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1. Introduction 

Finite-element (FE) simulations are often used to predict the response characteristics of a 

structural component under different boundary conditions and to help explore the design 

space for the optimum design while minimizing the need for physical testing. It has also 

been used to model various manufacturing processes, especially those involving the 

forming process (Cheng and Kikuchi 1985; Chung et al. 1998; Li et al., 2002; van den 

Boogaard et al., 2003). 

Since such FE simulations and the accompanying structural design optimization studies rely 

on computer-based geometric model of the structural component and the tabulated material 

properties, the initial state (e.g., internal stresses and strains) of the component/material is 

most often ignored, which results in exclusion of the manufacturing process effects on the 

product (e.g., plastic strain, residual stress, thinning, springback, etc.). The selected 

manufacturing process and the choice of process parameters can also change the material 

microstructure (e.g., dislocation density, texture), thereby affecting the macroscale (e.g., 

stress-strain) behavior of the material and the structural component (Najafi et al., 2012; 

Oliveira et al., 2006).  

A practical way to alleviate this shortcoming is to perform coupled process-performance 

simulations in a sequential manner whereby both changes in the material and component 

can be properly modeled and tracked from one stage to the next for a more accurate 

prediction of the structural performance measures (Noels et al., 2004). Consequently, 

process parameters can be evaluated based on both the process objectives and performance 

criteria. Coupling of the material, process, and performance models is an important step in 

modeling the actual physical behavior of the material and structure while facilitating the 
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integrated material-process-product design (Olson, 1997; McDowell et al., 2007; Acar et al., 

2009).  

Coupled quasi-static analyses can be performed in some implicit finite element analysis 

(FEA) codes such as Abaqus/Standard where the boundary conditions can be changed and 

the material state can be tracked and passed from one solution step to the next by using the 

restart option, for example. The same capability also exists in some explicit FEA codes such 

as LS-DYNA and Abaqus/Explicit for coupled transient dynamic simulations. The 

increasing demand for coupled simulations has resulted in many commercial software 

codes to have an option to map some solutions as the initial state. However, when some 

combinations of dynamic and quasi-static analyses (i.e., explicit and implicit solvers) are 

required, a separate data flow management (DFM) program and strategy are required. The 

DFM procedure becomes more complex in the context of design optimization when the 

coupled analyses need to be performed numerous times for design space exploration in 

search of the optimum design. A particular case being considered in this chapter is the 

concurrent design of a coupled process-product system where both manufacturing process 

and product performance attributes are to be optimized by finding the optimum values of 

the manufacturing process on product design variables. 

Coupled process-product (performance) simulation studies include those that have considered 

the manufacturing effects associated with forming and springback on crush/crash performance 

of tubular components (Oliveira et al., 2006; Kellicut et al., 1999; Kaufman et al., 1998; Grantab, 

2006; Krusper, 2003). For example, Kellicut et al. (1999) considered springback, thinning, and 

other parameters such as plastic strain and residual stresses in bending-crush simulations of 

hydroformed tubes and showed that the plastic strain has the greatest effect on the crush 

behavior. Mayer (2004) and Williams et al. (2005) also performed integrated hydroforming-

crush simulations, whereas Ryou et al. (2005) used ideal forming solution to extract the stress 

and strain responses from forming process and a hybrid membrane/shell method to pass the 

information to impact simulation. They improved the computation time while preserving the 

accuracy of the FE simulations. Simunovic and Aramayo (2002) studied the crash response of 

energy absorbing components of the ultra light steel auto body vehicle models and showed 

that by including the history effects the energy absorption properties can change even though 

the difference in the overall response was relatively modest.  

Oliveira et al. (2006) and Williams et al. (2005) performed experimental and computational 

study of s-rail tubes and discovered that both the maximum and mean crush force values 

will change as a result of the manufacturing process effects. Bottcher and Frik (2003) did a 

similar study and showed that metal forming data is required in crash simulation of front 

rail panel of a vehicle model, especially in high strength dual phase steel due to its rapidly 

hardening characteristic. Krusper (2003) and Dagson (2001) performed analysis on a simple 

bar while considering the springback response of the material. Most of the studies cited only 

considered a material model with isotropic hardening while a few included the effect of 

kinematic hardening on the crush response. Recently, Williams et al. (2010) studied the 

effect of combined isotropic/kinematic hardening and strain rate sensitivity along with an 

anisotropic yield surface to study the crush behavior of hydroformed tubes. They showed 
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that the combination of these parameters increases the capability of models to correctly 

predict the energy absorption performance of the crush tube. However, they did not 

investigate the capabilities of the model in coupled process-performance simulations. 

This chapter presents the different steps in performing sequential coupled nonlinear FE 

simulations and their application in multi-objective process-product design optimization of 

thin-walled structures. The sheet stamping simulation includes both the deep drawing and 

the springback stages of the manufacturing process. Performance simulation considers the 

energy absorption response characteristics of the component under an impact (crash) 

loading condition. The coupled simulations involve both nonlinear explicit and implicit 

FEA. The developed computational framework is used for the analysis and design of a 

double-hat tube. A design sensitivity analysis is performed to investigate the effect of 

manufacturing process parameters and geometric attributes on the process and performance 

responses that are affected by the manufacturing process and geometric design parameters. 

The ensuing nonlinear design optimization problem is cast in a multi-objective formulation 

and solved for Pareto optimum design points using a multi-objective genetic algorithm. 

2. Modeling of manufacturing effects  

Constitutive models describe the stress-strain relationship for a given material and the 

influence of various factors such as temperature and strain rate. Plastic deformation requires 

variables that define the history of stress and temperature in the material. The history can be 

defined through functional analysis and mathematical theories known as the theory of 

material with memory (Lubliner, 2006). Manufacturing effects in most continuum-level 

material models are considered implicitly through the state variables defined in the model. 

For example, in the classical plasticity model, the total strain is written as an additive 

decomposition of elastic strain and plastic strain. Considering a piecewise linear isotropic 

hardening law derived from the stress-strain data, the equivalent plastic strain would 

represent, in a limited sense, the history or the manufacturing effect. Inclusion of 

manufacturing effects in the continuum plasticity models emerges by specifying the initial 

state for the numerical integration of the evolution equation of the state variable.  

