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1. Introduction 

Today's microelectronics, whose main driving force of development has always been the 

needs in computing devices, has achieved exceptionally great results over the last decade. 

The exponential growth in performance of microelectronic devices, predicted in 1965 by 

Gordon Moore and formulated as an empirical law, was sufficiently accurate for more than 

45 years: the computing power of single-chip microprocessor-based systems increased 

almost by a factor of four every three years. Simultaneously with the improvement of 

parameters of ICs the performance of supercomputers has increased. The performance has 

increased both due to a reduced duration of a cycle and due to pipelining and 

parallelization of computations. Currently, petaflops computers are built on the basis of 105 - 

106 single-chip processors with a clock frequency of 10 GHz. 

At the same time, the analysis of the element base of microelectronics has shown that the 

main obstacle to improve the performance of computer devices is the problem of 

connections, both on the surface of individual substrates, and between them. The area 

occupied by conductors is about 70% of the overall area of a crystal itself in modern VLSI. 

The total length of conductors exceeds the linear dimensions of a crystal by more than a 

thousand times. The energy spent on charging the conductors is 60-70% of all energy losses. 

Placement of the conductors on the surface of a crystal requires significant technical efforts, 

while the limit value of capacitance of a conductor, which is 10-11 F/m., is attainable [1]. On 

schematic level, there is also a problem of RC propagation delay in the connections. And 

consequently, the velocity of signal propagation in ICs is much lower than that of light (5-30 

times) depending on the degree of integration.  

Thus, the main source of increasing the performance of computers at the previous period of 

their evolution, which is concluded in increasing the performance of a single gate and the 

degree of integration, is nearly exhausted. Thus, it can be stated that the clock frequency of 

computers is determined by circuit limitations, rather than by physical and technological ones. 
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No less complicated problems arise while exchanging information between processor chips. 

With an increase in their size the number of inter-chip connections increases as well. And 

this reduces the clock speed by almost an order of magnitude. With decreasing the cycle 

duration, the above-mentioned connections play an increasingly significant role.  

From the stated-above it can be concluded that the solution to the problem of connections 

and thus further improvement of the performance of computer devices can be obtained by 

the following ways: 

 increasing the degree of parallelization of information processing at all levels down to 

elementary operations (a maximum depth of parallelization) and increasing the 

decentralization of functions of storage, control, and data processing, and transition 

from long logical links within the surface of a chip to the local relations between the 

neighboring gates, i.e. by transition to a VLSI with a homogeneous structure; 

 transition from connecting chips placed in a plane to 3D packs of VLSIs from these 

chips and to their vertical interconnections. 

It follows from general physical considerations that a simple way of introducing the "third 

dimension" into the structure of communications is using optical links. Such channels have 

the following advantages: 

 A high degree of parallelism of the information transfer from plane to plane makes 

possible to use highly parallel algorithms for processing (down to elementary 

operations), and thus to create high-performance computing. 

 Capability of optical synchronization allowing delivering a synchronization signal to 

any point of a chip practically without delay, e.g. from one light source outside an IC. 

 Optical communications channels are free from parasitic effects of the mutual influence 

because of the neutrality of photons. With increasing the clock frequencies (especially in 

the gigahertz frequency range), the advantages of optical signals grow as capacitive 

coupling between electronic conductors with increasing frequency grows as well. 

There is always an interest in the use of optics for high-performance computer devices. 

Recently, a special attention of developers of such devices has been drawn to the 

development of a new element base, creation of optoelectronic integrated circuits (OEIC), 

for the organization of inter-IC and inter-processor connections in order to attain high 

throughput and low power consumption [1-4]. 

The optical communication bandwidth over short distances within a few millimeters 

already competes with electric conductors with sufficiently low energy consumption, up to 

1 pJ/bit/m or less. The placement of optical communication channels directly on the chip 

surface can significantly reduce this bandwidth. The reports are already known about the 

first experimental data on providing the density of the bandwidth 37 Gbit/s/mm2 and 

higher by using a switched CMOS pair of a vertical-cavity surface-emitting laser (VCSEL) 

and a CMOS-compatible avalanche photodetector (CMOS-APD) system. The frequency of 

switching light sources VCSEL, electro-optic modulators MQW based on superlattices GaAs 

/ GaAlAs, InGaAsP, etc. as well as that of their corresponding photodetectors has already 
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reached values of 20  50 GHz, which in the short term, can grow up to 70  80 GHz. The 

level of technology of constructing field-programmable smart-pixel arrays and FP-SPA 

systems based on the use of optical channels in free space, is now able to provide the 

exchange of information between the two surfaces at a rate exceeding 10 Tbit/cm2. 

Currently, however, optical communication channels are used only for the information 

transfer problems. Their application directly to the microelectronic structures and in the 

channels of information processing virtually does not evolve. The main reason is that the 

size of components of gates (modulators and light sources) due to the wave nature of the 

optical signal is much larger than that of the active elements of modern microelectronics. 

Entirely optical computers performing massively parallel computations typically contain 

rather large elements: lenses, shadowgrams, spatial light modulators, etc. and cannot be 

created using microelectronics technology. 

At the same time, it may also be noted that with the development of nanophotonics, the 

advent of the light sources and receivers with nanometer dimensions (see, e.g. [5-7]), the 

optical channels could be used not only for the exchange of information between ICs, but 

also for the information processing, with the 3D logic devices. Thus, the construction of 

optoelectronic schemes, whose implementation fits well into the existing technology of 

building semiconductor circuits, is actual. 

The objectives of this paper are: a) to consider the possibility of creating high performance 

and manufacturable multi-layer (3D) chips in which a processing of information and its 

mass exchange between the layers is performed using optical communication channels and 

whose parameters are compatible with those of microelectronic circuits, b) to represent the 

algorithmic and computer tools providing the design and research of simulation models of 

such 3D algorithms and structures with massive parallelism that are oriented to an 

optoelectronic implementation. 

The principles of the gate, where logic signals are represented by the presence or absence of a 

light flux driven by an electric field are described in the paper. The possibility of the physical 

implementation of 3D logic circuits based on such elements is analyzed and its advantages 

are discussed. The methods and means of the algorithmic design of 3D ICs with a 

homogeneous structure for execution of algorithms with fine-grain parallelism are described. 

