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1. Introduction 

UWB is a technology that has several advantages when considered for a Wireless Body 

Area Network (WBAN). A WBAN is a network with its communications devices in very 

close proximity to the human body. In medical applications these devices are connected to 

sensors that can monitor vital signs such as ECG, temperature, and mobility. A WBAN 

allows for the remote monitoring of a patient’s health minimizing the number of cables 

needed. The monitoring of vital signals usually require a relatively low data-rate which in 

the case of UWB translates into very small transmitting power, long battery life, and less 

potential side effects caused by electromagnetic radiation. All of these features are very 

desirable for devices that are close to the body and meant to be used for extended periods 

of time.  

The human body is a complex structure and human tissues have different electrical 

properties which affect the propagation of electromagnetic signals. Moreover, as the human 

body moves, the characteristics of the radio links changes, e.g. the link from the chest to a 

wrist will change from line-of-sight to non-line-of-sight as a person walks. 

To be able to design and develop UWB devices that can interface with WBANs it is then 

necessary to understand well the characteristics of the radio propagation channel at UWB 

frequencies and in close proximity to the human body. UWB measurements around a 

human body have been carried out by several researchers (Fort et al., 2006). There is 

however a lack of measurements, and subsequent analysis, carried out in real medical 

environment such as hospitals. The studies described in this chapter focus on scenarios most 

likely to be found in medical applications and as such they do not assume a large amount of 

antennas in close proximity to the skin. Among the several issues taken into account are the 

effects of mobility, and the interaction of the UWB signal with medical implants. 
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2. Hospital scenarios 

Fig. 1 shows a common hospital room scenario. Medical information is collected by sensors 

on the patient’s body. The sensors are interfaced to a WBAN which transmit the information 

to be displayed on a bedside monitor. This information can also be transmitted to another 

hospital location for remote monitoring, e.g. a nurse’s station. The radio links present in this 

type of scenario include the ones between sensor nodes (link A1), the links between the 

sensors and a gateway node (links A2), and the links from wireless devices carried by 

visitors or healthcare professionals (link A3). Other possible radio links are from the 

gateway to wireless networks such as 802.11 b/g/n and WiMAX. 

Figs. 2 and 3 show real hospital scenarios where measurements described in this chapter 

were taken (Taparugssanagorn et al. 2010). A regular hospital room is shown in Figure 2. 

This room’s dimensions are: 6.3 m x 7.2 m x 2.5 m. A surgery room, with dimensions 6 m x 

4.7 m x 2.5 m, is shown in Figure 3. Both radio links A1 and A2 were measured in each 

room. Within the hospital several scenarios were considered. Table 1 summarizes the 

measurements and scenarios in this study. A detailed description of the various experiments 

and the results can be found in (Taparugssanagorn et al. 2010). To illustrate the experiments 

and analyses performed the case of a subject standing in hospital room is discussed in more 

detail in the next section.  

 

Figure 1. A typical hospital room scenario: A1 is a link between sensor nodes, A2 is a link between a 

sensor node and a gateway, and A3 is a link to other wireless networks.  

To measure the A1 link, the receive (Rx) antenna was located at the centre of the front torso 

and the transmit (Tx) antenna was placed on the left wrist. These locations are comfortable 

for most patients and are also convenient places for sensors such as electrodes in the chest 

areas to generate an electrocardiogram (ECG) and a pulse oximeter on a finger trip to 

monitor the patient’s oxygenation. To measure the A2 link, the Rx antenna was placed on a 
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2 m high pole located 2 m away from the subject and the Tx antenna was on the left side of 

the waist.  

 

Figure 2. Floor plan of a regular hospital room. 

 

Figure 3. Floor plan a surgery room 
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Environment Scenarios 

Regular Room 
Subject Standing  

Links A1 and A2 

Subject Lying 

Links A1 and A2 

Surgery Room 

Subject Lying 

2 people walking around the 

bed 

Links A1 and A2 

Subject Lying 

2 people walking around the bed, 

one of them is using a mobile phone 

Links A1 and A2 

Table 1. Measurements and scenarios. 

3. Channel measurements and models 

The measurements were carried out using an Agilent 8270ES vector network analyzer 

(VNA). The antennas used were SkyCross SMT-3TO10M-A. These antennas are linearly 

polarized and azimuthally omnidirectional. The cables used were 5 m long SUCOFLEX RF 

with 7.96 dB loss. The data acquisition system included a computer with LabVIEWTM 

software. The VNA was operated in a transfer function measurement mode, where Port 1 

and Port 2 are the transmitting and receiving ports respectively, as seen in Fig. 4.  