The constitutive relation of the rate dependent classical plasticity model with isotropic 

hardening can be represented through the following equations:  

 Elastic stress-strain relationships in three-dimensional space  

ሶ࣌  = ℂ: ሶࢿ) −  (1) (࢖࢜ሶࢿ

 Yield surface (closure of elastic domain in the stress space) 

,࣌)݂  (ߢ = |࣌| − ൫ߪ௬ ൯ߢܪ+ ≤ 0 (2) 

 Flow rule and hardening law ࢿሶ௩௣ = ሶߣ ,࣌)݂߲ ߲࣌(ߢ , ሶߢ = ሶ (3)ߣ
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,࣌)ሶߣ  (ߢ = ቐଵ஼ ቈ൬|࣌|ఙ೤൰ଵ ௉ൗ − 1቉ ,࣌)݂	݂݅	 (ߢ ≥ ,࣌)݂	݂݅	0	0 (ߢ < 0 	 (4) 

where the bold symbols ࣌ and ࢿ
 

represent the second-rank stress and stain tensors, 

respectively, and ℂ
 

is the forth-rank tensor of isotropic elasticity. The superscript vp 

designates the viscoplastic component. The ∎ሶ  terms indicate time derivatives. The yield 

stress is denoted by ߪ௬ with parameters H and ҝ representing isotropic hardening modulus 

and plastic multiplier, respectively. Moreover, ܥ and ܲ in the hardening law equation are 

known as material constants associated with rate sensitivity, which are found based on 

experimental data on a specific material. As mentioned previously, the manufacturing 

effects emerge as the consequence of numerical integration of the model described by Eqs. 

(1) through (4).  

The numerical integration scheme in the deviatoric space is defined based on updating the 

current state of stresses and state variables (with subscript n) by calculating their increment △ (∎). The deviatoric part of total strain tensor ࢋ is updated as 

௡ାଵࢋ = ௡ାଵࢿ − 13 (5) ࡵ௡ାଵ൯ࢿ൫ݎݐ

where ࡵ is the identity tensor and ݎݐ(∎) is the trace of the second rank tensor. The trial stress 

tensor ࢙௡ାଵ௧ 	is calculated from the Hook’s law given by 

௡ାଵ௧࢙   = ௡ାଵࢋ൫ߤ2 −  ௡௣൯  (6)ࢋ

where the ࢋ௡௣ is the plastic strain at the nth increment and ߤ is the shear modulus. Then, the 

calculated stress magnitude value at n+1 increment ‖࢙௡ାଵ௧ ‖	is evaluated with the yield 

surface ௡݂ାଵ௧  at the same increment. If ௡݂ାଵ௧ = ௡ାଵ௧࢙‖ ‖ − ටଶଷ ௬ߪൣ ൧ߢܪ+ ≤ 0 is met, the material 

is in the elastic region and the trial values are the admissible stress values and, therefore, the 

plastic multiplier ߣሶ or Δߣ௡ାଵ is zero with 

  (∎)௡ାଵ = (∎)௡ାଵ௧   (7) 

And if ௡݂ାଵ௧ > 0,	the trial values should be corrected due to an additional plastic strain and 

the yield surface is approximated through the first-order Taylor series expansion as  

௡݂ାଵ௧ ≈ ௡݂௧ + ∂݂∂∆λΔߣ௡ାଵ (8)

where Δߣ௡ାଵ is computed based on Newton-Raphson scheme (Wang and Budiansky, 1978; 

Simo and Hughes, 2000; Souza et al., 2008). Therefore, the next state of material (with 

subscript n+1) is derived by adding the increments Δ(∎) to the previous state of stress as 

κ௡ାଵ = κ௡ +ඨ23 Δߣ௡ାଵ (9)
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௡ାଵ௩௣ࢿ   = ௡௩௣ࢿ + Δߣ௡ାଵ	࢔௡ାଵ  (10) 

  Δ࣌௡ାଵ = ࡵ௡ାଵ൯ࢿ൫Δݎݐ	ߣ + Δ࢙௡ାଵ௧ −  ௡ାଵ  (11)࢔	௡ାଵߣΔ	ߤ2

௡ାଵ࣌   = ௡࣌ + Δ࣌௡ାଵ  (12) 

where ݎݐ(∎) represents the trace of the tensor, trial values are denoted with t superscript, 

and the normal to the yield surface is found as ࢔௡ାଵ ௡ାଵ௧࢙	= ௡ାଵ௧࢙‖ ‖⁄ . By having κ௡ =  ௡௩௣, theࢿ

manufacturing effect can be considered through a non-zero state of ࣌௡ and ࢿ௡௩௣ at the 

beginning of the analysis as ࣌ଵ and ࢿଵ௩௣.  

Traditionally, the initial values for the first increment are considered to be zero assuming 

that the material deformation starts from a conceptual pristine state. However, 

incorporating proper initial values emanating from forming and springback simulations in 

the crush analysis couples the process and performance from the material standpoint. 

3. Manufacturing process and product performance simulations 

Coupled process and performance simulations are conducted sequentially by using 

Abaqus/Explicit for the deep drawing (loading) simulation, Abaqus/Standard for the 

springback (unloading) simulation under isothermal condition, followed by 

Abaqus/Explicit for the crush simulation. The illustrative example considered in this 

chapter is a double-hat, thin-walled tube that is modeled by joining two identical single hat 

sections.  

3.1. Deep-drawing simulation 

For forming or deep-drawing simulation, two sets of blank/holder/die/punch geometries are 

defined in the FE model with the model for one set shown in Fig. 1. A single die set is 

mirrored with respect to blank plane to simulate the forming of both pieces simultaneously. 

There are two basic steps in using the explicit FEA for the forming simulation of each single 

hat section depending on the specified boundary conditions. 

The first step defines the gripping of the blank between the die set and the holders. While 

keeping the punch and dies fixed in their respective positions, the holding forces are 

increased linearly from zero to the specified value matching the corresponding 

manufacturing process control parameter. In this stage, the kinematic contact formulation is 

used because of the computational  efficiency of the formulation (Rebel et al., 2002; Oden 

and Kikuchi, 1982; Oden and Pires, 1983; Bayram and Nied, 2000; Wriggers, 2006). Due to 

the simplicity of the geometry, die and holder surfaces are defined through standard 

analytical rigid surfaces. Contact surfaces are defined on both surfaces of the blank by 

considering the surface offset due to the blank thickness. Penalty formulation is used in 

tangential contact and a friction coefficient is defined as a manufacturing process parameter 

for an equivalent representation of both surface roughness and draw beads. 
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Figure 1. Sheet-forming FE model of a single hat section 

 
Figure 2. Formed hat section with the boundary conditions used for the subsequent springback 

simulation 

The second step performs the deep drawing simulation by applying a constant velocity to 

the punch that is configured in the model to match the final geometry of the product 

