich samples tested under bending did not 

display the distinct separation into pieces at failure. The FG core being compliant is 
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observed to be successfully absorbing media. Basically two types of failure mechanisms 

observed are skin cracking and delamination between skins and core. Figure 13 shows the 

failed sandwich specimens with their failure modes.  

 

 

 

 

Figure 13. Sandwich failure modes under three point bending loads 

The sandwich beams failed at the center of the two supporting rollers. In this portion of the 

beam, the shear force is zero and only the pure bending exists. Thus, the sandwich samples 

are capable of resisting higher bending moment. As the load on the specimen is increased, 

failures first start under the loads in tensile region and then they propagate towards the 

compressive zone through compliant FG core. All the samples failed under skin tension or 

compression and skin - core debonding. The sandwiches with higher C/H ratio have shown 

skin - core debonding. FG core takes up most of the load applied for higher C/H ratios 

(lesser skin thickness). Since core is made up of rubber composite being compliant in nature, 

relative movements are set up with respect to skin resulting in inter laminar shear stresses. 

As magnitude of these stresses crosses the adhesive strength delamination creeps in. Some 

sandwich samples are seen to be intact even after the first sign of failure. These samples 

exhibited a spring back effect. Samples bearing lower C/H ratio have failed mainly because 

of skin cracking along the jute orientation. Few samples failed due to shearing at skin-core 

interface displayed step formation.  

7. Conclusions 

This section highlights the significant conclusions drawn from the results presented earlier. 

Major inferences from both experimental and finite element investigations are discussed 

below. 

Density of FG sandwiches increases with filler content and C/H ratio while decreases with 

jute orientation. An experimental investigation of sandwiches under bending loads for 

specific modulus and specific strength shows that C/H ratio and fly ash weight fraction 

are the influential factors respectively. Specific bending modulus in both cases (i.e. rubber 

up and ash up) the sample W20R0.8O0 registered the higher value while W40R0.4O0 shows 
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higher value of specific strength. Rubber up configuration registered higher results 

compared to ash up condition for modulus and strength. The ash up condition recorded 

about 30% increase in strength. Increasing fly ash weight fraction rendered an increase in 

bending strength of about 29% for rubber up condition. Specific strength values estimated 

from FEA for bending loads match well with experimental results especially for piecewise 

gradation. 
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