These tools include a formal model of fine-grained computing, Parallel Substitution 

Algorithm (PSA) and a simulation system (WinALT), which is based on PSA and provides 

the construction of models of devices with a 3D architecture. Features of the system are 

demonstrated by constructing models of 3D optoelectronic matrices for parallel data 

processing. Matrices can be characterized by a high performance, simplicity of cells, 

homogeneity and simplicity of the topology. Simulation models help in acquiring an objective 

view of the complexity and performance of the matrices and confirm the reasonability of the 

transition to 3D VLSI in order to overcome the problem of connections that arises in modern 

2D VLSI. The WinALT system is available in Internet. The expediency of transforming 

WinALT to an online environment for supporting the simulation of 3D computational 

structures with the users' participation in the network (virtual) community is discussed. 
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2. The physical basis of implementation of 3D optical logic circuits 

2.1. Optoelectronic gate 

Let us consider features of constructing a universal gate, which is based on the modulation 

of a light flux by an electric field [8-11], and when only a single transition of energy 

(between light and electric signal), the source of a light flux is shared by many gates. The 

scheme of such a gate is presented in Figure 1. It has the following main components: a light 

modulator LM controlled by the electric field, EC converter of a light signal to an electric 

signal (e.g. a photoelectric transducer), energy storage or a load element LE (capacitance for 

dynamic circuits). The element controls the intensity of the luminous flux transmitted by 

LM, and with the help of the light flux entering the optical input of EC. 

The most optimal physical and technical solution, as follows from [8-11], is obtained when 

the light modulator is electro-optical, the energy converter is photovoltaic and the energy 

storage is electrostatic. Such a decision is mainly due to the consideration of energy. In this 

sense, the use of magneto-optical and acousto-optic light modulators is limited by a high 

energy consumption and by the complexity of the direct energy conversion (photomagnetic 

or photoacoustic). 

 

Figure 1. Flowchart of universal gate 

The state of a gate is determined by the ability of the light modulator to pass a light flux 

coming on its input (state "0" or "1"). This state is unambiguously related to the amount of 

energy stored, which, in turn, is determined by the intensity of the light flux entering the 

energy converter (entrance gate). According to Figure 1 a gate in the dynamic mode 

operates as follows: 

 supply of energy from the energy source (voltage pulse) to LE at the time t0 (operation 

"erasing information"); 

 supply of a light flux on the input of the transmitter PE at the time t0 + Δt (operation 

"information recording"), where Δt is the duration of a cycle; 

 supply of a light flux on the input of LM at the time t0 + 2Δt (operation "read information"). 

Assume that the modulator lets the light flux pass when the amount of energy stored in LE, 

and does not let the light pass otherwise. Let us also assume that when EC receives a light 
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flux composed of the streams X1, X2,..., Xn, such energy in the load element is released. Then 

the light flux on the output of the modulator Y (at the moment of reading) will be the Pierce 

logical function: 

1 2 nY X X X    . 

 

Figure 2. Universal gate with optical connections 

This function forms a complete basis of Boolean functions, so the element proposed can be 

considered universal. 

The electric functional scheme of the gate is shown in Figure 2, where K is the key, V is the 

power supply voltage. The gate implements the Pierce function and it operates by cycles 

according to the following general description. 

cycle 1 - "erasing information", key K is in the position 1, and capacitance C is being charged 

by the source when the photodetector FP is illuminated. 

cycle 2 - "storing" K is in position 2 (see Figure 2, a), the light flux with intensity J1 or J2 

(depending on the level of illumination corresponding to signal "1" or "0", i.e. whether there 

is at least one of Xi not equal to "0") comes to the optical input of the gate (photodetector FP). 

According to the level of illumination the capacitance C is discharged with the time 

constants RTC, or RCC, and the RTC >> RCC, where RT is dark resistance of FP, and RC is its 

resistance under illumination. 

cycle 3 - "reading", key K is in position 2 (see Figure 2, b) and the light signal passes to the 

optical input of the modulator. The light flux corresponding to "0" light is obtained from the 

output if signal "1" arrived at the input in the second cycle. And vice versa, signal "1" with a 

high intensity of light is on the output of LM if there was signal "0" in the previous cycle. 

The storage time of information received by the element is proportional to the value of 

RTC. However, we can create a dynamic memory by inclusion of two gates so that the 

output of one of them be connected to the input of another and vice versa, as shown in 

Figure 3. Its storage time is limited only by the time of maintaining the voltage on the 

power supply. 
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Figure 3. A dynamic memory cell 

When constructing digital devices based on these optical gates the interlayer connections are 

implemented by placing pairs of "modulator - photodetector" in different layers-planes so 

that the optical output light modulator of one gate is geometrically aligned with the 

photodetector optical input of another gate. 

2.2. A sample of constructing a dynamic memory cell 

Such a cell is intended for storing information in the electric form on capacitors and 

transferring information between cells by pulsed optical signals, while a direct transfer of 

charge does not take place. The scheme of the cell is depicted in Figure 3. 

Assume that a bit of information (e.g. "0") is written in the upper gate 1. The switch K1 was 

shot to pin 2 and PD1 was closed in order to do so. 

Cycle 1. "Erasing" of information in lower gate 2 by charging the capacitance C2 under lit PD2 

and the switch K2 shot to pin 1 of the power source with voltage V. 

Cycle 2. The reading of information from element 1 by the light signal Ird1. The switches K1 

and K2 are in position 2. The output signal from LM1 is the input writing signal for element 

2. 

Cycle 3. The "erasing" of information in element 1. The switch K1 is in position 1 and the 

capacitance C1 is connected to the power source with voltage V and is charging. 

Cycle 4. The reading of information from element 2 by the light signal Ird2. The switches K1 

and K2 are in position 2. The output signal from LM2 is the input writing signal for element 1. 

The information in a cell is represented by a pair of light signals ("0", "1") or by voltages 

taken from pins of capacitances. It can be kept as long as needed as a result of iterative 

repetition of cycles 1-4. If "1" was written to a cell in the initial state, it would have kept a 

couple of "1", "0". 

Similarly, other schemes of optical elements can be built to implement the basic logic 

functions: repeater, inverter, AND, NOT-AND, OR, NOT-OR, sum by modulo 2, 

implication. The analysis of transfer characteristics for such elements is presented in [10]. 
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The described principle of implementation of inter-layer communications allows creating 

functionally flexible devices by replacing electric logical communications by the optical ones 

and by using 3D structures of gates. A computational device would contain a minimum 

number of elements and electric connections if the following rules of its creation are 

followed: parallel electric circuits are used to supply power to elements and parallel logical 

links are done using optical channels. 

