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1. Introduction 

In the composite industry, the shearing behaviour of dry woven plays a crucial role in fabric 

formability when doubly curved surfaces must be covered [1-9]. The ability of fabric to 

shear within a plain enables it to fit three-dimensional surfaces without folds [10-12].  

It has been proved that shear rigidity can be calculated from the tensile properties along a 

45° bias direction. Bias Extension tests are simple to perform and provide reasonably 

repeatable results [13-14]. Extensive investigations have been carried out on the textile fabric 

in Bias Extension test [15] 

The tests were conducted simply using two pairs of plates, clamping a rectangular piece of 

woven material such that the two groups of yarns are orientated ±45° to the direction of 

external tensile force. The ratio between the initial length and width of the specimen is 

defined as aspect ratio:  

λ = l0/w0 (see Figure 1a). 

In the case of λ =2, the deformed configuration of the material can be represented by 

Figure1b, which includes seven regions. Triangular regions C adjacent to the fixture remain 

undeformed, while the central square region A and other four triangular regions B undergo 

shear deformation [16-17]. 

The present chapter focuses on numerical analysis of Bias Extension test using an 

orthotropic hyperelastic continuum model of woven fabric. 

In the first, analytical responses of the Bias Extension test and the traction test on 45° are 

developed using the proposed model. Strain and stress states in specimen during these tests 

are detailed. 



 
Finite Element Analysis – Applications in Mechanical Engineering 156 

 
 

Figure 1. Kinematic of Bias Extension test, a: Initial state, b: Deformed state  

In the second, the proposed model is implanted into Abaqus/Explicit to simulate the Bias 

Extension test of three aspect ratios.  

Exploiting numerical results, we studied the effect of the ratio between shearing and traction 

rigidities on homogeneities of stress and strain in the central zone of three Finite Element 

Models (FEM). 

2. The proposed hyperelastic model  

One of significant characteristics of the woven structure is the existence of two privileged 

material directions: warp and weft. We considered that the fabric is a continuous structure 

having two privileged material directions defined by the two unit tensors M1 and M2 as 

follows: 

 1 1M M 
 

1M ; 2 2M M 
 

2M   (1) 

Where 1M


and 2M


are two unit vectors carried by two yarns directions. The sign  indicate 

the tensor product. In the reference configuration, these privileged material directions are 

supposed to be orthogonal and they are defined by g1 and g2 presented by Equation 2.  

 1 1g g 
 

1g , 2 2g g 
 

2g   (2) 

In Lagrangian formulation, the hyperelastic behavior is defined by the strain energy 

function W(E) depending of Green-Lagrange tensor components [18-21]. 

The second Piola Kirchhoff stress tensor S derives is presented in Equation 3: 

 
W




S
E

  (3) 

The physical behaviour is completely defined by the choice of W(E). The woven structures is 

very thin, we are interested more particularly in plane solicitations (plane stress or strain) in 

the plan ( 1g


, 2g


). We supposed that W(E) is an isotropic function of variables (E, g1, g2). 

Using the representation theorems of isotropic functions, strain energy function W(E) 

depends of invariants: 

 ig :E , 2
ig :E , ( )tr 3E ( 1..2)i    (4) 

a 

A 
B

B

B

B

b

C C
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We choose following invariants to present the strain energy function: 

 1 2 12( ) ( , , )W W I I IE  (5) 

Where 

 iI  ig :E  1..2 ;i  1/2
12

1
( )

2
I  1 2g E:Eg   (6) 

Ii measured elongations along directions ig


. I12 measured the sliding in the plane ( 1g


, 2g


) 

witch is the angle variation between warp and weft direction. Components 
ijgE of E in the 

reference system ( 1g


, 2g


), are defined as follows: 

 2
1 12 12 1 2

1 1
( 1) 1..2, cos( )

2 2i gij gI E i I E          ,   (7) 

1 and 2  are yarns extensions (ratio between deformed and initial lengths) along directions 

of 1g


and 2g


.   is the angle between 1M


and 2M


. 

The second Piola Kirchhoff stress tensor S can be written as:  

 
2 12 12

1
( )

2

W W W

I I I I

  
  

  1 2 1 2 2 1
1

S= g g g Eg g Eg  (8) 

A simplified hyperplastic model is proposed. It is based on following assumptions: 

- The coupling between I12 and Ii is neglect, 

- The strain energy function W(E) is expressed by Equation 9: 

 2 2 2
1 1 2 2 12 1 2 3 12

1 1

2 2
W k I k I k I I k I      (9) 

This leads to the constitutive equation: 

 1 1 12 2 2 2 12 1 3( ) ( ) ( )k I k I k I k I k     1 2 1 2 2 1S g g g Eg g Eg  (10) 

So k1 and k2 presented tensile rigidities in yarns directions. k12 described the interaction 

between two groups of yarns. k3 presented the shearing rigidity of woven. 