(excluding the springback effect). Hence, the results of the previous step are directly 

transferred to this step where the boundary conditions on the fixed punch in the direction 

normal to the blank surface are removed and a constant velocity is applied to the punch to 

form the single hat section as shown in Fig. 2. The punch velocity is assumed to be constant 

for a linear displacement. This setup does not impose a uniform strain rate in all the 

elements. Thus, rate sensitivity of the material will not have a uniform effect on the 

structure. Dies remain clamped and the holders are fixed in all degrees of freedom except 

the direction parallel to the punch movement. In this direction, the constant holding force is 

applied to preserve the constant gripping force throughout the drawing process.  
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Rupture and thinning are two responses that can be calculated from the results of the deep-

drawing simulation. Rupture is calculated by extracting the principal major and minor 

plastic strains in each element and taking the difference between the major strain and that 

extracted from the forming limit diagram (FLD) using the following equation 

ܴ = ൞෍ܴ௜ଶூ
௜ୀଵ =෍(ߝଵ௜ − ଶ௜ߝ)߶ ))ଶூ

௜ୀଵ ଵ௜ߝ > ଶ௜ߝ)߶ )0 	 ଵ௜ߝ ≤ ଶ௜ߝ)߶ )  (13)

where ߶(ߝଶ) is the equation representing FLD curve and ߝଵ௜  and ߝଶ௜  are the principal major 

and minor strains at each integration point through the thickness, respectively, which are 

calculated in the deep-drawing simulation when the termination time reaches the limit. The 

parameter I represents the total number of integration points in the mesh. The FLD (Lee et 

al., 2008) that is used in this study is that for AZ31 magnesium alloy sheet and it is assumed 

to behave linearly in both compressive and tensile plastic strains as shown in Fig. 3. 

 

Figure 3. FLD for AZ31 at two different strain rates (Lee et al., 2008) 

Thinning is measured by taking the difference between the final thickness of each element 

and its corresponding initial value and is calculated using a single metric, T defined as 

ܶ =෍ ௜ܶଶே
௜ୀଵ =෍(ݐ௜ − ௢ݐ௢ݐ )ଶே

௜ୀଵ  (14)

where ݐ௢ and ݐ௜ are the initial and final shell thicknesses, respectively, and N is the total 

number of elements in the mesh. Since the shell thickness in the blank is assumed to be 

constant for all the elements, ݐ௢ is the shell thickness assigned to the elements.  

3.2. Springback simulation 

The state variables and geometric information from the deep drawing simulation are 

transferred and treated as the initial state in the unloading stage (i.e., removal of all the 

tooling parts from the workpiece) for the springback analysis. Springback process is modeled 
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as a quasi-static problem considering the stress distribution captured from deep drawing, 

dynamic effects, and the contact conditions. Additionally, all the rigid surfaces including 

punch, dies, and holders are removed from the FE model, which makes the model more 

suitable for implicit FEA considering the quasi-static nature of the springback phenomenon 

and the absence of highly nonlinear factors in the model. Convergence of the nonlinear 

implicit FEA are guaranteed by defining the boundary conditions in such a way that the two 

edges of the hat section are held fixed perpendicular to the actual normal surface. As shown 

in Fig. 2, the equilibrium condition is achieved by constraining the model in all the transverse 

directions. The boundary conditions defined in this stage are designed such that the effect of 

the force required to assemble a non-fitted double-hat section is already considered. The 

residual stresses and geometric attributes are updated during quasi-static analysis while the 

other computational state variables such as plastic strain remain unchanged. Similar to the 

deep-drawing simulation, the springback analysis is performed separately and 

simultaneously on the two identical single hat sections. There is no interaction between the 

two hat sections, however, in both the deep drawing and springback simulations. The two 

hat sections are then assembled in the next stage to produce a double-hat crush tube. 

Springback is calculated by comparing the nodal coordinates obtained in the last step of the 

deep-drawing simulation with those in the last step of the springback simulation. A single 

springback metric, S representing the deviation of the nodal coordinates is calculated as 

 ܵ = )ቀඥݔܽܯ ௜ܺ−ܺ௢)ଶ + ( ௜ܻ− ௢ܻ)ଶ + (ܼ௜−ܼ௢)ଶ	ቁ				∀݅ = 1, ܰܰ  (15) 

where ܺ, ܻ, ܼ are the Cartesian coordinates with subscripts i and o representing the end of 

springback and deep-drawing stages, respectively with NN as the total number of nodes in 

the mesh. 

An in-house FORTRAN code is used to automate the procedure to extract the rupture and 

thinning results from the Abaqus binary file, calculate the principal strains, and incorporate 

the equations mentioned above (without using Abaqus CAE) in the deep-drawing and 

springback simulations.  

3.3. Joining and trimming 

The two hat sections are joined longitudinally using tie contact formulation and trimmed by 

removing the outer flange elements as shown in Fig. 4. The tie contact constrains the master 

and slave surfaces similar to the multiple constraint points when the clearance between two 

surfaces is below the tolerance specified as input. If the surfaces are out of the prescribed 

tolerance, the interaction becomes a contact formulation. A preliminary study showed that 

switching the master and slave surfaces would not affect the crushing behavior of the tube. 

Once the distance between the two surfaces becomes more than the clearance tolerance, 

constraints are removed and contact formulation is activated similar to the conventional 

contact definition. It is worth noting that this kind of joining represents a fictitious weld 

seam along each joint line since the thermo-mechanical process involved in an actual 

welding process is not modeled here.  
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Figure 4. Joining and trimming of the two formed sections to generate the final double-hat tube geometry 

3.4. Crush simulation 

The explicit FEA for crush simulation is performed by holding one end of the tube fixed 

while applying an axial load through a moving rigid wall at the other end. The rigid wall 

moves with a constant speed to simulate constant loading rate defined with a prescribed 

displacement as shown in Fig. 5. The component geometry, residual stresses, and state 

variables at the start of crush stage are those accumulated through all the manufacturing 

stages discussed previously.  

 

 

Figure 5. General setup for crush simulation 

Six contact interaction sets among the elements are defined in the crush simulation, 

including interactions between the lower hat section and the rigid wall, the upper hat 

section and the rigid wall, interaction between the upper and lower hat sections, tie contact 

between the assembly edge of the upper and lower surfaces, and separate self contact 

interaction for the upper and lower hat sections. For all of the aforementioned contact 

interaction sets, penalty function formulation in both normal and tangential directions is 

used. Despite the computational cost, penalty function provides a proper flexibility for the 

explicit FEA to find a stable time step that is affected by severity of the contacts. Moreover, 

the maximum ratio of thickness-to-element length is used to overcome the difficulty of the 

fine mesh density that results in relatively thick shell elements.  

The contact force history of the rigid wall during the crush simulation is used to calculate 

the maximum crush force, Pmax while the mean crush force, Pm is found by dividing the area 

Applied Displacement 

Tube 
Rigid Wall

δeff
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under the crush force-displacement curve by the effective crush distance. The mathematical 

equation for finding the mean crush force is expressed as 

௠ܲ = ௘௙௙නߜ1 ௧ݐ݀(ݐ)ܦ(ݐ)ܨ
଴  (16)

where (ݐ)ܨ is the instantaneous contact force normal to the rigid wall surface and (ݐ)ܦ is the 

instantaneous cross-head axial displacement of the rigid wall. The final cross-head 

displacement of the rigid wall represents ߜ௘௙௙ and it is assumed to be 125 mm, or 50% of the 

tube length. The maximum crush force is the largest value of (ݐ)ܨ found after applying the 

SAE filtering of 60 Hz to filter the noise in the force data. These results are extracted and 

filtered using a Python scripting application available in Abaqus and used as input to an in-

house FORTRAN code to calculate the mean crush force values.  