An illustration of the functionality of a logic gate with optical connections is presented in 

[10, 11] using samples constructing 1D and 2D shift registers, switch and matrix processor 

for parallel image processing. The processor consists of a control block and a program 

controlled cellular automaton. The control block stores a program and fetches its 

instructions. The cellular automaton performs information storage and processing [11]. A 

cell in cellular automaton transforms information by changing its own state and those states 

of its neighbors. Any transformation is represented as a sequence of elementary 

transformations. Each elementary transformation is defined by the contents of a command 

that comes to a cell from the control unit. The transformation of information in a cellular 

automaton is performed simultaneously by all cells. 

The following conclusions can be drawn from the analysis of the functioning of the 

described devices (primarily the matrix processor), the specific features of their design and 

comparison with microelectronic devices, capable of performing similar functions. 

1. A cell of matrix processor contains significantly less elementary components (estimated 

by two orders of magnitude) as compared to conventional chip with similar functional 

capabilities. 

2. The total number of cycles spent on execution of logical operations required for image 

processing is also smaller, at least by a factor of N (where N is the number of lines in the 

image). The time of the complete image processing does not depend on its size. 

In particular, a very small number of clock cycles is required to execute such operations 

as selection of a contour image, noise filtering, noise filtering with masking, extension 

of lines, etc., which are quite complex for electronic circuits. And the number of cycles 

remains unchanged when image dimensions increase. 

3. The area occupied by the connections is 7 - 8% of the total area of a substrate, as shown by 

the analysis made. The described devices have a higher volume density of placement of 

elements, the reliability of connections, noise immunity, and ultimate manufacturability. 

In addition, the design of an optical VLSI is considerably simpler, since there is no need to 

take a complex configuration of interconnections into consideration. 

A breadboard construction of a cell of optic dynamic memory is created in order to 

demonstrate the possibility of practical implementation of optoelectronic gates [11]. It 

consists of two optoelectronic logic gates. Lithium niobate crystals are used as optoelectronic 

modulators. 

The study of the dynamic memory model has made possible to draw the following 

conclusions: 



 

Optical Communication 62 

 transfer of information from one element to another can be done without loss of 

information an unlimited number of times; 

 the use of threshold photodetectors allows reducing of the operating voltage and of 

energy required for switching a gate down to acceptable levels for microelectronic 

implementation. 

3. The Cellular technology constructing 3D logical structures 

Efforts to create optoelectronic circuits have given impetus to the development of 

algorithmic and software tools that aid in solution of the problem of design and study of 3D 

(multilayer) digital structures, focused on the use of optical interlayer connections. 

These tools map a primordial parallel algorithm of a problem solution onto an architecture 

with a massive spatial-temporal parallelism. The orientation to constructing structures of 

models that consist of huge sets of rather simple and homogenous computing devices (cells), 

mainly with local links, and placed in a 3D space is their basic property.  

The considered tools include: 

 a formal model of fine-grain (cellular) computations, which is called the Algorithm of 

Parallel Substitutions (PSA) and which serves as the basis of a method for synthesis of 

parallel architectures; 

 a simulation system of parallel computational processes, which is used for the 

construction, debugging of models of 3D logical structures as well as for the extraction 

of the characteristics from these models. 

A detailed description of the cellular technology is given in [11]. 

3.1. PSA: A generalized model of fine-grain computations 

Conceptually PSA unites in itself a substitutional character of Markov's algorithm [12] and 

spatial parallelism of a cellular automaton [13] basing on an associative mechanism of 

application of operations, which is common to both of them. PSA represents a "true 

parallelism" of computations, when all the allowable operations are executed at each step for 

all the available data. The main idea of PSA is concluded in the following three statements: 

 The processed information is presented in the form of a cellular array, which is a set of 

cells. Each cell is data (a bit, a character, a number, etc.) with its name (its "location" 

within array, which is an element of a set of names M) in the array. A set of data 

belongs to a certain finite alphabet A. 

 The algorithm is defined by a set of parallel substitutions. They have left-hand and 

right-hand sides (left and right parts). The expression in the left part generates cellular 

arrays, one for each cell name in the processed cellular array. If processed arrays 

contain one or more such arrays, then the substitution is applicable. Its execution means 

that a certain "base" part of the found array generated by its right part is replaced by 

array generated by its left part for the same cell name. Its execution means that a certain 
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"base" part of the found array is replaced by the array generated by the right part of the 

parallel substitution for the same cell name. 

 The process of computations is iterative. At each iteration, all the substitutions 

applicable to the processed cellular array are executed. The computation is over when 

no substitutions applicable to the array obtained at the previous iteration were found. 

This array is the result of work of PSA. 

Executing the substitution in the form of replacement of one cellular array by another 

permits representation of such replacement as replacement of one spatial image by another. 

This is rather essential for a visual construction of computer-aided model of optoelectronic 

logical structure and visual representation of computational process of such a model, which 

is distributed in time and space. 

A formal description of PSA is presented in [14]. Let us demonstrate the idea of PSA by a 

simple example. Let us consider PSS  for adding many non-negative binary numbers as a 

sample. 

Let A = {0, l}, M = N2, N = {0, 1, 2, ...}. A transformed cellular array is a 2D rectangular table 

whose cells are numbered according to left coordinate system (i is abscissa, j is ordinata). 

The name of cell m is a pair of values i, j. The digits of numbers are kept in the strings of the 

table. The least significant bits occupy the right-most column. PSA  consists of two 

parallel substitutions: 

1

2

:  (1, , )(1, , 1 )(0, 1, )  (0, , 1 )(0, 1, 1 )

       (0, , )(0, , 1 )(1, 1, ) ;

:  (1, ,  )(0, , 1 ) (0, , 1 )   (0, , )(1, , 1 ) .

{ } { }
{ }
{ } { } { }

i j i j i j i j i j

i j i j i j

i j i j i j i j i j






       
   

     

 

The left part of the substitution is to the left of the arrow, while its right part is to the right of 

the arrow. Shift functions are written in angle brackets in the definitions of substitutions . 

These functions set the location of cells of the left and right parts of a substitution as related 

to each other. A cell description is confined in parentheses. Cell states are shown to the left 

of commas. The "base" parts of the left parts of substitutions are at the left of asterisks. When 

particular values of the pair i, j are substituted into the shift functions, the cellular arrays 

associated with this name are obtained. 