 

Figure 4. Measurement setup 
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This setup corresponds to a measurement of the S21 parameter where the device under test 

(DUT) is the radio channel. The range of the frequency spectrum covered was from 3.1 GHz 

to 10.6 GHz. For each experiment setup 100 frequency responses were measured. The 

measurement parameters are summarized in Table 2. 

 

Parameter Value

Frequency range 3.1 to 10.6 GHz 

Bandwidth 6.9 GHz 

VNA IF bandwidth  3.0 kHz 

Number of samples per sweep 1601 

Maximum detectable delay 231 ns 

Sweep time 800 ms 

Average noise floor - 120 dBm 

Transmit power 0 dBm 

Tx and Rx cables’ loss 7.96 dB 

Table 2. Measurement parameters 

The measured transfer function frequency values were converted to the time domain 

(channel impulse response) using an inverse Fast Fourier Transform. A Hamming window 

was used to reduce sidelobes.  

3.1. Channel impulse response 

Fig. 5 shows the average of the channel impulse response, corresponding to link A1, when 

the subject is standing in the hospital room shown in Fig. 2.  

The effect of the human body and the environment can be clearly differentiated. These 

results are significantly different than the ones obtained in an empty hospital room (Hentilä 

et al, 2005). In Fig. 5 the first region of the IR shows a fast decay of the energy during the 

first 5-6 ns due to the effects of the human body. The decay of the second region in the 

response is slower and contains the diffuse multipath components and a few subclusters 

caused by the reflections coming from the room. In this particular case the first of such 

subclusters, arriving at around 8 ns, is due to a measuring equipment (VNA) which was 

located 1.3 m in front of the subject when is standing.  

For each particular hospital scenario listed in Table 1 the measurements obtained share the 

general characteristics shown in Fig. 5.  

Fig. 6 corresponds to the case when the subject is lying down on bed in a hospital room. Fig. 

7 corresponds to the case when the subject is lying down on a bed in a surgery room and 

two other people are randomly walking around the bed. The Least Squares (LS) fitted lines 

shown in these figures are used to model the variability of the amplitudes as described in 

Section 3.2.  



 
Ultra Wideband – Current Status and Future Trends 90 

 

Figure 5. Average channel impulse response of the radio link A1. The subject is standing in a regular 

hospital room. 

 

Figure 6. Average channel impulse response of the radio link A1. The subject is lying down on a bed in 

a regular hospital room. 
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Figure 7. Average channel impulse response of the radio link A1. The subject is lying down on a bed in 

a surgery room and two other people are randomly walking around the bed. 

3.2. Channel models 

Once a set of measurements have been obtained they are used to estimate the parameters of 

a common mathematical representation of communications channels, a tapped delay line. 

 ℎ(߬) = ∑ ܽ௟ߜ(߬ − ߬௟)exp	(݆߶௟௅ିଵ௟ୀ଴ ) (1) 

In equation (1) ܮ is the number of paths. For the ݅th path, ܽ௟ is the signal amplitude, ߬௟ is the 

arrival time, and ߶௟ is the phase. For the case shown in Fig. 5 (when the subject is standing 

in a regular hospital room) it is more appropriate to consider two regions for the modeling 

of the signal clusters, each with it is own set of distributions for the characterization of the 

amplitudes decays and intearrival times.   

3.2.1. Exponentially decaying factor 

As illustrated in Fig. 8, the values of ܽ௟ in equation (1) can be approximated by two 

exponential decaying functions, one for each region. Using a least squares (LS) method these 

functions (when expressed in dB) are best fitted with a Rician factor ߛ଴ and an exponential 

decaying factor Γ (equation (2)). 
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Figure 8. Least Squares fitting of the average channel response of the radio link A1. The subject is 

standing in a regular hospital room. 

 10 logଵ଴|ܽ௟| =
ەۖۖ
۔ۖ
݈																																																																							,0ۓۖ = 0																				
଴ଵߛ + 10 logଵ଴ ቆexp ቀି௧೗୻భ ቁቇ ,																				1 ≤ ݈ ≤ ݈ଵ										
∑ ቆߛ଴ଶ௠ + 10 logଵ଴ ቆexp ቀି௧೗୻మ೘ቁቇቇ,			ெ௠ୀଵ 	݈ଶ ≤ ݈ ≤ ܮ − 1

 (2) 

where ߛ଴ଵ, ଴ଶ௠ߛ , Γଵ,	and	Γଶ௠ are the corresponding parameters for each region. ݈ଵand ݈ଶ are 

the index for the last path of the first region and the first path of the second region 

respectively. 