 

Figure 6. Sequence of coupled nonlinear FE simulations 

Figure 6 shows the general four-step sequence of coupled simulations from the initial sheet 

forming to crush. The rupture and thinning responses are the outputs of step 1, springback 

is the result of step 2 while the mean and max crush force values are the outputs of step 4.  

Other than the joining of the two hat sections and removal of the excess tabs, no changes are 

induced in the tube model in step 3.  

3.5. Material model 

The material model uses piecewise linear isotropic hardening. The constant for the linear 

kinematic hardening is calculated based on the slope of a line connecting two adjacent 

points on the stress-strain curve. The material model uses von Misses yield surface and a 

1. Deep-Drawing Simulation 
(Abaqus/Explicit) 2. Springback Simulation 

(Abaqus/Standard) 

3. Joining &  

Trimming 4. Crush Simulation 

(Abaqus/Explicit) 
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one-dimensional stress-strain input is considered as equivalent von Misses stress versus 

effective plastic strain. Coupling scheme is utilized by transferring residual stresses and the 

equivalent plastic strains as the material state variables. The yield surface expands due to 

the isotropic hardening assumption in the model; therefore, the instantaneous yield point 

varies during the loading process. The yield point at the end of the forming simulation is 

captured by finding the plastic strain.  

The AZ31 magnesium alloy sheet data is used for all the simulations. For modeling the 

stress-strain response at various strain rates, the stress-strain curves for two extreme rates 

(i.e., 1 s-1 and 4300 s-1) are considered with those for the other rates found through 

interpolation. The elastic modulus, Poisson’s ratio, and density are 45 GPa, 0.33, and 1.738 

kg/m3, respectively. The true stress-true strain curves for the two extreme strain rates are 

shown in Fig. 7. Adiabatic heating is not considered in any of the simulations. 

 

Figure 7. AZ31 magnesium alloy sheet stress-strain curves for two different strain rates 

3.6. Effect of manufacturing process on product performance 

To examine the role of the history effects on the axial crush response, two simulation cases 

are compared. In the first case, separate stand-alone performance simulation that does not 

include any history effects is performed, whereas in the second case, a sequential coupled 

process-performance simulation is performed that includes residual stresses, plastic strains, 

thinning, and springback information from process simulation (as manufacturing effects) 

together with a piecewise linear isotropic hardening material model in performance 

simulation. The 250-mm long tubes are modeled using the plane-stress shell element 

formulation. They are held fixed at one end and axially loaded with a flat rigid wall at the 

other end that is moving with a constant speed of 5 m/s. Both self-contact and surface-to-

surface contact between rigid wall and tube are specified. A classical multi-linear kinematic 

hardening material model is used for this comparison.  

ሶߝ = 4300 sିଵ ߝሶ = 1 sିଵ 
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Figure 8. Crush behavior with and without consideration of manufacturing process effects 

Figure 8 shows the two crush force-distance curves as well as the corresponding crush 

modes. The results clearly show that both the crush response and the collapse mode change 

due to the inclusion of the history effects. The maximum crush force increases by 

approximately 10% from 77 kN to 85 kN, whereas the mean crush force decreases from 20 

kN to 18 kN when the history effects are considered.  

4. Sensitivity analysis  

A design sensitivity analysis is helpful in capturing the main effects of the individual 

process and product design variables on both the manufacturing and performance attributes 

(Najafi 2011). The product design variables are the tube cross-sectional dimensions (i.e., 

width, height of a single hat section, corner radius, and initial blank thickness) shown in Fig. 

9, whereas the process design variables are the holding force, punch velocity and workpiece 

/ die set friction coefficients.  

 

Figure 9. Description of geometric design variables for a 250-mm long tube 

The friction coefficients for the holders, dies, and punch are assumed to be equal but can be 

treated as different design variables. The width design variable defines the punch width, the 

corner radius defines the die and holder corner radii, the thickness design variable is 

Width 

Height 

Thickness 

Corner 

Radius 
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assigned directly to the shell elements that define the blank and the height design variable is 

controlled by the punch travel distance in the direction normal to the blank surface (this 

parameter also determines the simulation termination time as well as the prescribed punch 

velocity). Holding force defined as a manufacturing process parameter is the amount of 

maximum incremental force in the first step of deep drawing. The rate of holding force 

application is kept constant in all the simulations. Punch velocity is assumed to be constant 

in the direction perpendicular to the sheet metal; this parameter along with the height 

determines the deep-drawing simulation termination time. Friction coefficients are assigned 

to the contact tangential definition. Both kinematic and penalty tangential contact 

formulations produced the same response in the deep drawing simulation.   

 

Design 

Variable 

Width 

(mm) 

Height 

(mm) 

Corner 

Radius 

(mm) 

Thicknes

s (mm) 

Holding 

Force (kN)

Punch 

Velocity 

(m/s) 

Friction 

Coefficien

t 

Width 41.25 27.5 5.0 1.75 30 6.0 0.225 

±15% 63.25 27.5 5.0 1.75 30 6.0 0.225 

Height 55 20.625 5.0 1.75 30 6.0 0.225 

±15% 55 31.625 5.0 1.75 30 6.0 0.225 

Corner 55 27.5 3.75 1.75 30 6.0 0.225 

Radius ±15% 55 27.5 5.75 1.75 30 6.0 0.225 

Thickness 55 27.5 5.0 1.3125 30 6.0 0.225 

±15% 55 27.5 5.0 2.0125 30 6.0 0.225 

Holding 55 27.5 5.0 1.75 22.5 6.0 0.225 

Force ±15% 55 27.5 5.0 1.75 34.5 6.0 0.225 

Punch 55 27.5 5.0 1.75 30 4.5 0.225 

Velocity ±15% 55 27.5 5.0 1.75 30 6.9 0.225 

Friction 55 27.5 5.0 1.75 30 6.0 0.16875 

Coefficient ±15% 55 27.5 5.0 1.75 30 6.0 0.25875 

Upper Bound 70 35 7.5 2.5 50 10.0 0.35 

Mean 55 27.5 5.0 1.75 30 6.0 0.225 

Lower Bound 40 20 2.5 1.0 100 2.0 0.1 

Table 1. The values assigned to design variables for sensitivity analysis 

The sensitivity results are shown in Fig. 10. In each case, the sensitivity values are found by 

perturbing one design variable by +/-15% from its corresponding average value while 

holding the remaining design variables fixed at their respective average values shown in bold 

numbers in Table 1. Rupture is found to be most sensitive to the sheet thickness followed by 

the corner radius. In contrast, the friction coefficient, punch velocity, and holding force 

appear to have minimal effect. The rupture response was found to have a direct relationship 

with some parameters such as thickness and punch velocity and inverse relationship with 

others, corner radius being the most notable. The global measure of thinning is affected the 

most by changes in the corner radius, followed by blank thickness and height. In comparison, 
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the manufacturing process parameters appeared to be less influential. Springback response is 

most sensitive to changes in blank thickness followed by the corner radius and friction 

coefficient. Both the maximum and mean values of the crush force increase as a result of 

increasing the blank or tube thickness. Generally, sensitivities to the geometric parameters 

seem to be greater than those of the manufacturing process parameters. 
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Figure 10. General sensitivity of rupture (a), thinning (b), springback (c), maximum crush force (d), and 

mean crush force (e) to the process and product design variables 

5. Multi-objective design optimization 

In a traditional process optimization problem, the manufacturing process objectives are 

optimized by varying the process control parameters (Sun et al., 2010; Wei and Yuying, 2008; 