The description of substitutions allows their geometric representation depicted in Figure 4, 

a. In this case, the left and right parts of commands are defined by templates, and the search 

of occurrences of the left parts of substitutions is done by shifting their templates above cells 

of the table along axes. One step of transformation of the source table containing numbers 9, 

15, 5 is presented in Figure 4, b. After carrying out four steps the result is placed in the top 

string, while the rest of them contain zeros. 

The expressive capabilities of PSA augment if an alphabet A is extended by introduction of 

variable and functional symbols. An alphabet A serves as a domain for variables symbols and 

as a range for functional symbols. In the case of graphic representation of substitutions,  
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Figure 4. Cellular adder: a – graphic representation of PSA commands, b – one step of execution of 

algorithm 

variable symbols can be written into cells of templates of the left part of substitution, while 

the functional symbols can be in the cells of the right part. Such a substitution is called 

functional substitution. When an alteration of a state is performed for a cell located in the 

processed array under a template cell of the right part of a certain command containing a 

functional symbol, it is not specific data from the template cell, but a result of evaluation of a 

certain function that is written into this cell. The states of cells in the processed array that are 

below the cells of a template of the left part can be arguments of such functions. Using the 

functional substitutions helps: a) in reducing PSA notation to a considerably more concise 

form in theoretical issues, b) in practical issues to represent rather complicated devices such 

as ALU by a single cell. 

3.2. A simulation system of 3D digital structures 

3.2.1. Overview of the system 

A physical and technical rationale for the construction of multilayer optoelectronic 

structures is given In Section 2. Evidently the construction of real 3D structures requires a 

large amount of work associated in the first place with selection of an optimal kind of 

structure from the standpoint of technical parameters among a big number of possible 

variants. A manual solution of such a task is virtually impossible. Thus, a computer-aided 

tool must be available for the research and development of models of 3D structures. Such an 

instrument was built and it is called WinALT [15]. The user's interface of the system 

coincides with the standard user's interface in Windows applications. A simulation model is 

represented by a project that contains a number of sub-windows. Each sub-window can 

hold graphic or text objects of a model. Creation and editing of graphic objects are carried 

out by means of toolbars, menus and dialog windows. The system is freely distributed. 

System's site [16] contains a section "installation", which includes manuals on installation, 

uninstallation and system's distributive package. An open architecture of the system enables 

the user to participate in extension of the system functionality. 

3.2.2. Adequacy of the system language to the problem domain 

The WinALT was developed simultaneously with computer-aided models of parallel 

algorithms and structures under their strong influence. This influence has manifested itself in 

the WinALT system by a wide employment of visualization tools both for supporting the 
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construction of parallel algorithm descriptions (graphic representation of objects 

corresponding to cellular arrays, the left and right parts of substitutions) and for their 

simulation (capability to view the dynamics of application of each substitution). What is 

more, a special attention was given to the development of tools that provide the visualization 

of 3D (multilayer) objects and that allow viewing the transformation of cell states in any layer 

of a 3D cellular array. This is due to the orientation of the development of computer-aided 

models to fine-grain architectures that are promising for the implementation in the form of 

multilayer VLSI. The simulation language contains three parts. 

The first part of the language is designed to describe parallel computations in the form of 

parallel substitutions. It is fully based on PSA. 

The objective of the second part of the language is the description of sequential 

computations. This part is essentially based on Pascal. It provides statements for the 

description of simulation program structure, control operators, assignment operator and 

subroutine call by name or by reference. These statements can be used in a model program 

for the description of sequential control when needed. These means can be used in a model 

program for the description of sequential control, when it is needed, for the definition of 

functions that describe cell states and, also, for the construction of such service functions 

within a model program as menu definition, graph drawing or initial data input. 

The third part of the language provides importing libraries into a model program. These are 

dll libraries written in C/C++ and embedded into the simulation system. This helps in 

enriching the functionality of simulation tools to suit the user. 

Let us describe the first and the third parts in greater detail. 

The Description of the Parallel Part of Simulation Language. This part has a clear division into 

graphic and analytical subparts. Graphic objects are cellular arrays and templates. An image 

of an object is composed of color cells located along horizontal and vertical axes and, also, 

along the axis that goes from the user to the screen. The origin in the template is called its 

center. 

A color is used to visualize a cell's state. Its state can belong to any cell's data type supported 

by the library of data formats (see below). A name can be assigned to a cell in addition to a 

typed value as an additional property. It has to be unique within the scope of one cellular 

object. This makes possible to implement functional substitutions in WinALT. There is a 

special neutral void state of a cell (depicted by a diagonal cross on a color background). 

A parallel substitution in WinALT simulation language is set by a bunch of operators in-at-

do. The names of cellular arrays and templates can be used as parameters in these operators. 

In the case of one-block structure of a device (a single cellular array), a parallel substitution is 

described as follows. The parameter of in operator is the name of a processed cellular array. 

A name of template of the left part of substitution is a parameter in at operator, while that of 

its right part is a parameter in do operator. The execution of substitution is done in two 

phases. During the first one, the center of a template of the left part is moved along the axes 

in a processed cellular array, and all its occurrences in this array are marked accurate to the 
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empty cells. At the second phase, the states of cells of the processed cellular array in all these 

occurrences are replaced by the states of cells from the template of the right part also accurate 

to the empty cells. Taking multi-block structure of the device into consideration means the 

following. The parameter in operator in is a list of names of cellular arrays placed in brackets 

and separated by commas. The lists in operators at and do are arranged similarly, but instead 

of names of cellular arrays the names of templates are used in them. Combining patterns in the 

list means that the movement of patterns in the images of their corresponding cellular arrays is 

coordinated by substitution of the same set of coordinates into the centers of all the templates 

of the operators at and do. The coordinates of cells of the cellular array that is in the head of 

the list in operator form these sets. Such substitutions are called vector substitutions and allow 

describing parallel transformations of information in compositions of cellular arrays. 

A bunch of operators in-at-do and a description of a function serve as an analog of 

functional substitution. Operator at contains the names of templates, in which some cells are 

named. A function uses these names as input and output variables. The name of a function 

is used as a parameter in operator do. A functional substitution can also be a vector one. 

A synchroblock exhaust-end (or shortly ex-end) is the main structure for definition of an 

algorithm of a device operation. This block implements an iterative procedure of PSA 

application for the composite operators describing parallel substitutions that it contains. In 

addition, there are two more kinds of synchroblocks that were introduced: clock – end (cl – 

end) and change – end (ch – end). The first one executes its substitutions a number of times 

specified as its parameter. The second one executes its body only once. 

