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1. Introduction 

A bearing fixes a rotating spindle to a specific location and is a mechanical component that 

supports the load applied to the axis and its dead load. Therefore, it is inevitable for 

mechanical contact between the axis and the bearing to occur, causing friction, abrasion, 

heat, noise, and user environment contamination from lubrication. Magnetic bearings are 

mechanical components that use the attractive or repulsive force of electromagnets to 

support the mechanical axis is a non-contact state. The use of such components significantly 

reduced the disadvantages that accompany the use of general mechanical bearings such as 

friction, abrasion, heat, noise, and user environment contamination from lubrication. 

Moreover, magnetic bearings can support the mechanical axis in special 

environments(vacuum, high temperature, low temperature, zero gravity) and have the 

advantage of being able to adjust the damping coefficient and spring constant of the system 

that supports the axis according to the control objective. 

Magnetic levitation can be categorized into the following systems depending on the form 

of force that supports the levitated object: the system that uses magnetic attraction, 

magnetic repulsion, induction levitation, and superconducting Meissner Effect. Magnetic 

levitation that utilizes attractive force has a closed magnetic circuit so efficiency is high 

and 1-axis control is possible due to the stability in the attraction and perpendicular 

directions. However, it has been reported that the uncontrolled directions have poor 

stability due to the nonlinearity of the attraction. Magnetic levitation that uses the 

repulsive power has stable characteristics with respect to the longitudinal direction that 

the repulsive force is applied to, but the transverse direction has unstable characteristics. 

However the electromagnet is arranged, all the axes cannot be stabilized. Magnetic 

levitation that uses induction levitation is able to perform stable levitation without special 

control as Fleming force caused by the relative velocities between the electromagnet and 

the conductor supports the levitation. However, without a velocity over a certain level, 

levitation cannot be supported where overall efficiency is low due to Eddy current loss 
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and brake loss. Magnetic levitation that uses superconducting Meissner Effect takes 

advantage of the repulsion with permanent magnets caused by the strong diamagnetism 

from the superconductor. Like that of the induction levitation, stable levitation is possible 

without any control. However, the operational temperature of the levitation system using 

superconductor is very low: 4.2K(liquid Helium), 77K(liquid Nitrogen). Generally, the 

magnetic levitation applied to the magnetic bearing is the method using attraction and 

repulsion. Magnetic bearing systems discussed here refers to a system that utilizes the 

attraction. 

 

Figure 1. Levitation system according to the magnetic levitation method 

In this chapter, the method to designing a magnetic bearing system, to obtaining a 

mathematical model, and understanding the preparations necessary for control will be 

discussed. For this, the calculation of attraction using the Probable Flux Paths Method, 

selection of circuitry about the amplifier to operate the electromagnet, and method to 

identify the magnetic bearing system that includes a PID controller are discussed. 

2. Magnetic bearing system design 

Fig. 2 shows a schematic diagram of the magnetic bearing system to be designed in this 

chapter. The levitated object is supported by the attraction of the electromagnet and the 

attraction of the electromagnet is controlled by the current in the coil. In order to design and 

control such a magnetic bearing system, the amplifier to operate the electromagnet that 

composes the magnetic bearing system and hardware to control the whole system need to 

be designed first. Next, the designed magnetic bearing system is modeled mathematically, 

then the parameter values difficult to measure through the mathematical model are 

determined through experimentation. Finally, an adequate controller is designed and 

applied to the identified magnetic bearing system. In this chapter, the detailed control laws 

for magnetic bearing control are excluded and the implementation of the magnetic bearing 

system before applying various controllers is the main objective. 

2.1. Magnetic bearing system composition 

A magnetic bearing system like that of Fig. 2 is composed of the object to be levitated, core, 

electromagnet including the coil, amplifier to operate the electromagnet, displacement 

measurement system to measure the distance between the levitating object and the 

electromagnet, control law to calculate the control signal from the feedback signal, and 

control system that includes the hardware to realize the control law. 



 
Control of Magnetic Bearing System 

 

195 

Fig. 3 is the assembly of the magnetic bearing system to make. In the assembly, the levitated 

object will be supported by magnetic bearing at X and Y axis direction. But thrust direction 

has only the mechanical backup bearing. And Fig. 4 is the levitated object that is 1.4kg. 

 

Figure 2. Schematic of the magnetic bearing system 

 

Figure 3. Assembly of the magnetic bearing system 

 

Figure 4. Levitated object 
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Since a magnetic bearing system like Fig. 3 has a symmetric form vertically and horizontally, 

the levitating object can be simply assumed as a point mass in the perspective that the object 

is levitated. Therefore, in this section, the elements of the magnetic bearing system 

excluding the levitating object are designed. 

2.1.1. Probable flux paths method 

To support the levitating object through the electromagnet's attractive force, the attraction 

relationship between the current in the electromagnet coil and the levitating object needs to 

be defined clearly. The Probable Flux Paths Method assumes that the magnetic permeability 

of the magnetic substance that forms the magnetic path is linear to calculate the permeance 

of the magnetic substance that the magnetic path passes through, followed by the 

calculations of the magnetomotive force, magnetic flux, magnetic flux density, and attractive 

force. As the permeability of materials disregarding permanent magnets are generally 

nonlinear, the error between the Probable Flux Paths Method calculation results and that of 

actual experimentation measurements is large and calculations by applying the Probable 

Flux Paths Method for magnetic substances with complicated magnetic paths is known to be 

difficult. However, since the vertically and horizontally symmetric magnetic bearing system 

magnetic path is of a simple form, the electromagnet is designed by applying the Probable 

Flux Paths Method early in the design process. For more precise designing, the use of FEM 

software such as Maxwell is desirable. 

Generally, the following assumptions have to be satisfied when using the Probable Flux 

Paths Method to analyze the magnetic circuit. 

a. The relationship between magnetic flux and current is linear. 

b. The average magnetic flux passes through the centroid of the cross section. 

c. When the cross section that the magnetic flux passes through changes, the parts are 

calculated by dividing them into different parts and setting as combinations of parallel 

or series. 

d. When the cross section of a part changes rapidly, the magnetic flux passes through in a 

smooth circular arc(quadratic curve). 

2.1.2. Electromagnet design 

In order to design the electromagnet using the Probable Flux Paths Method, first, the 

attractive force derived from the magnetic circuit caused by the electromagnet needs to 

withstand the weight of the mass. Here, the following steps in design are taken so that 

sufficient attractive force from the electromagnet is produced for control. 

a. The mass of the levitating object is determined. 

b. The material of the core and levitating object is determined. 

c. The attractive force of the electromagnet is calculated with values determined by 

assumptions regarding the current, magnetic circuit, and length of the coil and number 

of windings during normal conditions. 
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d. The material of the core and levitating object, coil and number of windings, and current 

at normal state is adjusted until the comparison of the calculated attractive force value 

and the mass of the levitating object gives a satisfactory attractive force. 

e. The electromagnet's maximum attractive force and coil's maximum current according to 

the core and saturation flux density of the levitating object material are calculated. 

f. The material of the core and levitating object, coil and number of windings, and current 

at normal state is adjusted until the calculated maximum attractive force of the 

electromagnet is sufficient. 

Since the attractive force calculated through the Probable Flux Paths Method has a large 

error with the actual experimentation values, in order to manufacture magnetic bearings 

based on this design, it is desirable to design with a safety factor of greater than 3. 

 

Figure 5. Electromagnet core 

 

Figure 6. Electromagnet magnetic circuit formation 
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Next, the number of poles and the angle of the core have to be kept in mind. Fig. 5 shows 

the core to be used as the electromagnet in the magnetic bearing system. The magnetic 

circuit caused by the electromagnet that supports one axis has to be designed so that it does 

not interfere with the magnetic circuit caused by the electromagnetic that supports the other 

axis. The direction of the magnetic circuit caused by the electromagnet is determined by the 

direction of the coil wound about the core. The winding has to have polarity as shown in 

Fig. 6 so that interference of the magnetic circuit does not occur. Also, for the convenience of 

control, the resultant force of the attraction caused by the magnetic path needs to be parallel 

or perpendicular to the supporting axis. 