Hu et al., 2008; Konak et al., 2006) whereas in product optimization, the geometry (e.g., shape, 

size) is altered to enhance the product performance. However, in a coupled process-

performance optimization problem as considered here, both manufacturing- and performance-

level attributes are optimized. When faced with competing objectives, the resulting multi-

objective optimization problem becomes one of finding not just one but a collection of non-

dominated design points that form the Pareto frontier. By specifying a particular target value 

for each objective, the multi-objective optimization problem is expressed as min								࢞ = ,ଵݔ … , ଻ݔ ൜ (࢞)ܴ) − ܴܶ)ଶ, (࢞)ܶ	) − ܶܶ)ଶ, (࢞)ܵ) − ܶܵ)ଶ,	( ௠ܲ(࢞) − ,ଶ(ܯܲܶ ( ௠ܲ௔௫(࢞) − ܶܲܺ)ଶ, ,ଵݔ)ܯ) … , (ସݔ −  ଶൠ(ܯܶ
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where design variables x1 to x7 represent width, height, corner radius, thickness, holding 

force, punch velocity, and friction coefficient, respectively with each having both lower- 

and upper-bound side constraints. Also, R(x) is rupture, T(x) is thinning, S(x) is springback, 

Pm(x) is the mean crush force, Pmax(x) is the maximum crush force, and M(x) is mass with 

TR, TT, TS, TPM, TPX, and TM as the corresponding target values, defined later in this 

section. The blank length is always equal to the tube length of 250 mm, whereas the blank 

width is selected to be twice as long as a single hat section’s perimeter (developed width). 
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Considering the computational complexity and cost of coupled nonlinear FE simulations, 

reduced-order or surrogate models are used to approximate the responses defined in Eq. (17). 

Different metamodeling techniques have been developed and reported in the literature. 

Although they vary in terms of complexity and accuracy, they all rely on measured responses 

at the selected training points in the design space to find the unknown coefficients of a 

specific metamodel such that the approximation error is less than an acceptable threshold.  

Radial basis functions (RBF) have been shown (Fang et al., 2005; Wang and Shan, 2007; Acar 

and Rais-Rohani, 2008; Parrish et al., 2012) to be suitable for approximating highly nonlinear 

responses using relatively small number of training points. In RBF formulation (Fang and 

Horstemeyer, 2006), the approximate response መ݂(࢟) at a design point defined by the 

normalized design variable vector y is found as 

መ݂(࢟) =෍ߣ௜߶(‖࢟ − ௜‖ெ࢟
௜ୀଵ ) (18)

where yi is the vector of normalized design variables at the ith training point, ||࢟	– ||݅࢟	 	= 	  ௜ݎ
is the Euclidian norm or distance from design point ࢟ to the ith training point, and M is the 

total number of functions included in the summation. The λi parameters are the unknown 

interpolation coefficients with φ representing the radially symmetric basis function that can 

take different forms. We considered both the multiquadric ߶(ݎ) = ଶݎ√ + ܿଶ and Gaussian ߶(ݎ) = exp(−ܿݎଶ) basis functions, where c is a tuning parameter that can vary in the range 

of 0 < c ≤ 1 depending on the selected response.  

In the coupled process-performance FE simulations, it is necessary to perform the deep-

drawing, springback, and crush simulations in sequence. However, once a stand-alone 

surrogate model for each response is built, all the responses can be evaluated 

simultaneously, which provides considerable computational cost savings in the design 

optimization analysis. Using the Latin hypercube sampling (LHS) to produce a uniform 

distribution of design points, fifty training points were generated in the seven design-

variable (7-dimensional) design space. Table 2 lists the training points and the 

corresponding values of the selected design variables. The maximum and minimum values 

for each design variable are shown in bold. Ten additional random design points are also 

generated as test points to measure the accuracy of the surrogate models.  

Six responses are extracted for each set of simulations at each training point with the 

calculated response values listed in Table 3, where the value selected as the target for each 

response is shown in bold.   

Two error metrics are considered. For the cross-validation normalized root-mean-square 

error (NRMSE) estimation (Lin et al., 1999), a metamodel is created using all except one 

training point and then the predicted response at the omitted point is compared to the 

corresponding true response value to measure the approximation error. This process is 

repeated for all the training points and the average is used as the overall error of the 

metamodel. NRMSE is calculated using 
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Point 
x1 

(mm) 

x2 

(mm)

x3 

(mm)

x4 

(mm)

x5 

(kN)

x6 

(m/s)
x7 Point

x1 

(mm)

x2 

(mm)

x3 

(mm)

x4 

(mm)

x5 

(kN) 

x6 

(m/s) 
x7 

1 60.44 27.19 4.91 1.26 31.93 5.86 0.18 26 52.98 31.62 4.94 1.34 21.35 4.90 0.29 

2 40.00 35.14 4.58 1.60 36.68 7.76 0.23 27 70.88 21.22 5.42 2.19 23.66 6.47 0.27 

3 53.14 25.15 5.72 2.27 31.18 6.26 0.22 28 64.74 25.38 5.59 1.63 31.58 4.29 0.26 

4 56.48 27.61 4.86 1.58 29.09 7.02 0.25 29 61.85 34.06 5.98 1.29 22.27 6.81 0.16 

5 62.84 34.42 3.74 1.42 30.85 6.70 0.18 30 47.60 21.91 6.12 2.24 32.31 6.32 0.24 

6 44.85 24.15 6.41 1.84 38.00 4.69 0.25 31 39.66 32.03 3.91 1.93 30.46 7.09 0.21 

7 56.30 32.39 5.13 1.91 29.42 6.60 0.19 32 46.59 21.26 3.73 1.74 23.37 4.71 0.26 

8 42.46 23.00 5.10 2.14 26.58 5.77 0.17 33 57.54 30.83 4.58 1.82 25.82 6.76 0.24 

9 63.58 26.23 4.68 2.19 38.47 4.62 0.22 34 43.90 29.55 5.52 1.62 26.97 6.92 0.20 

10 54.23 33.49 3.99 1.28 38.96 6.56 0.20 35 65.50 31.16 4.81 1.55 24.56 7.45 0.24 