Remark. The combination of parallel and sequential parts of the language is attained by the 

possibility to use operators from the sequential part in synchroblocks. Let us also note that 

nested synchroblocks can be in WinALT simulation language. The described capabilities 

allow constructing any parallel-sequential compositions of synchronous transformations of 

cellular arrays. 

Model program. The structure of a model program is quite conventional. It consists of a list 

of libraries imported to a program (using operators use, import and include), declarations 

of constants, variables and cellular objects, procedures, functions and the main operator 

block. The main operator block is placed in operator begin-end brackets and contains 

operators of the first and second parts of the language. A program may include comments, 

which can be placed in braces. A project can contain any number of simulation programs. 

They are capable of interacting with each other if necessary. 

The third part of the language is based upon a set of WinALT libraries. The functionality of 

the system is extended by means of external modules. These modules are represented by 

Windows dll files. These external modules contain the interface functions that are used in 

versatile simulation models. The external modules form several groups that are called 

libraries. Some of them are briefly described below. 

The library of data formats eliminates limitations of a data type that can be represented by cells 

in a cellular array. The library contains modules for representations of cellular arrays with 
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integer cells (int8, int16, int32, uint8, uint16, uint32), bit cells (bit), float cells (float) and 

others. Some external formats are supported by the modules of library, such as bmp raster 

graphics format. The assignment of default type for a cellular object means that any of its 

cells can have any of the above-mentioned formats. The latter can be used for the 

representation of heterogeneous cellular objects. In GUI, the type of a cellular object can be 

selected in a combo box within the dialog window of the new object creation. 

The library of language functions provides the ability to use such functions in simulation 

programs as functions of object management (creation, deletion, modification or size 

alteration), GUI functions (construction of dialog windows and data input based upon 

them), mathematical functions (sin, cos, atan, cosh, log, j0), console I/O functions (WriteLn, 

ReadLn), file I/O functions (fopen, fgets, fread, feof, …) and miscellaneous functions such 

as max, min, null, typeof, StringLength, Time. Operator use activates the modules of this 

library in a simulation program. A typical module of this library is a dll written in C or C++.  

The library of visual modes provides a customizable visualization of a cellular array and its 

cells. A cell state can be visualized e.g. by color, a directed arrow or by a number or by their 

certain combination. A 3D cellular array can be shown as a deck of layers or as layers 

unrolled in a line or in a grid. 

New external modules can be added to any of these libraries. Such modules can be created, 

for example, using Microsoft Visual Studio. Their source texts can be either borrowed from a 

provided sample, written from the scratch, or taken from an existing library of functions 

(e.g. ANSI C runtime library). 

3.3. Constructing simulation models of a family of optoelectronic matrices in 

WinALT 

3.3.1. Mapping digital schemes onto a customizable cellular automaton 

The cellular automaton with Margolus (further CA) neighborhood [13], in which setting 

cells for execution of a certain set of elementary transformations of information, serves as a 

logical basis for the construction of a family of optoelectronic matrices. The CA is a double 

layer automaton. Its first layer functions in the same way as the Margolus automaton, being 

a rectangular matrix of cells. Let us split the matrix to blocks of 2x2 cells. Let us call it E-

partition. Let us split the matrix again to blocks that are shifted as related to the blocks of E-

partition by one cell along the vertical and horizontal axes. Let us call it O-partition. Each 

cell of the first layer can be in one of the three states: "white", "gray" or "black". Let us call 

this layer informational. The layer under the informational one is called control layer. Its E-

partition coincides with that of the informational layer. This layer keeps the table of settings 

the control layer of CA. The size of a cell in the table coincides with that of a block. The CA 

is shown in figures as a sweep of two layers in a plane. The informational layer is on the left 

side and the control layer is on the right side. The blocks of E-partition are limited by solid 

lines. The blocks of O-partition are limited by dashed lines. An elementary transformation of 

information performed in the informational layer is a parallel substitution. Its left and right 
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parts are matrices with 2x2 cells. These matrices are composed of white, gray and black cells. 

The elementary transformations performed in a CA are enumerated. Setting a CA consists in 

writing numbers of those elementary transformations that can be performed in the block of 

informational layer above a cell into that cell. Digital (combinatory) schemes of different 

kinds (adder, multiplier, etc.) can be implemented by setting a CA. A source combinatory 

scheme is initially transformed in a way that any of its gates has no more than two inputs 

and two outputs. All the cells of the informational layer are white in its initial state. The 

picture of a scheme to be imitated in CA, which is made by gray cells in informational layer 

of CA is called image of digital scheme. The signals transformed in a digital scheme are 

depicted by black cells in its image. The states of cells in each block of the information layer 

of a CA form a certain picture called image of a block. 

The graphic images of commands of parallel substitutions are depicted in Figure 5, a. A 

number of a command is shown above an arrow. The transformations of information in 

Margolus cellular automata are performed by alternating E- and O-partitions [13]. The 

alternation of partitions is substituted by alternation of two groups of shifts of the image of 

simulated scheme as related to the fixed control layer in a CA. A group of shifts set into 

correspondence with E-partition is called E-group. A group of shifts set into correspondence 

with O-partition is called O-group. The introduction of a setting for CA allows reducing the 

number of parallel substitution commands that are executed by a single block to two. The 

command, whose number is specified first in a cell of the settings table of the control layer, 

can be executed when E-group is active, while the command, whose number is listed 

second, can be executed when O-group is active. A command is executed if its left part 

coincides with the image of a block in the informational layer. The execution of a command 

sets its right part as the image of a block. 

Possible variants of signal transmission in the image of a digital scheme (horizontal and 

diagonal transmissions, branching and crossing of signals) and the indications to the 

functional elements (AND gate is denoted by the sign '&', OR gate is denoted by '1', addition 

by modulo 2 is denoted by '=1', half-adder" is depicted at end) are shown in Figure 5, b. 

When E-group of shifts is active, the commands are executed for the source disposition of 

the image of a digital scheme, then for the image shifted by one row of blocks from E-

partition up as related to the source image, and then one row of blocks down as related to 

the source image. The shifts are introduced in order to provide the execution of 

commands imitating the operation of gates and crossing of signals transmission channels 

in the image of a digital scheme. When O-group of shifts is turned on, commands are 

executed for the image obtained by shifting the source one by one row down and one 

column to the left. 