2.1.3. Displacement measurement system design 

When the current flowing in the coil is constant, the attractive force is proportional to the 

square of the distance to the levitating object. Therefore, in order to implement a magnetic 

bearing control system, the distance between the electromagnet and the levitating object has 

to undergo feedback. 

Sensors that measure gaps in noncontact state include using the change in capacitance, 

change in Eddy Current, and using laser or ultrasound. A displacement measurement 

sensor has to be selected with consideration of the sampling time, range and area of the gap 

to be measured, and economic feasibility of the overall system. 

2.1.4. Control system design 

The objective of a magnetic bearing control system is producing a control signal from the 

error signal between the reference input and the gap(between the electromagnet and the 

levitating object). And from this control signal, control the current of the electromagnet coil 

to reach the reference input in a stable manner. The control period of a control system is the 

time consumed in performing one-iteration of computations given by the control system. In 

order to implement a magnetic bearing system of high speed rotations, the control period 

has to be as small as possible. To implement such a system, the system is designed taking 

into consideration all the speeds of the MPU which will operate processing the response 

speed of the displacement sensor, A/D converter speed, D/A converter speed, and discretize 

the control laws. 

2.2. Magnetic bearing system mathematical modeling 

2.2.1. Relation between electromagnet and levitating object 

First, the mathematical model for the case of the above existing electromagnet supporting 

the levitating object is derived. The equation of translational motion for the levitating object 

is as shown in Equation (1). 

 m mg F   (1) 
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Here, m is the levitating object mass, is g the gravitational acceleration and F  is the 

attractive force of the electromagnet. 

Generally, the electromagnet's attractive force is as shown in Equation (2). 

 F A    (2) 

Here, B is the magnetic flux density, μ  is the relative permeability of the vacuum and A  is 

the opposing area of the electromagnet. Thus, the attractive force of the electromagnet is 

determined by the opposing area of the electromagnet and the magnetic flux density. 

The magnetic circuit and magnetic flux by the electromagnet is as shown in Equation (3). 

 Ф     (3) 

Here, F  is the magnetomotive force, N is the number of coil windings, R  is the magnetic 

resistance, l  is the length of the magnetic path, μ is the relative permeability, x  is the gap 

between the electromagnet and the levitating object, μ  is the relative permeability of the 

metal pin and S is the cross sectional area of the metal pin. 

The magnetic flux density of the electromagnet is the magnetic flux per unit area and is as 

shown in Equation (4). 

 B Ф
    (4) 

Therefore, the attractive force of the electromagnet is as shown in Equation (5). 

 F     (5) 

If the electromagnetic coil current in neutral state is assumed as I  and the varying control 

current signal from the neutral state is assumed as i, Equations (5) and (6) can be put 

together and Equation (7) is satisfied. 

 F k     (6) 

 mg k 0    (7) 

Here, 

 X 	  and k  . 

To apply linear control theory, the control subject also has to be a linear control system. 

However, Equation (1) includes a nonlinear term, thus, linear control theory cannot be 

applied. So, the nonlinear term of Equation (1) is linearized through Taylor series. 
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Assuming that the values after the second-order Taylor series terms are sufficiently small 

compared to the first-order term, the Taylor series in the parallel point(i 0, x 0) with 

regard to the nonlinear term k  is as shown in Equation (8). 

k k , k , i 0 k , x 0   

 k k i x  (8) 

Equation (8) is substituted into Equation (1) to obtain Equation (9) the equation of 

translational motion of the levitating object.  

 mx mg k i x    (9) 

Taking into consideration the conditions of Equation (7), Equations (9) can be rearranged 

into the following Equation (10). 

 mx x i   (10) 

The relationship between the current flowing in the coil and the drop of electric pressure in 

the coil of the upper side electromagnetic in the magnetic bearing is shown as Equation (11). 

 L I i R I i E e    (11) 

Here, E  is the voltage that appears due to the current flowing in the electromagnet coil in 

neutral state, e is the voltage that appears due to the control current flowing in the 

electromagnet coil, and Equation (12) is satisfied. 

 RI E     (12) 

Additionally, the inductance of the coil is proportional to the number of coil windings and 

the magnetic flux as shown in Equation (13). 

 L Ф
    (13) 

When assuming that there is no leakage magnetic flux in the magnetic path caused by the 

coil, the coil inductance is as shown in Equation (14). 

 L     (14) 

Here, W is the gap between the electromagnet at neutral state and the levitating object and x 

is the gap between the electromagnet and levitating object varying due to the control input.  

Moreover, X 	
µ

 and Q µ
. 

If L  is the leakage magnetic flux, the coil inductance is as shown in Equation (15). 
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 L L    (15) 

Therefore, the term L I i  in Equation (11) can be solved like that of Equation (16), 

and Equation (11) is the same as Equation (17). L I i L I i 	 I i   L I i L 	 I i   

 L I i L 	 I i   (16) 

 L x I i R I i E e  (17) 

Equations (17) and (18) can be obtained from the conditions of Equation (12). 

 L x I i Ri e   (18) 

If the levitating object is assumed close to neutral state(i 0, x 0) and I  is sufficiently 

larger than i, Equation (18) is the same as Equation (19). 

 L xI Ri e  (19) 

2.2.2. Relationship of linear amplifier 

Fig. 7 shows the electric circuit of the amplifier to operate the electromagnet coil. 

 

Figure 7. Current amplifier circuit 

Assuming the current amplifier as an ideal amplifier, the transfer function from the 

amplifier control input V  to the load current I  is found to be as shown in Equation (20). R I Z R I V   
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I V   

I V   

   (20) 

In this circuit, when the impedance Z  and load impedance Z  undergoes Laplace 

Transformation for the transient characteristic improvement of the amplifier, Equations (21) 

and (22) are obtained. 

 Z    (21) 

 Z Ls R   (22) 

Substituting Equations (21) and (22) into Equation (20) and rearranging the equation, the 

transfer function from the amplifier control input V  to the load current I  can be found like 

Equation (23). 

  

  

 	    (23) 

2.2.3. Block diagram and transfer function of the overall system 

The block diagram of the magnetic bearing system using an upper electromagnet from the 

relationships of Equations (10), (19), and (23) is shown in Fig. 8. 

 

Figure 8. Block diagram of the magnetic bearing system 

Here, the transfer function G  from the current amplifier circuit input voltage V  to the 

air gap x between the magnetic bearing and the levitating object is as shown by Equation 

(24). 
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 G   (24) 

Here, a 	R R C Lm a 	R R C m R R R R C m a 	R m R R C bcR aL  a 	 a R R C R R R R C  a 	 aR  b bR R C  b bR  a   b   c   X X W x X  . 

3. Magnetic bearing system control 

To control the mathematically modeled magnetic bearing system, a process to design the 

driver to operate the electromagnet and a process to identify unknown parameters are 

necessary. Here, the method to determine the peripheral device values of the linear 

amplifier circuit that has the desired output by applying a genetic algorithm and the method 

to identify the magnetic bearing system using a PID controller to stabilize the genetic 

algorithm and system are discussed. 

3.1. Genetic algorithm 

In the method to design a linear amplifier with an output sought by the designer or a 

method to identify the system parameters through random experimentation data, there are 

methods available using a frequency response method and applying genetic algorithm. 

Here, the method to apply genetic algorithm and selecting the desired value is explored. 

Genetic algorithm is an algorithm that imitates genetics and natural evolution to optimize 

the objective function and find the solution set with a structure as shown in Fig. 9. 

Genetic algorithm initially generates an initial group to solve the optimization problem 

defined mathematically. Through the difference with the objective function, the degree of 

agreement of the chromosomes in the generated initial group is calculated and the result 

of the calculation becomes the basis for dividing the chromosomes into dominant and 

recessive chromosomes. Through the reproduction operation based on the degree of 

agreement of the initial group, they become the source of breeding and through crossover 

operation, a temporary population is generated. Mutation operation on the generated 

temporary population leads to the generation of the next generation population. The 
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process of generating the next generation population after going through the 

aforementioned series of processes is described as one generation and the method to 

finding an optimized solution to an objective function through operations in a specific 

generation is defined as an algorithm. 