The relation between components Sgij of second Piola Kirchhoff stress tensor S and Egij of 

Green Lagrange strain tensor E in the base ig


 can be presented by one of flowing 

expressions  

 

11 111 12

22 12 2 22

312 12

0

0

0 0

g g

g g

g g

S Ek k

S k k E

kS E

                        

 (11) 
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11 111 12

22 12 2 22

312 12

0

0

0 0

g g

g g

g g

E Sc c

E c c S

cE S

                        

 (12)  

Where: 

 2 1 12
1 2 3 122 2 2

31 2 12 1 2 12 1 2 12

1k k k
c c c c

kk k k k k k k k k


   

  
, , ,  (13) 

2.1. Out-axes tensile test: Tensile test on 45° 

In tis parts the proposed hyperelastic model is used to study the mechanical behaviour 

during the out-axes tensile test of the dry woven. 

Out-axes tensile test is a tensile test exerted on a fabric but according to a direction which is 

not necessarily warp or weft directions [22]. In the case of anisotropic behavior stress and 

strains tensors have not, in general, the same principal directions. During this test, the 

simple is subjected to a shearing. Particular precautions must be taken to ensure a relative 

homogeneity of the test [23]. 

We considered a tensile test along a direction 1E


 forming an angle ψ0 with orthotropic 

direction ig


 (Figure.2). 

 

 

Figure 2. Kinematics of Out-axes tensile test, a: Reference configuration, b: Deformed configuration. 

In the base ie


, components of the second Piola Kirchhoff tensor S and the Gradient of 

transformation tensor F are as follows [23] 

 

L0 

ψ0 

B0 

      

 

      

F 
B



F

(a) (b) 
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 1 1
/ /

2

0

00 0i ie e

f fS

f

  
    
   

 S  , F   (14) 

Where: 

 2
1 2

0 0 1

; ; ( )
fL B

f f tg
L B f

      (15) 

Let
0

F
P

S
  where F is the tensile force and So is the initial cross section of the specimen. P is 

related to S by: 

 
1

0

F
P f S

S
    (16) 

The components of the Green–Lagrange strain tensor E, in the base ie


, are as follows: 

 
11 12

/
12 22

ie

E E

E E

 
  
 

E   (17) 

Where  

 2 2 2 2 2
11 1 22 2 1 12 12 1; 2 1 ; 2E f E f f E f          (18) 

The response of the model presented by Equation 8 for this solicitation can be summarised 

as follows: 

 1 11
22 0 11 12 0 11

0

; ( ) ; ( )
( )

f E
P E E E g E

C
  


       (19) 

Where:  

 

4 4 2
0 1 0 2 0 3 12 0

2
3 12 1 2 0 12

0
0

2 2
0 1 0 2 0 3 12 0

0
0

1
( ) cos ( ) sin ( ) ( )sin (2 )

2

(2 2 )sin (2 )
(

4 ( )

sin(2 ) cos ( ) sin ( ) ( )cos(2 )
( )

2 ( )

C c c c c

c c c c c

C

c c c c
g

C

   


 



   




   

     

    

  (20) 

The tensile test on 45° is a particular case of out-axes tensile tests where ψ0=45). To replacing 

ψ0 by 45°, Equation 20 became like the following: 

 1 2 12
45 2

3 1 2 12

21

2 4( )

k k k
C

k k k k

 
 


, 3 12 1 2 12

45
45

(2 2 )

4

c c c c c

C


      , 2
45

452

c
g

C
    (21) 
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S1 and S2 are respectively the maximum and the minimum Eigen values of Piola Kirchhoff 

tensor S .In Tensile test on 45°, Equation 14 shows that: 

 2

1

0
S

S
   (22) 

The expression of the applied force F is deducted from Equation 16: 

 
2 2

3 0 1 1 1 2 12
0 2

1 2 12 3 1 2 12

2 ( 1)( )

2 2 ( 2 )

k S f f k k k
F PS

k k k k k k k

 
 

   
  (23) 

For a balanced woven (k1=k2=k) where the interaction between yarns is neglected (k12=0), the 

expression of F became: 

 
2

3 0 1 1

3

( 1)k kS f f
F

k k





  (24) 

The ratio between the minimum and the maximum Eigen values of Green Lagrange tensor 

E., in the tensile test with 45°, is given by Equation 25: 

 32

1 3

k kE

E k k


 


  (25) 

2.2. Bias extension test 

To explainer the pure shearing test of woven fabric, it has been noted that woven cloths in 

general deform as a pin-jointed-net (PJN) [24-28]. Yarns are considered to be inextensible 

and fixed at each cross-over point, rotating about these points like it is shown in Figure 3. 