For the measurements shown in Fig. 5 the values of the function’s parameters for the first 

region are ߛ଴ଵ = −61 dB and Γଵ = 1.11. For the second region the values are ߛ଴ଶ௠ ={−91,−82, 19, −87,−6,−99} dB and Γଶ௠ = {30.30, 31.25, 2.44, 29.41, 4.55, 108.70}. 
3.2.2. Amplitude variation and path arrival times 

Amplitude variations for each region have been modelled as a log-normal distribution with 

zero-mean and standards deviations ߪଵ = 2.45 and  ߪଶ௠ = {2.07, 2.21, 1.62, 1.44, 1.20, 0.91}. 
Path arrival times (ݐ௟ −  ௟ିଵ), i.e. the time difference between consecutive arrival paths, haveݐ

been modelled, using the LS method, with the following exponential distributions. 
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(௟ିଵݐ|௟ݐ)݌  = ൝ߣଵexp൫−ߣଵ(ݐ௟ − 1																	௟ିଵ)൯,ݐ ≤ ݈ ≤ ݈ଵ	ߣଶexp൫−ߣଶ(ݐ௟ − ݈ଶ										௟ିଵ)൯,ݐ ≤ ݈ ≤ ܮ − 1 (3) 

The path arrivals can then be modelled as a Poisson process. 

(ܮ)݌  = ఓಽexp(ఓಽ)௅!  (4) 

For the case discussed in this section ߣଵ = 0.269 and ߣଶ = 0.163 and the value of ߤ௅ 	is 324.  

4. Effect of body motion 

UWB signals are very sensitive to absorption by objects that have a high percentage of 

water, such as human bodies and plants. It is then expected that WBANs using UWB 

technology will have particular characteristics when the human body is in motion. To study 

the effects of motion, measurement while a subject is walking (as shown in Fig. 9) have been 

performed (Taparugssanagorn et al. 2009).  

A real-time measurement and processing of the channel fluctuations due to a body in 

motion is not possible with the equipment described in Section 3. Instead, a pseudo-

dynamic method was used, where each position of the walking cycle shown in Fig. 9 was 

kept still for the whole time it takes to take 100 snapshots. The average of the magnitude of 

the channel impulse response is shown in Fig. 10. 

 

Figure 9. Positions within a walking cycle 
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Figure 10. Magnitude of the channel impulse response for each position of the walking cycle. 

These experimental results indicate that the arm movements have a significant impact on 

the radio link A1 (Tx antenna on the left wrist and Rx antenna in the center of the front 

torso). For instance, when the hand moves to position three the strongest path arrives earlier 

than in the other positions due to the shorter distance between the antennas. There are also 

more significant paths due to the interaction of the electromagnetic waves with of the arm 

and the shoulder. The shadowing of the signal due to blocking by the body is evident in 

position six, where the left hand moves to the lowermost location. 

Fig. 11 provides an alternative view of the channel impulse response where the delay of the 

most prominent peak is clearly shown (Taparugssanagorn et al. 2011). 

To evaluate the delay dispersion within the channel the root mean square (RMS) delay 

spread ߬ோெௌ is estimated. The ߬ோெௌ is defined as, 

 ߬ோெௌ = ඨ෌ (ఛ೔ିఛ೘)మ|௛(ఛ೔)|మಽషభ೔సబ∑ |௛(ఛ೔)|మಽషభ೔సబ  (5) 

where ߬௠ is the mean excess delay defined as, 

 ߬௠ = ෌ ఛ೔|௛(ఛ೔)|మಽషభ೔సబ∑ |௛(ఛ೔)|మಽషభ೔సబ  (6) ℎ(߬) is the channel impulse response, L is the number of paths and ߬ is the delay. For the 

case discussed here the estimates for mean and the standard deviation of ߬ோெௌ are 0.1371 ns 

and 0.0670 ns respectively. Also the probability distribution function that best fits the 

variations of the amplitude is the Weibull distribution. 
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Figure 11. Channel impulse response (link A1) for each position of the walking cycle. 

The results presented in this and in the previous section highlight the importance of 

properly understand and model the UWB channel when designing physical and Medium 

Access Protocols (MAC) to be used in medical applications (Viittala et al., 2009). 

5. UWB radar in medical applications 

The potential use of UWB technology goes beyond transmitting information, collected by 

sensors, to a control station. The nature of the UWB signal is such that it can be used as in 

common radar applications, e.g. to detect and estimate dynamic parameters of an object. Fig. 

12 shows the channel impulse responses for the case of subjects with and without an aortic 

valve implant (Taparugssanagorn et al. 2009). The Rx antenna was located at the middle of 

the front torso and the Tx antenna close to the heart, 10 cm away from the Rx antenna. P200 

BroadSpecTM UWB antennas were used for this experiment. 