 

 

 
 

Figure 9. Genetic algorithm 

Genetic algorithms can be categorized into BCGA(Binary Coded Genetic Algorithm), 

SGA(Signal Genetic Algorithm), and RCGA(Real Coded Genetic Algorithm) depending on 

the expression of the chromosome. Generally, RCGA is used for optimization problems 

regarding continuous search domain variable with constraints. This is because if the 

chromosome is expressed by real code, genes that match perfectly with the variable in 

question could be used and the degree of precision of the calculation is only dependent on 

the calculation ability of the computer regardless of the length of the gene. 

3.2. Amplifier peripheral circuit design 

As can be seen in Fig. 7, the linear amplifier circuit is composed of resistance R  which 

determines the amplification ratio of the current amplifier and the amplifier output current, 

resistance R , resistance R  which determines the dynamic characteristics of the linear 

amplifier circuit, condenser C , R  which limits the linear amplifier circuit current, and the 
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load(here, coil). When defining the form of output desired by the designer using time 

response characteristics, the amplifier peripheral device values can be determined in the 

following manner utilizing genetic algorithm. 

First, the value of the part to solve is defined. Since the amplification ratio A of the current 

amplifier, current limiting resistance R , load inductance L, and resistance R are unknown, 

the variables of the genetic algorithm to find are limited to the resistance R  that determines 

the amplification ratio of the amplifier output current, resistance R , resistance R  which 

determines the dynamic characteristics of the linear amplifier current, and condenser C . At 

this point, if the amplification ratio of the amplifier output current is given, one less genetic 

algorithm variable needs to be found as the resistances R  and R  have a proportional 

relationship. 

Next, the searching range of the parameters to be identified is limited according to the 

characteristics of each device. As the resistance R  which determines the amplification ratio 

of the amplifier output current is a signal resistance, it is desirable to have a high resistance 

value. Therefore, in the case of resistance R  which determines the amplification ratio of the 

amplifier output current, it has to be sought in the kΩ range. In contrast, resistance R  

which determines the dynamic characteristics of the linear amplifier circuit has to be sought 

in a wide range. For condenser C , which determines the dynamic characteristics of the 

linear amplifier circuit, a value in the nF to μF range is ideal when considering the dynamic 

characteristics of the current amplifier. 

After that, the objective function is determined to implement the genetic algorithm. The 

objective in this program is the design of a linear current amplifier that has a current output 

in the form that the designer seeks. Therefore, it has the form shown in Equation (23) and 

the response of the system that satisfies the time response characteristics defined by the 

designer is defined as shown in Equation (25). 

 G s    (25) 

At this point, the randomly given d , d , e  and e 	are the coefficients of the system G  that 

satisfies the time response characteristics. The objective function to implement the genetic 

algorithm is defined as shown in Equation (26). 

 F e t dt   (26) 

Here, e t g t g t , g t 	is the step response of the system defined by the designer 

and g t  is the step response of the current amplifier transfer function. 

Finally, the parameters to operate the genetic algorithm, such as the size of the entity group, 

the maximum chromosome length, maximum number of generations, crossbreeding 

probability, and mutation probability, are defined. Here, in order to improve the 

performance of the implemented genetic algorithm, configuration for methods such as the 

penalty strategy, elite strategy, and scale fitting method is necessary. 
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Figure 10. Trends of the optimum parameters of each generation 

.  

Figure 11. Step response comparison between the system obtained from the RCGA results and the 

system defined by the designer 
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Figure 12. Amplifier applied with the designed parameter value 

 

Figure 13. Step response comparison between the system that obtained from the RCGA results and the 

manufactured amplifier 

Appendix 1 is a program that estimates the amplifier peripheral circuit part values in 

accordance with the response of the system defined arbitrarily, and the result is shown in 

Fig. 10, Fig. 9, Fig. 11 and Fig. 12 shows the step response measurement graphs of the 

system that was produced by designing and manufacturing the amplifier circuit using 

RCGA like that of Appendix 1. 

3.3. Magnetic bearing system identification 

In order to design the controller for the designed magnetic bearing system, there needs to be 

a process to estimate the parameter values that exist in the given system and is difficult to 

measure. In case a magnetic bearing system model with the same response as that of 

experimentation results can be found, the designer can design the desired controller without 

performing experimentation. Such a process is called identification. 
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In order to identify the magnetic bearing system, experimentation data of the manufactured 

system is necessary. However, since the magnetic bearing system is an unstable system, a 

controller to stabilize the system to obtain experimental data from the experiment device is 

necessary. 

3.3.1. Implementation of the control signal 

To control the magnetic bearing system, there is a need to stabilize the whole system by 

controlling the current flowing in the current. To do this, PID controller is introduced. In 

order to control the current of the coil using a PID controller, the voltage going into the 

current amplifier has to be controlled, and to implement such a voltage signal, a PID 

controller that is supported by Labview or Matlab has to be used or one that is discretized to 

match the sample time has to be used. Here, how a discretized PID controller is 

implemented is described. 

Generally, a given PID controller can be defined as shown in Equation (27). 

 K K s   (27) 

 

Converting Equation (27) to z results in Equation (28). 

 K    (28) 

Reducing Equation (28) and reorganizing u z  about gives Equation (29). u z   

 z z u z K K z K K z e(z)     (29) 

Taking into consideration that the z operator is a shift operator, Equation (29) is shown in 

cyclic form of Equation (30). u n 2 K K e n 2 K K e n 1 e n u n 1   (30) 

Here, e n is the nth sample data of the error signal. 

If K 1, K 0.005, K 2 and the sampling time T is assumed to be 0.001s, Equation (30) 

can be represented as Equation (31). 

 u n 2 6.001e n 2 10.999e n 1 5e n u n 1    (31) 

If the PID controller can be shown in cyclic form, this can be conveniently programmed 

using C. Even here, the sampling time of the overall program has to be programmed equal 

to the sampling time of the PID controller. 
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3.3.2. Parameter identification 

With regard to the whole system including the PID controller, the transfer function from the 

reference input r to the displacement x of the levitating object is as shown in Equation (32). 

 G   (32) 

Here, a 	R R C Lm  a 	R R C m R R R R C m  a 	R m R R C bcR aL bR R R C K G  a 	 a R R C R R R R C bR R K R C K G  a 	 aR bR R K R C K G  a 	 bR R K G  b bR R R C K  b bR R K R C K  b bR R K R C K  b bR R K  a   b   c   X X W x X   

 

 
 

Figure 14. Block diagram of the magnetic bearing system including PID controller 

Fig. 14 shows the block diagram of the whole system including the PID controller. To 

identify the unknown parameters using the genetic algorithm, the parameters difficult to 

measure has to be defined from the system transfer function and the search range of each 

parameter has to be defined. Using the error between the step response of the whole system 

and the data value obtained from experimentation, the objective function of the genetic 

algorithm is defined and the parameters of the genetic algorithm are defined. 
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Appendix 2 is the genetic algorithm program that allows the calculation of the unknown 

parameters from the above processes. At this point, the program part that is the same with 

the program to solve the amplifier peripheral circuit was excluded. Fig. 15 and Fig. 16 shows 

the graphs of the output results of the magnetic bearing system identification using RCGA 

similarly with Appendix 2. 

 

Figure 15. Trends of optimum parameters for each generation 

 

Figure 16. Experiment data comparison with the system obtained through RCGA results 

3.4. Control signal division  

The system of Fig. 14 is a modeling of the case where the magnetic bearing system is 

assumed to a horizontally symmetric based on the center point so that the levitating object is 

supported using an upper based electromagnet about the left or right parts. In order to 

properly levitate the levitating object of this system, a control signal equal to that of Fig. 14 

has to be implemented and consistently supplied to the left and right magnetic bearing. 

Also, to divide the control signal that supports the levitating object using only the upper 

electromagnet like that of Fig. 14 into the upper and lower electromagnet, the current i  

flowing in the upper electromagnet coil has to include the attractive force caused by the 

current i  flowing in the lower electromagnet coil, where Equation (33) has to be 

followed for the design. 

 i I i α  (33) 
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Here, i  is the control current necessary to support the levitating object with only the 

upper electromagnet and α is the current corresponding to the attractive force caused by the 

current flowing in the lower electromagnet coil. 