 

Figure 3. Kinematics Pure shear a: Reference configuration, b: Deformed configuration 

F F

(a) (b) 

D

l 

D+d
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During the Bias Extension test, the pure shearing occurred in the central zone A and the 

shear angle  is defined by Equation 26: 

 2 cos( )
2 2 2

D d
a

D

   
      (26) 

The Gradient of Transformation tensor F is presented by Equation 27: 

 1
/ ,

2

cos( ) sin( ) 00 2 2
0

0 cos( ) sin( )
2 2

Ei ei

f

f

 

 

 
  

    
     

F  (27) 

Using the proposed model, components Sij ,Eij of the second Piola Kirchhoff stress and Green 

Lagrange strain tensors are given, in the base ie


, as follows: 

 /

1 0
( )

0 1ie S 
 

   
S where 3

1
( ) sin( )

2
S k    (28) 

 /

1 0
( )

0 1ie E 
 

   
E  where

1
( ) sin( )

2
E  =   (29) 

Thus 

 2

1

1
S

S
    (30) 

And 

 2

1

1
E

E
    (31) 

Where S1 and S2 are respectively the maximum and the minimum Eigen values of the 

second Piola Kirchhoff tensor S and E1 and E2 are respectively the maximum and the 

minimum Eigen values of Green Lagrange tensor E. 

The internal power per unit of volume in zone A is defined by Equation 32: 

 3

1
: 2 ( ) ( ) sin(2 )

4A Aa S E k        S E   (32) 

To calculate to internal power per unit of volume in zone B we replace   by 
2


 in Equation 32: 

 3

1
: 2 ( ) ( ) sin( )

2 2 8
b S E k

       
B BS E   (33) 
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Figure 4. Kinematic of Bias Extension Test, a: initial configuration, b: deformed configuration 

The total internal power in the specimen is given by Equation 34: 

 int . .P Va a Vb b     (34) 

Where Va and Vb are respectively the initial volume in zones A and B defined as follows  

 

2
0 0

2
0

0 0 0 0

1
( )

2 2

Vb e w

w
Va e Dw e Dw Vb



   
  (35)  

The External power is defined as: 

 2

1
.

2
Pext F d FDf          (36) 

The equality between internal and external powers allows to determinate the expression of 

applied force F given by Equation 37: 

 0 0 1 3

1
sin( )[1 (1 2cos( ))]

4( 1)cos( )
F e w f k  

 
 


=   (37) 

Where 0

0

L

w
   is the aspect ratio. 

3. Numerical simulation of Bias Extension test 

In this section, we simulated the Bias Extension test (BE) using the hyperelastic proposed 

model implanted into Abaqus/Explicit thought user material subroutine (VUMAT). Out put 

of the VUMAT are stress components of Cauchy tensor projected in the Green-Nagdi basis, 

 

B 

B

CA 
 

(D+d)/2 

A
B 

B 

C w0 

D/2

   L0/2

(a) (b) 
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component of the second Piola Kirchhoff tensor S, and the Green Lagrange tensor E 

projected in 1 2( , )g g
 

. We can also drew curves of Fore versus displacement. 

The fabric is modelling by rectangular part meshed by continuum element (M3D4R).The 

boundary condition of model is presented in Figure 5a.  

[29-30] compared the numerical results for the biased mesh and the aligned mesh and they 

proved that by using the biased mesh (Figure 5b), where the fibres are run diagonally across 

the rectangular element, neither the deformation profile nor the reaction forces are predicted 

correctly, for this we used the aligned mesh (Figure 5c). 

 

 

 
 

Figure 5. FEM mesh for the Bias Extension simulation, a: boundary condition of FEM, b: biased mesh, c: 

aligned mesh. 

In order to simplify the problem, we used a balanced woven (k1=k2=k=700 N/mm2) and we 

ignored the interaction between extension in yarns direction (k12=0). The analysis is done for 

three different FEM with the same thickness of 0.2mm. Dimensions of FEM are presented in 

table 1. 