11 48.30 29.98 6.03 2.00 36.15 6.05 0.29 36 66.23 35.09 6.16 1.23 34.19 5.82 0.28 

12 43.44 26.91 4.38 2.11 34.52 4.42 0.24 37 50.61 23.55 3.68 1.51 28.36 4.79 0.16 

13 42.84 29.06 5.19 1.78 32.73 6.13 0.22 38 54.81 19.89 6.50 1.66 21.68 5.26 0.18 

14 67.81 20.25 5.27 1.33 33.95 5.38 0.21 39 38.59 32.69 5.76 2.15 33.21 5.56 0.27 

15 46.24 24.20 6.35 1.37 28.02 7.30 0.23 40 50.36 26.68 5.65 1.76 35.66 5.99 0.17 

16 69.79 20.21 4.43 1.53 27.13 4.25 0.27 41 55.16 21.57 3.82 1.88 24.72 5.67 0.19 

17 51.31 33.00 4.31 2.03 25.58 4.95 0.19 42 48.47 20.71 3.52 1.70 35.24 6.40 0.21 

18 70.76 19.49 4.48 1.71 35.85 7.37 0.17 43 61.19 22.46 5.43 2.08 26.22 7.70 0.28 

19 52.31 28.09 5.35 2.05 37.52 5.03 0.27 44 67.06 23.50 3.59 2.02 22.06 5.15 0.26 

20 41.12 22.63 4.72 1.46 37.64 5.47 0.25 45 58.65 35.70 5.87 1.44 30.33 5.10 0.16 

21 59.51 28.37 4.15 1.98 23.96 5.60 0.21 46 49.22 25.76 4.07 1.39 37.08 7.53 0.21 

22 57.95 29.43 5.81 1.49 22.61 7.18 0.28 47 68.86 28.68 4.17 1.95 34.92 7.59 0.19 

23 65.67 30.75 4.26 2.09 25.26 6.21 0.23 48 41.67 33.31 6.23 1.68 27.49 5.29 0.20 

24 45.56 25.88 6.28 1.80 29.67 7.26 0.28 49 60.22 24.72 3.96 1.41 33.33 4.49 0.17 

25 64.11 34.45 5.05 2.23 23.08 4.55 0.23 50 69.41 30.27 5.92 1.86 28.69 6.94 0.28 

Table 2. Selected training points and design variable values in the process-product design space 

ܧܵܯܴܰ = ඩ1ܭ෍൫ ௜݂ − ప݂෡൯ଶ௄
௜ୀଵ ( ௠݂௔௫ − ௠݂௜௡)൙  (19)

where K is the number of training points, ௜݂ is the actual response obtained from the coupled 

FE simulations (expect for mass), and ప݂෡ is the response predicted by the model that excludes 

the contribution of the ith point with ௠݂௔௫ and ௠݂௜௡ as the maximum and minimum values of 

the response, respectively.  

The second error metric is obtained by fitting a metamodel based on all the training points 

and taking the absolute value of the difference between the approximate and the true 

response values at each of the selected test points with the average error of all the test points 

as the final indicator of metamodel accuracy. 

The metamodels were tuned by selecting the parameter c and the RBF formulation that 

produced the least error for each response. Table 4 shows the RBF tuning parameter and 

formulation used for each response and the corresponding NRMSE and average error  
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Point R T S 
Pmax 

(kN) 

Pm 

(kN) 

M 

(kg) 
Point R T S 

Pmax 

(kN) 

Pm 

(kN) 

M 

(kg) 

1 538.3 36.6 0.21 95.5 30.8 0.13 26 1003.5 88.4 1.83 101.0 34.7 0.14 

2 1911.8 173.2 0.29 116.3 43.3 0.16 27 1672.9 109.0 0.31 160.9 62.1 0.22 

3 1938.2 119.0 0.68 160.2 67.4 0.21 28 881.1 62.5 1.72 123.9 41.6 0.17 

4 1370.0 116.8 0.79 116.8 43.1 0.16 29 455.3 32.0 2.56 109.6 33.8 0.15 

5 1477.6 141.8 3.60 123.2 35.7 0.16 30 1521.7 81.5 1.16 144.6 63.7 0.18 

6 870.2 45.3 2.10 114.8 54.0 0.15 31 3328.9 298.8 1.18 136.8 57.0 0.18 

7 1697.4 139.7 0.34 154.0 60.0 0.20 32 2123.5 165.4 0.40 102.7 36.2 0.14 

8 1774.8 107.1 0.92 132.0 54.3 0.17 33 2073.2 184.0 0.44 142.8 51.7 0.19 

9 2098.0 161.2 0.50 167.0 66.3 0.22 34 1112.4 85.7 1.78 112.4 54.9 0.15 

10 1253.6 117.3 3.54 100.6 30.1 0.14 35 1282.8 111.4 1.48 132.0 42.5 0.17 

11 1663.9 123.8 1.36 145.5 54.7 0.19 36 633.2 59.6 1.63 108.4 33.9 0.15 

12 2470.5 186.3 0.50 140.6 53.6 0.18 37 1427.3 112.1 1.03 96.6 28.8 0.13 

13 1651.3 124.6 1.62 121.3 50.0 0.16 38 476.2 15.9 1.48 103.1 42.2 0.14 

14 538.4 32.1 0.62 92.3 30.0 0.13 39 2113.2 154.7 0.85 153.6 64.9 0.20 

15 573.7 34.9 1.16 86.4 31.6 0.12 40 1003.8 66.3 1.81 122.2 46.3 0.16 

16 1115.1 78.7 0.59 108.5 37.0 0.15 41 2158.6 168.0 0.83 121.7 45.1 0.16 

17 2118.4 184.5 1.77 158.6 50.3 0.21 42 2313.8 180.7 0.50 100.3 34.9 0.13 

18 1288.4 92.9 0.32 120.6 39.6 0.17 43 1779.5 122.4 0.42 145.2 60.6 0.20 

19 1971.0 141.4 0.77 148.5 57.9 0.20 44 3037.0 251.1 0.70 149.3 49.0 0.20 

20 1148.4 81.1 1.34 84.0 29.9 0.11 45 528.6 36.1 1.04 123.7 45.6 0.17 

21 2188.3 184.8 0.94 151.8 51.8 0.20 46 1497.3 133.9 1.21 93.0 30.5 0.12 

22 938.5 76.0 1.68 115.4 43.1 0.15 47 2242.6 195.4 0.61 162.3 59.7 0.22 

23 2675.3 228.7 1.16 175.1 54.0 0.23 48 818.8 57.2 2.95 124.5 47.1 0.16 

24 1213.2 82.4 1.66 119.2 45.0 0.16 49 1017.6 78.1 0.66 100.6 30.9 0.14 

25 1940.7 171.3 1.422 195.1 68.1 0.26 50 1265.0 103.4 0.81 158.0 53.4 0.21 

Table 3. Results from sequential coupled process-performance simulations at the training points 

estimates. It is seen that the average errors for the test points also validate the surrogate  

models created for the optimization problem. In order to enhance the accuracy of the 

metamodels for thinning and spring back responses, the actual responses are transformed 

using a logarithmic function as presented in Table 4. 