At this point, the magnetic bearing system has a form symmetric about each axis. Therefore, 

when assuming the axis parallel to the direction vertical from the Earth as the x-axis, the 

attractive force control of the y- and z-axes is the same as the x-axis control case including 

the neutral state and excluding the control current I . 

Fig. 17 is step response test result that is an example. When the program is work, levitated 

object is attracted by upper electric magnet. After that, the control signal is separated between 

upper and lower electric magnet. In the step response test, the disturbance mass is 150g. 

 

Figure 17. Step response test result for levitating system 

3.5. Levitating object and equation of rotational motion 

Fig. 18 shows a schematic of a magnetic bearing system taking into consideration rotational 

motion.  

When the levitating object undergoes rotational motion, the torque caused by the rotational 

motion about the x-z plane is as shown in Equation (34). 

 Jθ J ωθ lf lf   (34) 

Here, J is the moment of inertia of the levitating object about the y-axis and J  is the moment 

of inertia of the rotating levitating object about the x-axis. From Fig. 16, Equations (35) and 

(36) can be obtained. 
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 sinθ ∆ θ   (35) 

 sinθ ∆ θ   (36) 

 

 
 

Figure 18. Magnetic bearing system taking into consideration rotational motion  

When the levitating object undergoes rotational motion, the torque caused by the rotational 

motion about the y-z plane is as shown in Equation (37). 

 Jθ J ωθ lf lf    (37) 

In order to control the rotating levitating object, application of a multi-variable controller 

using state-space expression is necessary. 

4. Conclusion 

In this chapter, the detailed control laws to control the magnetic bearing was not included, 

and the method to designing a magnetic bearing system, obtaining a mathematical model, 

and the preparations necessary for control were explored with the aim of implementing a 

magnetic bearing system to apply various controllers. 

Appendix 

1. Attractive Force Calculation of the Electromagnet Using Probable Flux Paths Method 

2. RCGA Program for Amplifier Peripheral Circuit Design 

3. RCGA Program for Magnetic Bearing System Identification  
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1. Attractive force calculation of the electromagnet using probable flux paths method 

It is assumed that the levitating object is supported by the electromagnet. Here, the gap 

between the electromagnet and the levitating object is 0.6mm, the number of coil winding to 

the electromagnet is 400turns, and the current flowing in the coil is 1A. 

 

Figure 19. Electromagnet core drawing 

 

Figure 20. Magnetic circuit of the electromagnet 

Fig. 19 shows the drawing of the electromagnet core. Fig. 20 shows the magnetic circuit that 

satisfies the Probable Flux Paths Method in the core of Fig. 19. The attractive force of the 

electromagnet is as shown in Equation (38). 

 F     (38) 

Here, the length of the magnetic path is as shown in Equation (39) according to Fig. 2. 



 
Performance Evaluation of Bearings 

 

214 

 l 2h 	 . 2 40 10 [m]  (39) 

When assuming the material of the electromagnet core as silicon steel plate(μ 3000), the 

attractive force of this electromagnet is calculated using Equation (40). 

 F .. . 6.2485[N]  (40) 

 

Figure 21. B-H curve of a magnetic substance 

Fig. 21 shows the B-H curve of generic magnetic substances. As can be observed in Fig. 21, 

the magnetic flux density is concentrated about the magnetomotive force above a certain 

level for magnetic substances, implying that the attractive force does not increase when the 

current of the coil is increased to increase the magnetomotive force as the magnetic flux 

density does not increase. Therefore, in order to identify the maximum attractive force of an 

electromagnet, a process in identifying the maximum attractive force that can be used from 

the saturated magnetic flux density of the electromagnet material or the maximum current 

that can be bled in the coil is necessary. 

The relationship between the current flowing in the coil and the magnetic flux density is as 

shown in Equation (41). 

 B Ф
    (41) 

From this, the maximum current I  from the saturated magnetic flux density B  can be 

solved as shown in Equation (42). However, the saturated magnetic flux density of silicon 

steel is approximately 1.5T. 

I    

 I . . . 3.7087[A]  (42) 
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Here, the electromagnet maximum attractive force when the gap is 0.6mm is as shown in 

Equation (43). 

 F . .. . 85.9442[N]   (43) 

2. RCGA program for amplifier peripheral circuit design 

Fig. 22 shows the linear current amplifier circuit. Considering that the voltage in Fig. 22 is V , the current can be expressed as Equation (44) and Equation (45) can be rearranged to 

obtain Equation (45). 

 i i i    (44) 

   (45) 

 

Figure 22. Linear current amplifier circuit 

Also, considering that the voltage in Fig. 22 is V′ , the current can be expressed as Equation 

(46), and Equation (46) can be rearranged to obtain Equation (47). 

 i I i   (46) 

 I   (47) 

Equation (48) is obtained from the open-loop gain of the operational amplifier and the 

relationship of Equation (49) is obtained from the current flowing in the load. 

 V   (48) 

 V V I Z    (49) 

When the transfer function is found from the relationships of Equations (45), (47), and (48), 

it is as shown in Equation (50). 
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   (50) 

Here, n n s n   n R R R R C   n R R R   d a a a s a b a b b s b b c   a b R C C R R C   a R R L  a R R R R C L  b R R R R R R  b R    b R R R R C R L   c R R R R  

When A is assumed to be sufficiently large, Equations (50) and (23) are equivalent. 

Before selecting the current amplifier circuit part values, the parts to find the value of are first 

identified. The parts to determine first are the amplifier (-)input resistance R  and the feedback 

line resistance R . These resistances are parameters that determine the amplification ratio of 

the amplifier output current and are resistances to transfer the voltage signal. R  and R  has 

the relationship of Equation (51) from the DC gain of the closed circuit transfer function. 

 R R R   (51) 

The ratio of the current amplifier input voltage and output current to be designed is 

assumed to be 1 : 1 and accordingly, R  has the same relationship as shown in Equation (52). 

 R R R    (52) 

The current amplifier amplification ratio A, current limiting resistance R , load inductance L 

and resistance R values are given as organized in Table. 1. Therefore, the variables of genetic 

algorithm to determine are limited to the resistance R  which determines the amplifier 

output current amplification ratio, resistance R  which determines the dynamic 

characteristics of the linear amplifier circuit, and condenser C . 

 

Parameter Value A 10107/20 L 9.2mH R 6.2Ω R 2Ω 

Table 1. The known parameter's value at the current amplifier 
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In the case of resistance R  which determines the amplifier output current amplification 

ratio, it has to be sought after in the range of kΩ. In comparison, resistance R , which 

determines the dynamic characteristics of the linear amplifier circuit, has to be sought after 

in a wide range. It is desirable to use a value for the condenser C  which determines the 

dynamic characteristics of linear amplifier circuit in the nF to μF range in consideration of 

the dynamic characteristics of the current amplifier. 

Therefore, the search ranges are determined as shown in Equations (53), (54), and (55). 

 8000 R 11000   (53) 

 10 R 10    (54) 

 10 C 10    (55) 

The transfer function with a desired output is defined as shown in Equation (56) with the 

same form as the transfer function of a current amplifier circuit. This is so that the desired 

output can be achieved with the combination of part values of the current amplifier circuit. 

 G s    (56) 

Equation (57) was obtained through trial and error in an effort to obtain a step response rise 

time below 0.001s and the percentage overshoot below 5%. Fig. 23 shows the step response 

of the transfer function of Equation (57). 

 G s 	 	    (57) 

 

Figure 23. The desired step response 

The objective function to apply genetic algorithm is Equation (58). 

 F e t dt  (58) 
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Here, e t y t y t , y t  is the step response of the system satisfying the required 

time response characteristics and y t  is the current amplifier circuit transfer function step 

response obtained from the selected chromosome. 

Table 2 shows the parameter values necessary to implement the real coded genetic 

algorithm. 

The real coded genetic algorithm problem was implemented through matlab and the 

solution could be found by executing the rcga.m file. The names of files linked to rcga.m and 

their functions are shown in Table 3. Each script is as follows. 