 

MEF  Length(mm) Width(mm) Aspect ratio: λ 

1 100 50 2 

2 150 50 3 

3 200 50 4 

Table 1. Dimensions of samples 

(c) (b)

U1≠0 

U2=0 

U3=0 

 

 

 

(a) 

U1=0 

U2=0 

U3=0 

 



 
Finite Element Analysis – Applications in Mechanical Engineering 164 

This analysis is realised on four values of the ratio between shearing and tensile rigidities 

3( 0.007,0.02,0.1,0.3,1)
k

k
  along three paths in FEM (see Figure 6). 

The first path is longitudinal line in the middle of FEM. It joined zones A and C, the second 

path is along the yarn direction and the third path is transversal middle line Flowing results 

are illustrated for a displacement of 10% of initial length. 

 

 

 

 

 
 

 
 

 

 

 

 

Figure 6. Different paths used in analysis 

The deformed mesh with the contour of the Green Lagrange shear strain is shown in 

Figure7. We noticed that appearance of three discernible deformation zones of the Bias 

Extension test in three FEM. No significant deformation occurred in zone C. The main 

mode of deformation in zone A is the shearing. The most deformation of the fabric occurs 

in this zone. 

In to order to study homogeneities of stress and strain states, we compared the analytical 

and the numerical results of strain and stress along three paths of Figure (6). 

Path 1 

 

 

 

Path 2

Path3 
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Figure 7. Deformed mesh with contour of Green Lagrange shear strain E12 for 3k

k
=0.007 and U1=40mm. 

3.1. Strain state 

Figure 8 shows the variation of the maximum principal E1 of Green Lagrange along the first 

path. We noticed that E1 is symmetric with regard to the centre of the FEM. For the higher 

value of ratio of rigidities ( 3k

k
=1), E1 is homogenous and it conformed to the predicted value 

in the case of isotropic elastic material. To decreasing the ratio of rigidities ( 3k

k
), the central 

B

C

AFEM1

FEM2

FEM3
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zone characterised by the higher value of E1. En addition, we observed the appearance of 

two zones where the strain is not more important. In the first hand, to comparing with the 

analytical value of E1 in the central zone, the numerical values of E1 is closely to that 

predicted in the Bias Extension test for the few shearing rigidity. Zones C coincided with ends 

of the path where the deformation was not more significant. In another hand, we remarked 

that in the central zone of the path, the deformation is not homogenous especially in FEM1and 

FEM2. For more analyse the strains state in FEM, Figure 9 presented the evolution of 2

1

E

E
, 

along the first path. It is clear that to decreasing 3k

k
, the value of 2

1

E

E
tends to (-1) in three FEM. 

This proved that, in spite of the low displacement, the deformation in Bias Extension test is 

influenced by the ratio between shearing and tensile rigidities of the woven.  

3.2. Stress state 

Comparing the numerical and the analytical values of 2

1

S

S
 , we determinate the stress state 

in different FEM for an displacement of 10% along the first path . 

Figure10 show that to decreasing 3k

k
, the value of 2

1

S

S
decrease but never achieved (-1). 

Indeed, if this simulation is interpreted like a Bias Extension test, 2

1

S

S
should be verifying 

Equation 30 in the central zone. However the ratio of principal strain is approximately equal 

to 0. So it is conforming to Equation 22, and the stress state is the traction state.  

In addition to varying the value of 3k

k
, we evaluated the ratio of strain versus the ratio of 

stress in the central element of FEM. In Figure12, it can be noticed that in FEM1, to reducing 

the value of 3k

k
, 2

1

E

E
tend to (-1) and it conformed to the predicted value by Equation 31 for a 

few values of 3k

k
. But 2

1

S

S
 have a negative value and it remain different to (-1). In FEM2, it 

was visibly that 2

1

S

S
stayed proximity null for different value of 3k

k
 thus it verified Equation 

22 but 2

1

E

E
tend to (-1) for few values of 3k

k
. In FEM3, it was clear that for few value of 3k

k
,

2

1

E

E
tend to (-1), but the 2

1

S

S
had positive values. Consequently, the shearing deformation in 

Bias Extension test depends of the ratio of rigidities between shearing and tensile, but the 

stress state is always the tensile stress. 
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Figure 8. Variation of Maximum principal of Green Lagrange strain E1 along the path1  
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Figure 9. Variation of 2

1

E

E
along the path 1 
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Figure 10. Variation of 2

1

S

S
along path 1. 
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Figure 11. Variation of 2

1

S

S
versus 2

1

E

E
 along path 1. 
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3.3. Angle between yarns  

In this section, we compared between the numerical and the predicted values of the angle 

between yarns, along the first path. 