 

Response 
RBF 

Typea 

Response 

Transformation 
c 

NRMSE 

(%) 

Average 

Error (%) 

Rupture, R G None 1.000 2.2 9.2 

Thinning, T G ln(T) 0.001 2.0 2.4 

Springback, S M ln(1x107 S) 0.500 1.8 3.5 

Max Crush Force, Pmax M None 0.500 4.5 2.0 

Mean Crush Force, Pm M None 0.100 3.7 5.6 

Mass, M G None 0.010 4.6 1.8 

aG = Gaussian, M = Multiquadric 

Table 4. Metamodel type, parameter, and approximation error for each response 
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6. Optimization results and discussion 

The surrogate-based design optimization problem in Eq. (17) is solved using the multi-

objective genetic algorithm (MOGA) toolbox in MATLAB (Fonseca and Fleming, 1993) with 

a randomly generated initial population size of 105 representing different combinations of 

design variable values within the specified bounds in Eq. (17). The subsequent generations 

are populated using the tournament selection algorithm with a crossover fraction of 80% 

using intermediate crossover function and the termination function tolerance of 1e-4. 

Stopping criterion is set at generation number 1400. The specific steps taken in the 

application of MOGA to this problem are as follows: 

1. Design variables expressed in real number are converted into bit strings. 

2. A random initial population is generated. 

3. Using a fitness function, members of the population are examined by  

 assigning a rank to each solution based on non-dominated front (Sun et al., 2010). 

 assigning a fitness value based on Pareto ranking. 

 calculating the niche count of each solution. 

 calculating the shared fitness value of each solution. 

 normalizing the fitness values by using share fitness values. 

4. Using a stochastic method to select parents for the next generation.  

5. Performing crossover and mutation operations. 

6. Establishing a new population. 

7. Evaluating the population attributes.  

8. Continuing steps 3 to 7 to evaluate all the objectives. 

9. Selecting half of the individuals that have a higher rank than the rest. 

10. Continuing the solution process until a stopping criterion is satisfied based on the 

average change in the spread of Pareto solution being less than the tolerance specified.  

The solution to the optimization problem in Eq. (17) for the Pareto optimum set 

converged after 139 GA generations and 14,701 function calls. The forty-five design points 

forming the Pareto frontier are listed in Table 5 in particular order. For ease of detection, 

the Pareto ID number and the corresponding best value for each objective are highlighted 

in the table. The results show that Pareto ID nos. 3, 4, 5, 6, 7, and 9 have the best values for 

rupture, springback, thinning, max crush force, mass, and mean crush force, respectively. 

A closer examination of the response values in Table 5 reveals that the response values at 

two or more design points may be very close to each other or nearly equal. This is because 

of the nonlinear distribution of the points on the Pareto frontier. For all the objectives, the 

preferred value is the smallest one except for the mean crush force. This is because the 

tube’s energy absorption capacity improves by increasing the mean crush force value. 

However, it is preferred to reduce the max crush force for such components. 

The range of variation over the Pareto frontier is different from one objective to another.  

Specifically, the relative variations from the best to the worst values are approximately 

757%, 20%, 1354%, 133%, -59%, and 145% for rupture, thinning, springback, max crush 

force, mean crush force, and mass, respectively. The most significant range of variation in  
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 Design Variables Responses

Pareto 

ID 

x1 

(mm) 

x2

(mm)

x3

(mm)

x4

(mm)

x5

(kN)

x6

(m/s)
x7  R T S 

Pmax

(kN)

Pm  

(kN) 

M  

(kg) 