It apparent that the responses are different, i.e. the one corresponding to the subject with an 

aortic implant has lower peaks. A possible explanation for the difference in the responses is 

the scattering caused by the metallic (titanium alloy) valve. Subsequent simulation studies 

carried out using a 3D immersive visualization environment has confirmed this type of 

results (Yang et al., 2011). Further investigations could lead to the use of the response to 

infer the nature of the implant behaviour.   

The use of UWB signals to directly monitor vital signs is currently a very active research 

area. Thus for example, the estimation of the breathing rate and the heart beat frequency has 

been studied in (Lazaro et al., 2010). Using a mathematical model of the human body as 
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related to its effect on the propagation of the UWB signals the feasibility of medical 

diagnosis using UWB radar technology has been assessed in (Pancera et al., 2011).   

 

 
 

Figure 12. Average channel impulse response for subjects with and without aortic valve implant. 

In summary UWB technology can be used not only to transmit information collected by 

sensors such as ECG electrodes and pulse oximeters but also to actively monitor vital signals 

and the behaviour of artificial implants.  

6. Standards 

For WBANs to become widely adopted it is important to have standards. The IEEE 802.15 

group of standards focuses on short range communications, low complexity, and low power 

consumption making them suitable for use in WBANs. Two standards from this group have 

specifically addressed the use of UWB technology with medical applications in mind. This 

section describes UWB features of the IEEE 802.15.4 standard of the recently approved IEEE 

802.15.6 standard. 

The IEEE 802.15 task group 6 (TG6) developed a UWB channel model as part of the process 

of developing the IEEE 802.15.6 standard (Yazdandoost & Sayrafian-Pour, 2009). A 

comparison of the IEEE 805.15.6 channel model and the one described in this chapter can be 

found in (Viittala et al., 2009). 
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6.1. IEEE 802.15.4 

The IEEE 802.15.4 standard and the industrial consortium supporting it, the ZigBee alliance, 

are widely used in wireless sensor networks (WSNs) applications. The IEEE 802.15.4 

standard provides alternative physical layers for devices with precision ranging and 

extended range (IEEE Std 802.15.4, 2011). The UWB physical layer option of this standard 

provides for features that are desirable in medical applications such as very low power. The 

data rates supported are 110 kb/s, 851 kb/s, 1.70 Mb/s, 6.81 Mb/s, and 27.24 Mb/s. Whereas 

this standard has desired features to be used in medical applications it does not support the 

levels of safety, quality of service, and security features wanted in many of those 

applications. Thus, the remainder of this section deals with the IEEE 802.15.6 standard 

which has features specifically designed to support medical applications. 

6.2. IEEE 802.15.6 

The final version of this standard has been recently released (IEEE Std 802.15.6, 2012). It 

specifically deals with wireless communications in the vicinity of, or inside, a human body. 

It uses existing industrial scientific medical (ISM) bands and other bands. It allows devices 

to operate on very low transmit power and thus minimizes the specific absorption rate 

(SAR) into the body as well as increases the battery life. It also supports data rates up to 10 

Mbs, quality of service (QoS) and it provides for strong security. The standard takes into 

account the use of portable antennas in the presence of a human body. 

The default mode should support impulse radio UWB (IR-UWB) with a mandatory uncoded 

data rate of 487.5 kbs. It should also support, as optional PHY, wideband frequency 

modulation UWB (FM-UWB) with a mandatory uncoded data rate of 250 kbs. 

The standard provides specifications for the physical layer (PHY) and the medium access 

control (MAC) sublayer.  Three PHYs are supported by the IEEE 802.15.6 as illustrated in 

Fig. 13. 

 

Figure 13. IEEE 802.15.6 MAC and PHY layers 

The UWB PHY layer constructs the PHY layer protocol data unit (PPDU) by concatenating 

the synchronization header (SHR), physical layer header (PHR), and the physical layer 

service data unit (PSDU). The SHR has two parts. The first part is a preamble, intended for 

timing synchronization, packet detection, and frequency offset recovery. The second part is 

the start-of-frame delimiter (SFD). Kasami sequences of length 63 are used to build the 

preamble. The usage of preamble sequences improves coexistence of WBANs and 

interference mitigation as different WBANs use different preamble sequences. The PPUD is 
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illustrated in Fig. 14. The PPUD bits are converted into RF signals for transmission in the 

wireless medium.  

 

Figure 14. IEEE 802.15.6 UWB physical layer protocol data unit (PPDU) 

The PHR contains information about the data rate of the PSDU. The coded bit rates 

supported are shown in Table 3.  