 

Parameter 
Parameter 

value 
Genetic operator 

Population 50 Generate initial population 

Max. generation 200 Generate initial population 

Chromosome length 3 Generate initial population 

Crossover probability 0.9 Modified simple crossover 

Mutation probability 0.1 Dynamic mutation 

eta 1.7 Scale fitting 

Table 2. The parameter's value of the RCGA for the current amplifier design 

 

file name 

(*.m) 
function 

rcga Find optimal value on object function with RCGA 

rInitPa Define program variable for RCGA 

rInitPop Initialize the population 

EvalObj Evaluate the object function on the population for the reproduction 

rGradSel Reproduction operator with a gradient like selection method 

rMsXover Crossover operator with a modified simple crossover method 

rDynaMut Mutation operator with a dynamic mutation method 

rElitism 
Let to survive the best chromosome at the present generation to next 

genetation 

ScaleFit To improve the reproduction operator's efficience 

rStatPop Memorize the poplation's state for each generation  

Table 3. Program file list for the execution of the real coded genetic algorithm 
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% rcga.m 
% The RCGA implements a real coded genetic algorithm for finding the 
% component value in the current amp. circuit 
%                                                      
%  Encoding:                                           
%     - Real                                           
%                                                      
%  Genetic operators:                               
%     - Gradient-like selection                     
%     - Modified simple crossover                   
%     - Dynamic mutation                            
%                                                   
%  Other strategies:                                
%     - Elitism                                     
%     - scaling window scheme(Ws=1)                 
%                                                   
% Remarks:                                          
%                                                   
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
clear; 
  
% initializes the generation counter 
gen= 1; 
  
% initializes the parameters of a RCGA 
[rseed,maxmin,maxgen,popsize,lchrom,pcross,pmutat,xlb,xub,etha,Ev]= 
rInitPa; 
  
% creates a polulation randomly 
pop= rInitPop(rseed,popsize,lchrom,xlb,xub); 
  
% calculates the objective function value 
objfunc= EvalObj_new3(pop,lchrom,popsize); 
  
% calculates gam 
if(maxmin == 1) 
  gam= min(objfunc); 
else 
  gam= min(-objfunc); 
end 
  
% calculates fitness using the scaling window scheme 
fitness= ScaleFit(objfunc,popsize,gam,maxmin); 
  
% computes statistics 
[chrombest,objbest,fitbest,objave,gam]= 
rStatPop(pop,objfunc,fitness,maxmin); 
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% builds a matrix storage for plotting line graphs 
 stats(gen,:)=[gen objbest objave chrombest]; 
  
for gen= 2:maxgen 
  
% prints the current generation 
    fprintf('gen= %d (%d)\n',gen,maxgen-gen); 
  
% applies reproduction 
    pop= 
rGradSel(pop,popsize,lchrom,fitness,chrombest,fitbest,xlb,xub,etha); 
% Gradient-like selection 
  
% applies crossover 
    [pop,nxover]= rMsXover(pop,popsize,lchrom,pcross); % modified 
simple crossover 
  
% applies mutation 
    [pop,nmutat]= 
rDynaMut(pop,popsize,lchrom,pmutat,xlb,xub,gen,maxgen); %dynamic 
mutation 
  
% calculates the objective function value 
  objfunc= EvalObj_new3(pop,lchrom,popsize); 
  
% applies modified Elitism 
[pop,objfunc]= rElitism(pop,objfunc,chrombest,objbest,maxmin); 
  
% applies the scaling window scheme 
    fitness= ScaleFit(objfunc,popsize,gam,maxmin); 
  
% computes statistics 
    [chrombest,objbest,fitbest,objave,gam]= 
rStatPop(pop,objfunc,fitness,maxmin); 
  
% builds a matrix storage for plotting line graphs 
    stats(gen,:)=[gen objbest objave chrombest]; 
  
end 
  
figure(1) 
% plots the best and average objective function values 
subplot(2,1,1) 
plot(stats(:,1),stats(:,2)) 
xlabel('Generation'),ylabel('object function') 
  
% plots the variables of the best chromosome 
subplot(2,1,2) 
plot(stats(:,1),stats(:,4),'-',stats(:,1),stats(:,5),'--
',stats(:,1),stats(:,6),'--') 
xlabel('Generation'),ylabel('control parameter') 
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legend('R1','Rd','Cf') 
  
  
figure(2) 
  
Rs = 2; R = 6.2; A = 10^(107/20); L = 9.2 * 10^-3; 
  
i=1; 
R1 = chrombest(1,1) ; 
Rf = Rs * R1; 
var(i,1) = chrombest(1,2); 
var(i,2) = chrombest(1,3); 
  
a = -(Rs/A +Rs +Rf)*Rf*var(i,1)*var(i,2); 
b = -(Rs/A +Rs +Rf)*Rf; 
c = ((Rf/A + R1/A +R1)*var(i,1)*var(i,2) + R1*Rf*var(i,2)/A + 
R1*Rf*var(i,2))*(Rs + Rf)*L - (Rs/A + Rs 
+Rf)*R1*var(i,1)*var(i,2)*L; 
d1 = ((Rf/A + R1/A +R1)*var(i,1)*var(i,2) + R1*Rf*var(i,2)/A + 
R1*Rf*var(i,2))*(Rs*R + Rf*Rs + Rf*R) + (Rs + Rf)*L*(Rf/A + R1/A 
+R1) - (Rs/A + Rs +Rf)*R1*(var(i,1)*var(i,2)*R + L); 
e = (Rf/A + R1/A +R1)*(Rs*R + Rf*Rs + Rf*R) - (Rs/A + Rs +Rf)*R1*R; 
  
n=[a b]; 
d=[c d1 e]; 
h= 0.0001; wdata = 150; t=0:h:wdata*h; 
  
yn=[3000 2100000]; 
yd=[1 3600 2100000]; 
r2=step(-yn,yd,t); 
r1=step(n,d,t); 
  
plot(t,r1,'-',t,r2,'--') 
legend('yout','yr') 
xlabel('Time[s]'),ylabel('Current[A]') 
 
 
% rInitPa.m 
% The RINITPA function initializes the parameters of a RCGA 
%                                                            
% Output:                                                    
%    rseed- random seed                                      
%    maxmin= -1 for minimization, 1 for maximization         
%    maxgen-    maximum generation                           
%    popsize- population size(must be an even integer)       
%    lchrom- chromosome length                               
%    pcross- crossover probability                           
%    pmutat- mutation probability                            
%    xlb- lower bound  of variables                          
%    xub- upper bound of variables                           
%    etha- parameter of the selection operator               
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%                                                            
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
function 
[rseed,maxmin,maxgen,popsize,lchrom,pcross,pmutat,xlb,xub,etha,Ev]= 
rInitPa 
  
rseed=      8512;  
maxmin=      -1;            % -1 for minimization 
maxgen=   200; 
popsize=     100;             % popsize should be even 
lchrom=         3; 
etha=         1.7; 
pcross=      0.9; 
pmutat=     0.1; 
xlb(1,1) = 8000; 
xlb(1,2) = 0.1; 
xlb(1,3) = 1*10^-10; 
  
xub(1,1) = 11000; 
xub(1,2) = 1000000; 
xub(1,3) = 1*10^-7; 
  
Ev=0; 
  
if(rem(popsize, 2) ~= 0) % do not move 
    popsize= popsize + 1; 
end 
 
 
% rInitPop.m 
% 
% The RINITPOP function creates an initial population     
%                                                         
% Input:                                                  
%    rseed- random seed                                   
%    popsize- population size                             
%    lchrom- chromosome length                            
%    xub- upper bound for variables, vector               
%    xlb- lower bound for variables, vector               
% Output:                                                 
%    pop- population                               
%                                                  
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                                  
% Edit by Hwanghun Jeong, CME PKNU                           
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function pop= rInitPop(rseed,popsize,lchrom,xlb,xub) 
 
rand('seed',rseed); 
pop= zeros(popsize,lchrom); 
for i=1:popsize 
  pop(i,:)= (xub-xlb).*rand(1,lchrom)+xlb; 
end 
 
% EvalObj_new3.m 
% 
% The EVALOBJ function evaluates the objective function value     
%                                                                 
% Input:                                                          
%    var- variables, matrix                                       
%    npara- number of the variables                               
%    popsize- population size                                     
% Output:                                                         
%    objfunc- objective function value, vector                    
%                                                                 
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
function objfunc= EvalObj_new3(var,npara,popsize); 
  