The horizontal transmission of a signal is simulated by commands 1, 2. The diagonal 

transmission is performed by commands 3, 4. The signal branching is done by 5, 6 and 

signal crossing - by 8, 10, 15. The operation of AND gate is simulated by the two sets of 

commands: 9, 16, 17 and 12, 16, 17, because the result on the output of the gate can be 

recorded either in the right top cell or in the right bottom cell. of the block. Similarly, the 
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simulation of OR gate is done by commands 7, 8, 9 and 10, 11, 12 and the simulation of 

addition - by modulo two is done by commands 7, 8, 18 and 10, 11, 18. A block of E-partition 

that does not contain white cells can simulate a gate operation not only with one output, but 

also with two outputs. Thus, the operation of half-adder is simulated by commands 7, 8, 12. 

The capability to simulate digital schemes with two inputs and two outputs allows 

performing both the signal transfer, e.g. by one of the diagonals, and a logical 

transformation of this signal and another signal. For example, a signal transition from the 

right bottom cell into the right top cell of a block along with performing AND operation 

with signals from the left column of cells in the block with writing the result to the right 

bottom cell of the block is simulated by commands 8, 15, 16. 

  

Figure 5. Graphic representation of parallel substitution commands, a - images of commands, b - 

symbols of signals and functional elements 

Let us demonstrate an image of a full adder in CA as a simple sample of what was stated 

above. It is presented in Figure 6. 

Let us comment on this figure. The numbers of commands listed in Figure 5, a are used in 

the settings table. An image of a digital scheme with mnemonic specification of the 

functions of its composing blocks except those imitating the transfer of signals under O-

partition is given in Figure 6, c in addition to the image in Figure 6, a, b. A sign of operation 

or an arrow in the image of scheme denotes a cell where result of transformation or data 

transfer is placed. Such a representation is rather easy to grasp and is introduced solely for 

the purpose of the reader's convenience. This helps in comparing a combinatory scheme and 

its image without the table of settings. 

Usually, the signal transfers will be omitted when using such a kind of representation of a 

digital scheme unless that hampers the perception of the image of a scheme. Let us describe 

the resulting image of a digital scheme. Each of blocks (2, 2) and (3, 3) corresponds to a half-

adder, which is a composition of AND gates and of addition by modulo two. Blocks (4, 2) 

correspond to OR gate. 
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Figure 6. Full adder: a - a combinatory scheme, b - an image of scheme, c - a correspondence of blocks, 

d - the settings table 

Some or all of the gray cells in the first column of CA have to be altered to black ones in 

order to introduce input signals to a full adder. 

A more complicated and realistic sample is presented in Figure 7. The following heuristic 

criteria are selected for the estimation of quality of a particular mapping. A mapping is 

optimal if there is at least one such chain from the inputs of a scheme to its outputs, that is 

composed only of blocks that imitate gates connected with other by corner cells. The image 

of an eight-bit pyramidal adder [17] transformed into a scheme, in which each gate has two 

inputs and one or two outputs is presented in Figure 7. 

 

Figure 7. A pyramidal adder: a - the combinatory scheme of a four-bit adder, b - a concise image of 

eight-bit adder scheme 
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The image of a four-bit adder, which scheme is depicted in Figure 7, a, is a source fragment 

for its construction. The images of four-bit adders are contoured by a bold line in Figure 7, b. 

The rest of the scheme image provides daisy chaining of the selected images of adders. The 

image of an adder presented in Figure 8, b meets the heuristic criteria. The proposed way of 

constructing an image of a digital scheme with a specified bit width by connecting its 

homogeneous fragments of smaller bit width, for each of which the best image is already 

found, can be used for other kinds of schemes as well. 

 

Figure 8. A project window of simulation model of CA that implements an eight-bit adder 

From a logic standpoint, a fine-grain structure (a micro-pipeline) is implemented by setting 

a CA up. This structure simulates a simultaneous operation of many copies of the same 

digital scheme. Each copy (let us call it a virtual digital scheme) performs a transformation 

of its own data set. A stage of a micro-pipeline forms a vertical column of blocks in E-

partition of matrix. Each stage is a "cut" of image of a virtual scheme in a certain phase of 

transformation of the relevant information. This feature of matrix makes possible to obtain 

new results in each cycle. A cycle of micro-pipeline operation includes transformation and 

transfer of data from one stage to another. It means that a cycle includes an execution of the 

both groups of shifts. A model is constructed in WinALT in order to evaluate the correctness 

of an eight-bit adder implemented as CA. 
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3.3.2. CA simulation model implementing eight-bit adder 

The screenshot of a window of this project is presented in Figure 8. This window contains 

sheets with all the graphic objects of the model. 

The sweep of a double layer cellular array byte::CellStruct is presented at sheet Model.3do. 

The upper layer containing the image of an eight-bit adder is presented at the left. The 

bottom layer is shown at the right. It contains a computer-aided representation of the 

settings table of an adder. The division of array layers into blocks is done by setting the cells 

of the bottom layer with both even coordinates into a state dedicated for this purpose. The 

numbers of substitution commands are represented by color in the settings table. The 

numbers of commands are distributed by the block cells as follows: the right and left top 

cells of block keep the numbers of the first and second commands respectively. The rest of 

cellular arrays shown in this window are auxiliary. Array inp keeps a set of input data. The 

columns of array inp are written in each cycle to the leftmost column of the informational 

layer of array byte::CellStruct using the array c_in and become the values of outputs of an 

adder. Similarly, the results of computations from the very right column of the 

informational layer of array byte::CellStruct are transferred to array out that stores the 

results of pipeline computations. Double layer templates are presented in sheet Rules.3do. 

The templates named ati and doi are put in correspondence with the left and right sides of 

substitution command with the number i. The upper layer of template ati coincides with the 

left part of the substitution number i, while that of template doi coincides with the right part 

of that substitution. The left upper cell of the bottom layer of template ati contains number i 

of substitution command. The number is represented by a color. A color of the left bottom 

cell of the same layer coincides with that of those cells in the bottom layer of array 

byte::CellStruct, which provides its partition into blocks. All the other cells of the both 

templates are empty (diagonally crossed). The templates used in substitution commands of 

the procedure imitating clocking of CA are presented in sheet Shifts.3do. A cycle of a model 

execution is divided into the four stages. At each of them parallel substitution commands 

kept in the settings table are executed: 

 above the source image at the first stage; 

 above the image shifted two cells up from the source one at the second stage; 

 above the image shifted two cells down from the source one at the third stage; 

 above the image shifted one cell down and one cell right from the source at the fourth 

stage (the command interleaving is done in the settings table during this stage: odd and 

even columns are swapped). 