Using the proposed model, the numerical angle between yarns is given by the following 

expression: 

 

2
12

22 11

(2 )
arcos( )

(2 1)(2 1)

g

N
g g

E

E E
 

 
  (38) 

In the case of the Bias Extension test, the predict angle between yarns in the central zone A is 

given by Equation 39: 

 2arcos( )
2

B

D d

D
 

   (39) 

The predict angle between yarns in the Tensile test in 45° is given by Equation 41: 

 11 45

2
11 22

(1 )
arcos( )

( 1)
T

E

E E







 
  (40) 

 

 

Figure 12. Comparison between Numerical and Predicted angles between yarns along the path 1 in 

FEM1. 
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Figure 12 demonstrated that the value of the angle between yarns was not uniform in the 

central zone of the FEM and it was not null in ends of the path1. For three FEM, the 

numerical angle between yarns tend to verify the predict angle (solid line) in the Bias 

Extension test for the lower value of 3k

k
This is another reason to justify the influence of the 

ration of rigidities on the shearing deformation of woven. 

3.4. Elongation of yarns 

Under the pin-joint assumption for trellising deformation mode, the edge length of the 

membrane element should remain unchanged during the deformation; thus the Green 

Lagrange stretch Eg11 and Eg22 should be null in Bias Extension test: 

 11 22 0g gE E    (41) 

In Tensile test on 45°, warp and weft yarns are submitted respectively to Green Lagrange 

deformations 
11gE and 

22gE as follows: 

 
11 1

2
1 12 11

2
451 2 12

1
( . 1)

2 2( )
g

k k E
E g

Ck k k


  




F   (42) 

 
22 2

2
2 12 11

2
451 2 12

1
( . 1)

2 2( )
g

k k E
E g

Ck k k


  




F   (43) 

In the case of balanced fabric without coupling between elongations in yarns directions, the 

warp and weft yarns are submitted to the same elongation: 

So 

 11 22g gE E E    (44) 

Where 

 3
11

3

k
E E

k k



  (45) 

In Figure 13, we compared numerical stretch deformation along the second path and the 

predicted elongation in yarn direction.  

In the first hand, we noticed that the numerical elongation was not null. It became more 

important by increasing the value of 3k

k
 in all FEM. In another hand, numerical value of 

elongation is closely conforming to the expected value in the tensile test in 45° for different 

values of 3k

k
 in all FEM. This analysis provided that during Bias Extension test, yarns are 
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subjected a few elongation. These stretches depend of the value of the ratio between 

shearing and tensile rigidities of woven. Same previous analyses are taken also along the 

third vertical path (Path3) and same results are verified. 

Figure13 represented the evolution of 2

1

S

S
versus 2

1

E

E
 along the third path. Like the first path, 

for few values of 3k

k
, the shearing is the utmost deformation. But in all cases, the Bias 

Extension test is characterized by the tensile state. 

 

Figure 13. Variation of Eg11 along the path 2in FEM1. 

4. Conclusion 

In this work, an orthotropic hyperelastic model test of woven fabric is developed and 

implanted into Abaqus/explicit to simulate Bias-Extension at low displacement. The analysis 

of numerical answers along longitudinal and transversal middle paths, proved, in the first 

hand, that to decreasing the ratio between shearing and tensile rigidities, the state 

deformation became to be conform to that predicted by the proposed model in the Bias 

Extension test for all FEM. In another hand, the angle between yarns tends to verify the 

predicted angle during the Bias Extension test. Although the stress state, is conform to the 

expected analysis of Traction test on 45°. The analysis of Green Lagrange stretching strain in 

the yarns direction, demonstrated that there was an elongation of yarns during test for 

different shearing rigidity. This elongation was exactly conforming to the predicted 

analytical elongation in the Traction test in 45°. Curves of Force versus displacement of the 

0

0.02

0.04

0.06

0 5 10 15 20 25 30 35 40
True distance betwen nodes

E
g
1
1

Analytical BE Numerical_k3/k=1

Analytical_T45_k3/k=1 Numerical_k3/k=0.3

Analytical_T45_k3/k=0.3 Numerical_k3/k=0.1

Annalytical_T45_k3/k=0.1 Numerical_k3/k=0.02

Analytical_T45_k3/k=0.02 Numerical_k3/k=0.007

Analytical_T45_k3/k=0.007



 
Finite Element Analysis – Applications in Mechanical Engineering 174 

Traction test in 45° applied to of the central zone A is closely to the numerical answers. We 

are able to adjust both curves by coefficients of adjustment. 

This study allowed to verify analytical hypothesis adopted to interpret the Bias Extension 

test. The comparison between in Bias Extension test, the shearing deformation depends of 

the ratio between shearing and tensile rigidities of fabric. In Spite of the low displacement, 

this test presented always a stress state.  
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