Rs = 2; R = 6.2; A = 10^(107/20); L = 9.2 * 10^-3; 
  
for i= 1:popsize 
objfunc(i)=0; oldobj=0; 
R1 = var(i,1); 
Rf = Rs * R1; 
a = -(Rs/A +Rs +Rf)*Rf*var(i,2)*var(i,3); 
b = -(Rs/A +Rs +Rf)*Rf; 
c = ((Rf/A + R1/A +R1)*var(i,2)*var(i,3) + R1*Rf*var(i,3)/A + 
R1*Rf*var(i,3))*(Rs + Rf)*L - (Rs/A + Rs 
+Rf)*R1*var(i,2)*var(i,3)*L; 
d1 = ((Rf/A + R1/A +R1)*var(i,2)*var(i,3) + R1*Rf*var(i,3)/A + 
R1*Rf*var(i,3))*(Rs*R + Rf*Rs + Rf*R) + (Rs + Rf)*L*(Rf/A + R1/A 
+R1) - (Rs/A + Rs +Rf)*R1*(var(i,2)*var(i,3)*R + L); 
e = (Rf/A + R1/A +R1)*(Rs*R + Rf*Rs + Rf*R) - (Rs/A + Rs +Rf)*R1*R; 
  
n=[a b]; 
d=[c d1 e]; 
  
h= 0.0001; wdata = 150; t=0:h:wdata*h; 
yn=[-3000 -2100000]; 
yd=[1 3600 2100000]; 
yr = step(yn,yd,t); 
resp = step(n,d,t); 
err(:,1) =  resp(:,1) - yr(:,1); 
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for j= 1:wdata 
    obj= err(j,1)^2; 
    objfunc(i)= objfunc(i)+0.5*h*(obj+oldobj); 
    oldobj= obj; 
    end 
end 
 
 
% ScaleFit.m 
% 
% The SCALEFIT function converts objective function values into 
fitness using   
% the scaling window scheme(window size= 1)                         
% 
% Input:                                                            
%    objfunc- objective function value, vector                      
%    popsize- population size                                       
%    gam- minimun of objfunc or -objfunc in the previous population 
%    maxmin= -1 for minimization, 1 for maximization                
% Output:                                                           
%    fitness- scaled fitness, vector                                
%                                                                   
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
function fitness= ScaleFit(objfunc,popsize,gam,maxmin) 
  
if(maxmin == 1) 
  fitness= objfunc-gam; 
else 
  fitness= -objfunc-gam; 
end 
for i=1:popsize 
  if(fitness(i) < 0) 
    fitness(i)= 0; 
  end 
end 
 
 
% rStatPop.m 
% 
% The RSTATPOP function calculates the statistics of a population   
%                                                                   
% Input:                                                            
%    pop- population, matrix                                        
%    objfunc- objective function value, vector                      
%    fitness- fitness, vector                                       
%    maxmin= -1 for minimization, 1 for maximization                
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% Output:                                                           
%    chrombest- best chromosome, vector                             
%    objbest- best objective function value                         
%    fitbest- fitness of the best chromesome                        
%    objave- average objective function value                       
%    gam- minimun of objfunc or -objfunc                            
%                                                                   
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
function [chrombest,objbest,fitbest,objave,gam]= 
rStatPop(pop,objfunc, ... 
                                                                   
fitness,maxmin) 
  
if(maxmin == 1) 
    [objbest, index]= max(objfunc); 
    gam= min(objfunc);  
else 
    [objbest, index]= min(objfunc); 
    gam= min(-objfunc);  
end 
chrombest= pop(index,:); 
fitbest= fitness(index); 
objave= mean(objfunc); 
 
 
% rGradSel.m 
% 
% The RGRADSEL function performs gradient-like selection           
%                                                                  
% Input:                                            
%    pop- population of chromosomes, matrix         
%    popsize- population size                       
%    lchrom- chromosome length                      
%    fitness- fitness, vector                       
%    chrombest- best chromosome, vector             
%    fitbest- fitness of the best chromesome        
%    xlb- lower bound for variables, vector         
%    xub- upper bound for variables, vector         
%    etha- parameter of the selection operator      
% Output:                                           
%    newpop- mating pool, matrix                    
%                                                                 % 
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
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function newpop= 
rGradSel(pop,popsize,lchrom,fitness,chrombest,fitbest,xlb, ... 
                                                                   
xub,etha) 
if(fitbest > 0) 
    for i= 1:popsize 
      etha1= etha; 
        normfit= 1-fitness(i)/fitbest; 
        pass= 0; 
        while(pass == 0) 
            pass= 1; 
            for j= 1:lchrom 
                newpop(i,j)= pop(i,j)+etha1*normfit*(chrombest(j)-
pop(i,j)); 
                if(newpop(i,j) < xlb(j) | newpop(i,j) > xub(j)) 
                    etha1= etha1*0.8; 
                    pass= 0; 
                    break; 
                end 
            end 
        end 
    end 
  
else 
    for i= 1:popsize 
        k= Pickup(popsize); 
        newpop(i,:)= pop(k,:); 
    end 
end 
 
% Pickup.m 
% 
% The PICKUP function picks up an integer random number between 1 
and num  
%                                                                          
% Input:                                              
%    num- integer number greater than or equal to 1   
% Output:                                             
%    rnum- random number between 1 and num            
%                                                     
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                                  
% Edit by Hwanghun Jeong, CME PKNU                           
  
function rnum= Pickup(num) 
  
if min(num) < 1 
  disp('num is less than one !') 
  return; 
end 
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fr= rand(size(num)); 
rnum= floor(fr.*num)+1; 
 
 
% rMsXover.m 
% 
% The RMSXOVER function performs modified simple crossover 
% 
  
% Input:                                                       
%    pop- population of chromosomes, matrix                    
%    popsize- population size                                  
%    lchrom- chromosome length                                 
%    pcross- crossover probability                             
% Output:                                                      
%    pop- mated population, matrix                             
%    nxover- number of times crossover was performed           
%                                                              
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
function [pop,nxover]= rMsXover(pop,popsize,lchrom,pcross) 
  
nxover= 0; 
halfpop= floor(popsize/2); 
for i= 1:halfpop 
    if (rand <= pcross) 
        nxover= nxover+1; 
       mate1= 2*i-1; 
       mate2= 2*i; 
        xpoint= Pickup(lchrom-1); 
        lam= rand; 
        temp= lam*pop(mate2,xpoint)+(1-lam)*pop(mate1,xpoint); 
        lam= rand; 
        pop(mate2,xpoint)= lam*pop(mate1,xpoint)+(1-
lam)*pop(mate2,xpoint); 
        pop(mate1,xpoint)= temp; 
  
        temp= pop(mate1,xpoint+1:lchrom); 
        pop(mate1,xpoint+1:lchrom)= pop(mate2,xpoint+1:lchrom); 
        pop(mate2,xpoint+1:lchrom)= temp; 
    end 
end 
  
 
% rDynaMut.m 
% 
% The RDYNAMUT function performs dynamic mutation     
%                                                     



 
Performance Evaluation of Bearings 

 

228 

% Input:                                              
%    pop- population of chromosomes, matrix           
%    popsize- population size                         
%    lchrom- chromosome length                        
%    pmutat- mutation probability                     
%    xlb- lower bound  of variables                   
%    xub- upper bound of variables                    
% Output:                                             
%    pop- mutated population, matrix                  
%    nmutat- number of times mutation was performed   
%                                                     
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
function [pop,nmutat]= 
rDynaMut(pop,popsize,lchrom,pmutat,xlb,xub,gen,maxgen) 
  
b= 5; 
nmutat= 0; 
for i= 1:popsize 
    for j= 1:lchrom 
        if (rand <= pmutat) 
            nmutat= nmutat+1; 
            r= rand; 
            if(round(rand)) 
                pop(i,j)= pop(i,j)+(xub(j)-pop(i,j))*r*(1-
gen/maxgen)^b; 
            else 
                pop(i,j)= pop(i,j)-(pop(i,j)-xlb(j))*r*(1-
gen/maxgen)^b; 
            end 
        end 
    end 
end 
 