The operation of gates of a scheme is simulated at the first three stages of cycle. The data 

transfer between gates is simulated at the fourth stage. The cellular image and the settings 

table return to the initial ("unshifted") state at the end of a cycle. 

Let us briefly present main procedures of simulation program. The description of parallel 

substitution commands is kept in procedure mainProc, while the shifts performed at the 

each stage of a cycle are defined in procedure shiftImage. The body of procedure mainProc 

contains operator in with parameter byte::CellStruct and eighteen bunches of at-do 
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operators. The parameters of operators at and do in the i-th bunch are the templates named 

ati and doi respectively. The shifts of image of the digital scheme with respect to settings 

layer and the interleaving of substitution commands is done in procedure ShiftImage by 

vector functional substitutions. Cellular arrays byte::CellStruct and Count listed in round 

brackets in the first operator in form a composition, which has the following meaning. The 

changes in array byte::CellStruct happen only when the unicellular array Count is in a 

certain state. For example, if the state of Count coincides with that of st2, the shift of the 

image of a digital scheme is done by one row of blocks down from its source placement. 

This shift is performed by the function fShift that uses the values of variables x and y from 

template ShiftDown in its operator y:=x. The operators at-do in the second operator in alter 

the state of Count in order to set phases of cycle. 

3.3.3. A transformation of CA into optoelectronic matrix 

Let us list those operations converting optical signals, which are to be carried out in an 

optoelectronic matrix to implement the above-mentioned CA. The operations have to provide 

the following for each block of CA: a) a comparison of the image of the left part of a 

command, whose number is written in the settings table, with the image of block in the image 

of a scheme, and b) if they coincide, replacement of the image of such block by the image of 

the right part of a command. Let us demonstrate that an execution of such operations is 

possible in a four layer matrix (called S). The images of left parts of substitution commands 

are kept in its first layer. The second layer contains the image of a digital scheme. The images 

of comparison schemes are in the third layer. The images of right parts of substitution 

commands are in the fourth layer. Matrix S is built using the basic gate rather schematically 

and without details of implementation. All the essential physical elements: modulators, 

photodetectors, memory cells are considered to have a size equal to one cell. The reasons for 

that are as follows: 1) matrix S built in such way can be easily turned into a data object when 

it is simulated, 2) the obtained matrix S has rather generalized form that makes possible to 

specify its versatile representations taking into consideration real sizes of its elements later, 

because these sizes are not known a priori and depend on physical principles of construction 

of the elements, technology, and the application domain. 

The cells of informational layer of CA have three states. But the basic gate is binary. Thus, a 

transition must be done to binary encoding of the states of matrix S. For example, an 

encoding of white, gray and black cells presented in Figure 9 can be chosen. 

 

Figure 9. Binary encoding of CA states 

A white cell denotes a memory cell containing one, an opened modulator or an opened 

photodetector. A black cell denotes a memory cell containing zero, a closed modulator or a 

closed photodetector. 
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Let us commence the construction of matrix S using its second layer that contains an image 

of a digital scheme in a binary encoding. An image of each block in CA informational layer 

is composed of modulator states. Memory cells control the states of modulators (opened, 

closed). Assume that each cell has two outputs. Modulators are connected to both of them. 

Let us consider that each memory cell has two inputs, each of which is connected to a 

photodetector. Let us also assume that the signals from the inputs of a cell appear at its 

output with a fixed delay. A line of cells is composed of such elements. The first and second 

cells are modulators. The third cell is a memory cell. The fourth and fifth cells are 

photodetectors. A memory cell operates in two phases. If it contains one at the first phase 

(the phase of comparison), it opens the first modulator and closes the second one. And 

otherwise, it closes the first modulator and opens the second one. At the second phase 

(phase of recording) if the fourth photodetector is opened, and the fifth one is closed, one is 

written to memory cell. Otherwise, memory cell resets to zero. 

 

Figure 10. Binary encoding of cell states in the second layer of optoelectronic matrix 

An image of the second layer of matrix S when it is ready for the phase of comparison is 

obtained by replacing each cell in the information layer of CA by a group of cells according 

to the substitution rules in Figure 10. Thus, a block of optoelectronic matrix of size 10 4  

cells composed of four lines is put in correspondence to each block of the informational 

layer of CA. 

Remark. Gray cells are also used in the transition to binary encoding, but they denote "void", 

absence of any hardware. 

Let us perform a partition into blocks that have the same sizes and placement as in the rest 

of matrix layers. 

Let us construct the first layer of matrix S. Unlike lines of cells form the second layer, the cell 

number four contains a memory cell and the fifth cell is gray. A memory cell is connected to 

modulators just as the memory cell occupying the third cell. The basis for setup of the first 

layer is the settings table of the control layer of CA. The setting of layer starts with encoding 

of its E-partition, i.e. the cells in columns 3 and 8 of the layer are set in such a way that the 

image formed by the states of modulators would coincide with the left part of that 

command, whose number is written first in the cell with exactly the same placement in the 

settings table of CA. The encoding for O-partition is embedded into the encoding of the 

layer that was just obtained. For this purpose binary codes set into correspondence to white, 

gray and black cells of the left part of the second command are written into the fourth 

column just as it is done for the cells of the third column in Figure 10. 

The third layer of the matrix is constructed as follows. Black cells of a single block in the 

columns 1, 2, 6, 7 denote closed photodetectors. Black cells in the columns 4, 5, 9, 10 denote 
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closed modulators. The rest of columns are empty. They are composed of gray cells. Pairs of 

photodetectors in rows 1, 2 and 3, 4 of the columns 1, 2 and 6, 7 are connected by OR scheme 

(parallel). Then all the OR schemes formed by pairs of photodetectors are connected 

sequentially forming AND scheme. A parallel assembly of all modulators of a block is 

connected as its load. The scheme obtained in the third layer allows to detect the situation 

when the images of blocks coded by the states of modulators located in the first and second 

layer one below another coincide, and in the case of full coincidence to prepare a 

substitution of the image of block of the second layer by the right part of command kept in 

the fourth layer. 