 

UWB - PHY 

Data

rate 0 

(kb/s) 

Data

rate 1 

(kb/s) 

Data

rate 2 

(kb/s) 

Data

rate 3 

(kb/s) 

Data

rate 4 

(kb/s) 

Data

rate 5 

(kb/s) 

Data 

rate 6 

(kb/s) 

Data 

rate 7 

(kb/s) 

On-Off 394.8 789.7 1579 3159 6318 12636   

DBPSK/DQPSK 487 975 1950 3900 7800 15600 557 1114 

FM 202.5        

Table 3. IEEE 802.15.6 UWB-PHY coded bit rates. 

According to the IEEE 802.15.6 standard all nodes and hubs are organized into logical sets 

called body area networks (BANs) as illustrated in Fig. 15. There is one and only one hub in 

a BAN. The number of nodes in a BAN ranges from zero to nMaxBANSize=64. 

 

Figure 15. Network Topology 

Synchronization Header  

Preamble SFD  S࢏ S࢏ ... S࢏ Sത࢏ PHR PSDU 

PHY Protocol Data Unit (PPDU) 
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To provide or support time reference allocations a hub establishes a time base that divides 

the time into beacon periods (superframes). A hub transmits a beacon in each superframe, 

except in inactive superframes, or does not transmit a beacon in any superframe. A hub can 

operate in one of the following modes: 

• Beacon mode with superframes 

• Non-beacon mode with superframes 

• Non-beacon mode without superframes 

Fig. 16 shows the superframe structure when the hub operates in the beacon mode with 

superframes. A node can obtain, and initiate frame transactions, in the EAP1, RAP1, EAP2, 

RAP2, and CAP periods in any active superframe using CSMA/CA or slotted Aloha based 

random access protocols. 

 

Figure 16. Layout of access phases in a superframe period for beacon mode 

The EAP1 and EAP2 periods are used for the highest priority traffic, i.e. emergency 

information. The RAP1, RAP2, and CAP period are used for regular traffic. In a MAP period 

a hub can arrange scheduled uplink, downlink, and bilink allocation intervals. It can also 

provide unscheduled bilink allocation intervals.  

In non-beacon mode with superframes the entire superframe period is a MAP phase. In the 

non-beacon mode without superframe boundaries the hub provides polled allocations 

whose length is specified in terms of the number of frames granted for transmission (type-II 

polled allocation). 

According to this standard all nodes and hubs can choose the following three security levels: 

• Level 0 – unsecured communications. The messages are transmitted in unsecured 

frames. There are no measures for data authentication and integrity validation, 

confidentiality and privacy protection, and replay defense. 

• Level 1 – authentication only. Messages are transmitted in secured authenticated but 

not encrypted frames. Confidentiality and privacy is not supported. 

• Level 2 – authentication and encryption. Messages are transmitted in secured 

authenticated and encrypted frames. Confidentiality, privacy protection, and replay 

defense are supported. 
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Security starts with a negotiation of the desired security suite between a node and a hub. 

Once the security selection is negotiated the two communicating parties activate a pre-

shared or generate a new shared master key (MK). 

7. Future research directions 

The UWB channel has been measured and modelled extensively in recent years. 

Experimental WBANs using this technology have been developed and studied. Now that 

standards are in place the expectations, for the near future, is to have actual deployment of 

UWB BANs in medical environments.  

Commercial applications of UWB have been limited to situations where precise localization 

is needed. Once medical applications are deployed the excellent ranging characteristics of 

the UWB signals could also be used to localize patients and medical equipment. 

More experimental work is needed to learn the capabilities of UWB to directly monitor 

human organ functions as well as the workings of medical implants. In addition to 

experimental work, there is the need to develop accurate mathematical models that can be 

used in simulation studies as well as in 3D immersion systems.  

Assuming UWB WBANs are widely deployed long term future applications is their use to 

extend their range and data delivery capabilities by having the BANs work in a cooperative 

fashion (Kaveh et al., 2011). 

8. Summary 

This chapter describes features of the UWB channel that should be taken into account when 

it is being considered for medical applications, in particular in hospital scenarios. These 

scenarios include cases where the human body is in motion. Using actual measurements 

mathematical models of the channel have been proposed.  

It is also possible to use UWB technology to measure the workings of medical implants or 

body activities. This chapter presents the case of the response of an artificial aortic valve to 

UWB waves and its potential use to evaluate the working status of the valve. 

Finally there is a brief discussion of engineering standards applicable to the use of UWB 

technology in the medical field. 
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