 
% rElitism.m 
% 
% The RELITISM function performs elitism                    
%                                                           
% Input:                                                    
%    pop- population of chromosomes, matrix                 
%    objfunc- objective function value                      
%    chrombest- best chromosome, vector                     
%    objbest- best objective function value                 
%    maxmin= -1 for minimization, 1 for maximization        
% Output:                                                   
%    pop- modified population of chromosomes, matrix        
%    objfunc- modified objective function value             
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%                                                           
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
function [pop,objfunc]= 
rElitism(pop,objfunc,chrombest,objbest,maxmin) 
  
if(maxmin==1) 
    cobjbest= max(objfunc); 
    if(cobjbest < objbest) 
      [objworst, index]= min(objfunc); 
      pop(index,:)= chrombest; 
      objfunc(index)= objbest; 
    end 
else 
    cobjbest= min(objfunc); 
    if(cobjbest > objbest) 
      [objworst, index]= max(objfunc); 
      pop(index,:)= chrombest; 
      objfunc(index)= objbest; 
    end 
end 

3. RCGA program for magnetic bearing system identification  

The transfer function from the reference input of the magnetic bearing system including the 

PID controller to the displacement of the levitating object is as shown in Equation (59). 

The PID controller coefficients selected for the stabilization of the magnetic bearing system 

are K 1, K 0.005,	K 2 and the sampling time is 0.001s. If the PID controller is 

expressed in cyclic form to implement as a micro processor, it is as shown in Equation (59). 

 u n 2 6.001e n 2 10.999e n 1 5e n u n 1    (59) 

Fig. 25 is the step response that was obtained from the magnetic bearing system including 

the PID controller designed for stabilization. Specially, Fig. 25 is the step response of the 

displaced levitating object displacement x when the right side electromagnet reference input 

was modified from 0.4mm to 0.6mm where the left side electromagnet was fixed. 

Fig. 60 shows the connection diagram of the magnetic bearing control system. The power of 

the system uses a DC power supply, displacement sensor amplifier, DSP, and AC220V 

power for the PC, and DC power is used for the current amplifier. The control system is 

connected to the magnetic bearing coil and displacement measurement sensor through a 

port. The delivered signal from the displacement sensor amplifier is compared to the 

reference input in the DSP and a control signal is generated, where the control signal 

generated in the DSP is provided to the linear current amplifier circuit to control the 

electromagnet. The signals occurring during control are stored in the independently 

installed PC through the DAQ board(PCI6010) for monitoring. 
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The MPU to implement the PID controller is TMS320C32, and a 12 bit A/D converter 

(MAX122) and 12 bit D/A converter (AD664) were used. Eddy current type sensor (AH-305) 

was used as the displacement measurement sensor for the feedback signal and an 

appropriate sensor amplifier (AS-440-01) was applied. 

 

 

 

 
 

 

 

Figure 24. Magnetic bearing system including the PID controller 

 

 

 

 
 

 

 

Figure 25. Step response of magnetic bearing system including the PID controller  
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Table 4 shows the parameter values already known regarding the magnetic bearing system. 

Therefore, the parameters that their values cannot be relatively exactly known in this system 

are the levitating object mass m, the current during normal state I , coil inductance value L, 

relative permeability µ  of the levitating object, and additional gain K  for normal deviation 

calibration. 

In the experiment for the identification of the magnetic bearing, the levitating object was 

supported using one side of the magnetic bearing. When supporting the levitating object 

with one side of the electromagnet, the levitating object becomes slanted so the vertical 

direction force that the electromagnet supports varies with the tilted angle of the levitating 

object and the impact force(mass m) of the levitating object on the electromagnet is difficult 

to measure. If the mass of the levitating object changes, the current I  at normal state 

depending on the mass also varies. Additionally, the coil inductance value L varies 

depending on the levitating object location within the electromagnet coil, thus, it is a 

parameter that is difficult to exactly measure. The relative permeability µ  of the levitating 

object is also difficult to exactly obtain due to the uneven nature of the material, and the 

random gain to calibrate the normal deviation that occurs due to the mathematical model 

error is defined as K  and is additionally included in the list of parameters to be identified. 

Equation (60) shows the search ranges of the 5 unknown parameter values to be estimated 

by using the genetic algorithm. For each parameter, the search range was determined based 

on the actual experimented system and with the consideration of the physical 

characteristics. 0.5 m 0.9  0 I 0.7  0 L 0.1  0 μ 10000   

 0 K 2  (60) 

 

Parameter Value 

Length of a path for magnetic flux  0.1711m 

Displacement for levitate object(at steady state) 0.6mm 

Cross section of armature  4.8 × 10-4 m2 

Number of coil turn for magnetic bearing  200 turn 

Table 4. The table for the known parameters 
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Figure 26. The connecting diagram for the magnetic bearing system 
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IAE(Integrated Absolute Error) as shown in Equation (61) was selected as the objective 

function to execute RCGA. 

 f |e t | dt   (61) 

Here, e t is the difference between the magnetic bearing step response obtained 

experimentally and the magnetic bearing model step response obtained mathematically 

through the selected chromosome. 

For the implement the real coded genetic algorithm, the program and the modified parts of 

Table 3 are shown in Table 6 and the scripts are as follows. 

 

Parameter 
Parameter 

Value 
Genetic operator 

Population 100 Generate initial population 

Max. generation 100 Generate initial population 

Chromosome length 5 Generate initial population 

Crossover 

Probability 
0.9 Modified simple crossover 

Mutation 

Probability 
0.1 Dynamic mutation 

Eta 1.7 Scale fitting 

 

Table 5. Shows the program parameters necessary to execute RCGA. 

 

file name 

(*.m) 
function 

rcga Find optimal value on object function with RCGA 

rInitPa Define program variable for RCGA 

EvalObj evaluate the object function on the population for the reproduction 

 

Table 6. Modified program file list to execute real coded genetic algorithm 
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% rcga22.m 
% 
% The RCGA22 implements a real coded genetic algorithm for finding 
system parameter in the MBS 
%          
%   Encoding:                           
%     - Real                            
%                                       
%  Genetic operators:                   
%     - Gradient-like selection         
%     - Modified simple crossover       
%     - Dynamic mutation                
%                                       
%  Other strategies:                    
%     - Elitism                         
%     - scaling window scheme(Ws=1)     
%                                       
%  Remarks:                             
%                                       
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           
  
clf; 
clear; 
Test_data = xlsread('a_pidR.xls'); 
  
% initializes the generation counter 
gen= 1; 
  
% initializes the parameters of a RCGA 
[rseed,maxmin,maxgen,popsize,lchrom,pcross,pmutat,xlb,xub,etha]= 
rInitPa22; 
  
% creates a polulation randomly 
pop= rInitPop(rseed,popsize,lchrom,xlb,xub); 
  
% calculates the objective function value 
objfunc= EvalObj22(pop,lchrom,popsize,Test_data); 
  
% calculates gam 
if(maxmin == 1) 
  gam= min(objfunc); 
else 
  gam= min(-objfunc); 
end 
  
% calculates fitness using the scaling window scheme 
fitness= ScaleFit(objfunc,popsize,gam,maxmin); 
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% computes statistics 
[chrombest,objbest,fitbest,objave,gam]= 
rStatPop(pop,objfunc,fitness,maxmin); 
  
% builds a matrix storage for plotting line graphs 
 stats(gen,:)=[gen objbest objave chrombest]; 
  
for gen= 2:maxgen 
  
% prints the current generation 
    fprintf('gen= %d (%d) %f\n',gen,maxgen-gen,objbest); 
  
% applies reproduction 
    pop= 
rGradSel(pop,popsize,lchrom,fitness,chrombest,fitbest,xlb,xub,etha); 
 
% Gradient-like selection 
% applies crossover 
    [pop,nxover]= rMsXover(pop,popsize,lchrom,pcross); % modified 
simple crossover 
  
% applies mutation 
    [pop,nmutat]= 
rDynaMut(pop,popsize,lchrom,pmutat,xlb,xub,gen,maxgen); %dynamic 
mutation 
  