1 43.35 27.93 4.86 1.28 25.06 6.95 0.20 848.0 17.28 2.25 86.0 36.2 0.11 

2 48.98 30.77 6.36 1.55 22.50 6.24 0.23 624.2 17.04 2.32 112.5 46.2 0.15 

3 40.44 31.85 5.55 1.31 26.93 5.12 0.18 455.4 16.65 3.16 95.9 38.8 0.12 

4 58.36 33.16 5.35 2.09 32.40 6.85 0.23 2217.0 18.38 0.24 171.7 64.0 0.23 

5 65.41 22.66 6.28 1.28 26.72 6.08 0.22 684.0 15.93 1.52 93.7 32.3 0.13 

6 51.72 24.55 6.09 1.30 27.16 5.76 0.21 474.8 16.26 1.63 84.0 30.3 0.12 

7 54.92 22.86 5.55 1.28 25.34 6.73 0.21 594.6 16.54 1.09 85.1 29.1 0.11 

8 65.80 35.05 6.32 2.26 32.40 6.68 0.20 1543.5 18.16 1.21 195.4 71.4 0.27 

9 63.30 35.61 6.44 2.26 32.41 6.68 0.20 1533.6 18.19 1.14 193.7 71.6 0.27 

10 58.99 34.75 6.13 2.24 31.87 6.57 0.23 1924.1 18.27 0.61 186.9 69.5 0.25 

11 40.05 31.91 6.33 1.65 28.18 5.00 0.18 569.7 16.78 3.39 119.3 47.8 0.15 

12 43.97 31.87 3.88 2.25 29.99 6.46 0.27 3902.1 18.99 1.21 162.3 62.0 0.21 

13 41.42 31.79 5.98 1.85 28.20 5.22 0.19 1143.4 17.41 2.98 133.9 53.4 0.17 

14 44.79 31.86 3.74 2.13 29.97 6.42 0.27 3751.6 19.06 1.23 153.8 57.7 0.20 

15 39.44 31.91 6.46 1.35 28.18 5.00 0.18 762.9 16.08 3.49 100.3 41.5 0.12 

16 44.16 31.91 3.75 1.88 28.41 6.52 0.23 3130.2 18.91 1.88 134.9 51.3 0.18 

17 40.52 31.89 4.45 1.99 28.33 5.08 0.28 2700.7 18.75 1.57 141.0 54.5 0.18 

18 42.16 32.76 4.24 2.25 30.28 6.22 0.22 3606.3 18.83 1.76 164.0 63.7 0.21 

19 55.93 33.29 5.12 2.25 31.21 6.57 0.24 2764.3 18.55 0.44 181.7 67.0 0.24 

20 57.84 30.86 5.35 2.08 28.88 6.61 0.22 2046.6 18.21 0.51 166.7 63.6 0.22 

21 40.67 31.85 5.88 1.63 27.44 5.15 0.19 811.9 17.13 3.09 117.3 46.9 0.15 

22 41.36 31.88 6.13 1.68 28.18 5.16 0.18 724.3 17.01 3.20 121.7 48.4 0.16 

23 48.48 31.92 3.91 2.16 30.45 6.46 0.27 3685.4 19.00 1.03 160.3 58.6 0.21 

24 63.50 34.16 5.71 2.26 32.02 6.65 0.20 1983.8 18.29 0.78 192.6 70.3 0.26 

25 40.06 31.96 6.34 1.51 29.18 5.57 0.22 503.7 16.94 2.88 108.1 44.2 0.14 

26 57.74 33.56 5.22 2.17 32.15 6.61 0.23 2484.5 18.48 0.34 178.5 65.7 0.24 

27 49.24 32.26 5.00 2.25 30.16 6.60 0.26 3062.1 18.60 0.80 170.3 64.7 0.23 

28 40.60 32.47 3.78 2.19 28.72 6.34 0.26 3871.6 19.04 1.52 156.8 61.3 0.20 

29 54.19 32.99 5.00 2.12 31.53 6.66 0.25 2706.8 18.57 0.42 168.1 62.1 0.22 

30 42.42 31.88 5.24 2.02 29.14 6.09 0.19 2195.0 18.19 2.24 146.3 59.3 0.19 

31 39.63 31.85 6.15 1.81 28.19 5.01 0.18 951.1 17.18 3.27 130.6 52.5 0.17 

32 42.26 33.15 4.45 2.24 31.63 6.62 0.19 3423.0 18.75 1.93 164.0 64.4 0.21 

33 41.73 27.49 3.92 1.81 28.97 5.97 0.28 2648.1 18.71 1.45 119.0 44.8 0.16 

34 44.99 31.29 3.75 2.17 30.27 6.12 0.26 3741.3 19.03 1.33 155.9 58.2 0.21 

35 43.41 32.29 5.04 1.74 29.59 5.88 0.21 1699.2 18.02 2.18 125.7 49.7 0.17 

36 40.14 31.90 3.97 1.91 29.01 6.02 0.21 2982.7 18.75 2.33 135.1 53.6 0.17 

37 41.30 31.81 5.54 1.93 28.85 5.41 0.19 1651.7 17.82 2.65 139.1 55.7 0.18 

38 43.90 32.73 4.56 2.08 31.34 6.27 0.23 3026.6 18.65 1.47 152.4 58.8 0.20 

39 60.43 34.90 6.28 2.26 32.08 6.59 0.19 1630.5 18.13 0.95 190.4 71.3 0.26 

40 40.71 32.24 4.97 1.43 29.79 4.99 0.23 1029.4 17.67 2.55 101.7 38.7 0.13 

41 42.69 34.76 5.63 2.10 29.45 5.17 0.21 2003.1 18.10 2.15 158.7 60.3 0.21 

42 61.52 32.37 5.47 2.22 30.16 6.52 0.23 2230.0 18.30 0.53 185.4 67.8 0.25 

43 56.76 32.84 5.36 2.25 32.40 6.61 0.21 2405.2 18.37 0.49 182.7 69.0 0.24 

44 57.81 33.58 5.24 2.25 32.20 6.58 0.23 2609.8 18.50 0.41 184.9 68.0 0.25 

45 52.62 34.49 4.55 2.26 31.66 6.56 0.27 3337.9 18.85 0.69 177.9 64.2 0.24 

Table 5. Design points on the Pareto optimum frontier 
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the springback reveals the high sensitivity of this response, relative to the rest, to changes in 

the design variable values. In comparison, thinning seems to be affected the least by the 

changes in design. Such information helps in identifying the critical responses for both 

process and product design considerations.  

Given the six-dimensional space of the process-product criteria space, the process and 

performance objectives are plotted separately and shown in Fig. 11. In addition, a sample 

subset of the Pareto set is selected with the individual tube geometries and crush 

deformation modes shown in Fig. 12. Among the six points shown, design points 6, 11, and 

33 are shown among the best choices to minimize the mass and maximum crush force.  

The results indicate that the Pareto set consists mostly of a tube design that is larger in total 

height than width with approximately 72% and 67% having larger thickness and longer 

corner radius than the respective average values, respectively. The general trend appears to 

be toward a tube design model with dissimilar width and height dimensions, which can be 

traced to two contributing factors: (1) while only a portion of width is work hardened, the 

entire height section undergoes plastic deformation during the forming process; and (2) the 

flanges (short tabs) in the double-hat geometry (see Fig. 9) influence how the different sides 

of the tube deform and contribute to the crush energy absorption. In most cases, it appears 

to be preferable for the holding force to be less than its average value in approximately 60% 

of the Pareto set. A nearly equal percentage prefers a lower friction coefficient while a 

slightly higher portion (roughly 67%) prefers a higher punch velocity than the respective 

average values. 

 

Figure 11. Distribution of Pareto optimal set in performance (a) and process (b) criteria subspaces 

To measure the approximation error in the optimum process and performance objective 

values, a complete verification simulation was performed on seven samples with the relative 

errors shown in Table 6. Most error values are fairly low, less than 5%, with the highest 

reaching 14.7%, which is reasonable for the types of simulation involved and the 

approximation techniques used in solving the design optimization problem.  

(a) (b)
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Figure 12. Selected design points from the Pareto set 

 

Pareto 

ID 

R 

(%) 

T 

(%) 

S 

(%) 

Pmax 

(%) 

Pm 

(%) 

M 

(%) 

4 7.8 1.6 4.7 1.1 0.4 0.4 

6 5.7 3.8 4.3 3.1 12.2 0.3 

11 12.2 1.0 6.1 2.5 14.7 0.7 

18 5.6 0.8 1.0 1.9 5.3 0.1 

23 9.1 0.7 4.3 1.1 1.0 0.1 

33 0.9 2.9 1.9 1.3 2.9 0.9 

Table 6. Relative Error in Responses at Selected Pareto Points 

7. Conclusion 

A methodology for concurrent process-product design optimization using coupled nonlinear 

finite-element (FE) simulations was presented and applied to a sheet formed component made 

of AZ31 magnesium alloy. All FE simulations were performed using the Abaqus Explicit and 

Standard solvers. Surrogate models based on radial basis functions were developed for 

process and performance response approximations to facilitate the numerical multi-objective 

design optimization process.  

The results of this investigation lead to the following conclusions: 

  Material and component geometry variations can be modeled using a sequence of 

coupled nonlinear FE simulations with careful transfer of state variables and other 

information from one simulation stage to the next. 
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 Both the manufacturing and geometric design variables can have significant influence 

on the energy absorption behavior of the formed tube considered. 

 All process responses (i.e., rupture, thinning, and springback) were greatly influenced 

by the initial blank thickness value and corner radius.  

 The results of the multi-objective optimization problem highlighted different levels of 

conflict among the process and performance objectives considered. Moreover, the 

variation of objectives over the Pareto frontier indicated differing levels of sensitivity to 

changes in the design properties with springback being the most noteworthy.  
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