% calculates the objective function value 
    objfunc= EvalObj22(pop,lchrom,popsize,Test_data); 
  
% applies Elitism 
    [pop,objfunc]= rElitism(pop,objfunc,chrombest,objbest,maxmin); 
  
% applies the scaling window scheme 
    fitness= ScaleFit(objfunc,popsize,gam,maxmin); 
  
% computes statistics 
    [chrombest,objbest,fitbest,objave,gam]= 
rStatPop(pop,objfunc,fitness,maxmin); 
  
% builds a matrix storage for plotting line graphs 
    stats(gen,:)=[gen objbest objave chrombest]; 
end 
  
figure(1) 
% plots the best and average objective function values 
subplot(2,1,1) 
plot(stats(:,1),stats(:,2:3)) 
  
% plots the variables of the best chromosome 
subplot(2,1,2) 
plot(stats(:,1),stats(:,4:lchrom+3)) 
axis([0 100 0 10000]); 
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figure(2) 
Rd=273000; 
Ri=10000*1.0045; 
Rf=20000; 
R=9; 
A = 10^(107.7/20); 
Gs=1000; 
Kd=0.005; 
Kp=1; 
Ki=2; 
  
Cf= 4.94*10^-9; 
L_m=(1/8*pi*90+1/8*pi*40+2*60)*10^-3; 
N=200; 
mu_o=4*pi*10^-7; 
X=0.0006; 
S_a= 480*10^-6 *0.5; 
  
m= chrombest(1); mu_s=chrombest(2); 
I_ss=chrombest(3);L=chrombest(4); 
pt1= chrombest(5); 
Rs=pt1*2; 
  
X_o=L_m/(2*mu_s); 
X_1=X+X_o; 
  
k=N^2*mu_o*S_a/4; 
  
a=-2*k*I_ss^2/X_1^3; 
b=-2*k*I_ss/X_1^2; 
c=2*k*I_ss/X_1^2; 
  
n=-Rs*b*Rf*[Rd*Cf*Kd (Rd*Cf*Kp + Kd) (Rd*Cf*Ki + Kp) Ki]; 
  
d01=Ri*Cf*Rf*m*L; 
d02=Ri*Cf*Rf*m*(R + Rs) + Ri*m*Rd*Cf; 
d03=-(Ri*Cf*Rf*(a*L + Rs*b*c) - Ri*m + Rd*Cf*Rs*Rf*b*Kd*Gs); 
d04=-(Ri*Cf*Rf*a*(R + Rs) + Ri*a*Rd*Cf + (Rd*Cf*Rs*Rf*b*Kp + 
Rs*Rf*b*Kd)*Gs); 
d05=-(Ri*a + (Rd*Cf*Rs*Rf*b*Ki + Rs*Rf*b*Kp)*Gs); 
d06=-Rs*Rf*b*Ki*Gs; 
  
d=[d01 d02 d03 d04 d05 d06]; 
  
t_sample = 0:0.001:2.999; 
    y=step(n,d,t_sample); 
    plot(t_sample,Test_data(:,4)/1000,'-.',t_sample,0.21*y,'-') 
    axis([-0.05 0.25 0 0.00032]); 
legend('Step Response','Estimated Value') 
xlabel('Time[s]'),ylabel('Distance[m]') 
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% rInitPa22.m 
% 
% The RINITPA22 function initializes the parameters of a RCGA  
%                                                              
% Output:                                                      
%    rseed- random seed                                        
%    maxmin= -1 for minimization, 1 for maximization           
%    maxgen-    maximum generation                             
%    popsize- population size(must be an even integer)         
%    lchrom- chromosome length                                 
%    pcross- crossover probability                             
%    pmutat- mutation probability                              
%    xlb- lower bound  of variables                            
%    xub- upper bound of variables                             
%    etha- parameter of the selection operator                 
%                                                              
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     
% Revision 0.9  2003/4/17                                                  
% Edit by Hwanghun Jeong, CME PKNU                           
  
function 
[rseed,maxmin,maxgen,popsize,lchrom,pcross,pmutat,xlb,xub,etha]= 
rInitPa20 
  
rseed=      937;  
%rseed=input('rseed= ');  
maxmin=      -1;            % -1 for minimization 
maxgen=  100; 
popsize=    100;             % popsize should be even 
lchrom=         5; 
etha=         1.7; 
pcross=      0.9; 
pmutat=     0.1; 
xlb=  0*ones(1,lchrom); 
xub=  10*ones(1,lchrom); 
  
%xlb(1,1)=0; 
%xlb(1,2)=0; 
%xlb(1,3)=0.6; 
xlb(1,1)=0.5; 
xlb(1,2)=0; 
xlb(1,3)=0.7; 
xlb(1,4)=0.025; 
  
%xub(1,1)=0.5; 
%xub(1,2)=1000; 
%xub(1,3)=0.8; 
xub(1,1)=0.9; 
xub(1,2)=10000; 
xub(1,3)=0.9; 
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xub(1,4)=0.095; 
xub(1,5)=2; 

  
%xub(1,2)=480*10^-6; 
%xub(1,2)=1*10^-3; 

  
%xub(1,1)=10000; 

  
%xub(1,2)=10; 
%xub(1,3)=3.5*10^5; 

%xub(1,3)=1*10^-7; 
  

if(rem(popsize, 2) ~= 0) % do not move 
    popsize= popsize + 1; 

end 
 
% EvalObj22.m 

% 
% The EVALOBJ6 function evaluates a multivariable function  

%                                                           
% Input:                                              
%    x- variables, matrix                             

%    npara- number of the variables                   
%    popsize- population size                         

% Output:                                             
%    objfunc- objective function value, vector        

%                                                     
% Copyright (c) 2000 by Prof. Gang-Gyoo Jin, Korea Maritime 
University     

% Revision 0.9  2003/4/17                                           
% Edit by Hwanghun Jeong, CME PKNU                           

  
function objfunc= EvalObj22(x,npara,popsize,Test_data); 
Rd=273000; 

Ri=10000*1.0045; 
Rf=20000; 

R=9; 
A = 10^(107.7/20); 

Gs=1000; 
Kd=0.005; 
Kp=1; 

Ki=2; 
  

Cf= 4.94*10^-9; 
L_m=(1/8*pi*90+1/8*pi*40+2*60)*10^-3; 
N=200; 

mu_o=4*pi*10^-7; 
X=0.0006; 

S_a= 480*10^-6 *0.5; 
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for i= 1:popsize 
m= x(i,1); mu_s=x(i,2); I_ss=x(i,3);L=x(i,4); 
pt1=x(i,5); 
Rs=pt1*2; 
  
X_o=L_m/(2*mu_s); 
X_1=X+X_o; 
  
k=N^2*mu_o*S_a/4; 
  
a=-2*k*I_ss^2/X_1^3; 
b=-2*k*I_ss/X_1^2; 
c=2*k*I_ss/X_1^2; 
  
n=-Rs*b*Rf*[Rd*Cf*Kd (Rd*Cf*Kp + Kd) (Rd*Cf*Ki + Kp) Ki]; 
  
d01=Ri*Cf*Rf*m*L; 
d02=Ri*Cf*Rf*m*(R + Rs) + Ri*m*Rd*Cf; 
d03=-(Ri*Cf*Rf*(a*L + Rs*b*c) - Ri*m + Rd*Cf*Rs*Rf*b*Kd*Gs); 
d04=-(Ri*Cf*Rf*a*(R + Rs) + Ri*a*Rd*Cf + (Rd*Cf*Rs*Rf*b*Kp + 
Rs*Rf*b*Kd)*Gs); 
d05=-(Ri*a + (Rd*Cf*Rs*Rf*b*Ki + Rs*Rf*b*Kp)*Gs); 
d06=-Rs*Rf*b*Ki*Gs; 
  
d=[d01 d02 d03 d04 d05 d06]; 
  
    t_sample = 0:0.001:2.999; 
    y=step(n,d,t_sample); 
    objfunc(i)=0; 
    for j=1:3000 
        obj=abs(Test_data(j,4)/1000-0.21*y(j,1));  
        objfunc(i)= objfunc(i)+obj; 
    end 
end 
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