The construction of the fourth layer can be done in two stages. First, a layer that is exactly 

the same as the first one for the right parts of commands is built. Then the columns in each 

block are transposed in the following order: 5, 4, 3, 1, 2, 10, 9, 8, 6, 7. 

A fragment of matrix S presented in Figure 11 illustrates the procedure described above. 

The fragment is built for such a block of CA, whose settings table has a cell that contains the 

numbers of substitution commands 7, 4. The fragment is in such a state when E-shift is done 

and it appeared that the image of the block in the informational layer of CA coincides with 

the image of left part of substitution command number 7. A polarized light comes 

perpendicularly to the first and last layers of the matrix, respectively, from above and from 

below. The phase of comparison of images of blocks in the layers 1 and 2 of matrix S and 

detection of their coincidence is shown in Figure 11, a. The modulators in columns 4, 5 and 

9, 10 are opened. The phase of writing new states of memory cells of the second layer using 

photodetectors connected to their inputs is depicted in Figure 11, b. 

 

Figure 11. A fragment of the matrix S: a - detection of matching images, b - the phase of setting of new 

cell states in the second layer. 

After a certain fixed delay, memory cells of the second layer set new states for modulators 

on their outputs. A fixed delay can be implemented, for example, by division of a memory 

cell into two elements: main and buffer. Modulators are connected to the outputs of the 
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main buffer. Photodetectors are connected to the inputs of a buffer element. One cycle of 

state transition from a buffer element to a main one serves as a delay. Then the next shift of 

the image of a digital scheme is performed and the phase of comparison of image blocks can 

be done again. 

It can be stated that CA turns into a simple homogeneous optoelectronic matrix S. It is a 

device that consists of four layers, which contain microscopic passive sources of light 

(optoelectronic modulators) and light detectors, forming a regular flat structure. The control 

of light sources and detectors is performed using electronic memory cells. Memory cells form 

a 2D shift register in order to provide setup of memory cells for storing the image of a scheme 

and alternation of commands. The obtained matrix is reconfigurable. It can be setup to 

imitate any combinatory scheme. The logical operations in the matrix (a comparison of the 

two codes and writing a code to memory) are preformed optically and their corresponding 

electronic gates simply do not exist. The proposed matrix has high performance. Indeed, after 

the pipeline has entered in the steady state, each next result is produced on the outputs of the 

matrix in each cycle. 

3.3.4. The family of optoelectronic matrices 

Matrix S can serve as a basis for the construction of a family of similar matrices. Let us 

outline the possible ways of their construction. The circuitry of matrices may have rather 

different implementations. For example, one can construct a matrix of static memory 

elements (as in the previous section), but it is also possible to construct a matrix with 

dynamic memory elements. Another way of binary encoding of white, gray and black cells 

can be chosen. However, we consider more profound transformations of the original matrix. 

And here the following options are available. 

The first way. A number of layers can be reduced to two in a matrix. Let us first note that 

the need to alternate substitution commands in the control layer is induced by the necessity 

to execute commands in O-shifts. A modification of CA is proposed in [18] that eliminates 

the group of O-shifts and as a result the need to alternate commands in the settings layer. 

Let us select such a CA as a basis for the construction of a new optoelectronic matrix S1. The 

selection of such CA means that the memory cells in columns 4 and 2 can be erased in the 

lines of blocks of the first and fourth layers along with their modulators and photodetectors. 

Let us introduce an additional limitation. Let us consider that a CA is setup once and only 

for implementation of a single digital scheme. Selecting a constant setting leads to the fact 

that there is no need to change the state of modulators in the first and fourth layers of the 

matrix S in the process of its operation. In its turn, this means that the memory cell can be 

removed, an open modulator can be replaced by a transparent plate, and a closed one by a 

dark plate. But then the first and fourth layers of the matrix S can be removed and the 

modulators in the second and third layers under dark plates can be masked or removed 

from the substrate. The execution of such a procedure can be demonstrated in greater details 

using masks in substitution command 1 (Figure 5) taken as a sample. A set of masks is 

presented in Figure 12. 
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Figure 12. Masks: a - of a white cell, b - of a gray cell, c - of a black cell, d - the left part of substitution 

command 1, e - the right part of the same command 

Masks d and e are built using masks a, b, c. Mask d is superimposed on those blocks of the 

second layer, which are assigned to execute command 1. The modulators under gray cells 

are removed. Other elements of a block under white cells remain intact. Mask e is applied to 

such blocks of the third layer, that are located under similar blocks of the second layer, and 

the same kind of actions is performed. As a result a computer simulation model that 

implements a full adder for such a matrix was built.  

 

Figure 13. Computer image of a two layer optoelectronic matrix 
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A certain step of computations performed in a double layer matrix is presented in Figure 13. 

The obtained model is rather realistic. All the optical and electronic components are shown 

in Figure 13. By analyzing the screenshot, one can easily draw a conclusion that the first 

layer of matrix is composed of logically isolated shift registers. Each of their digits has 

optical inputs and outputs. The second layer composed of isolated single comparison 

schemes. This way can be considered as one with the minimum fraction of electronic 

components in the matrix. The double layer matrix and its simulation are presented in 

details in [18]. 

However, it is clear that when considering a practical implementation of optoelectronic 

devices, one has to take into account the achievements of modern microelectronics, where 

the actual geometric dimensions of the transistors (approximately 30 nm) have become 

significantly smaller than the sources of light, which can not be less than 0.3 microns due to 

the physical limitations. They become a weak element in terms of achieving high-density 

packaging of elements in a chip. Therefore, when constructing such a family of matrices, it is 

useful to consider the maximum use of electronic components. "Optical" components keep 

only their main function, which is a three-dimensional organization of the logical 

connections and processing of cellular (logical) information. The electronic components are 

then used to perform simpler operations that support a computational process, such as the 

shift and storage of information, including settings, etc. 

The second way. One can augment the electronic part of the hardware of matrix S and turn 

it into the matrix S2 with extended capabilities. Suppose that there are k (k > 1) four layer 

matrices and each i-th matrix is set to perform operation Oi. Assume that the sizes of the 

matrices and the location of inputs and outputs of simulated digital circuits are coordinated. 

Some of the considerations on how that can be obtained can be found in [19]. Let us combine 

all the electronic components of all these matrices in order to superpose them in a four layer 

matrix. It can be done the following way. A set of k memory cells is placed in layers 1, 2, 3 of 

the matrix instead of a single memory cell. Let us combine ki cells into a 2D shift register set 

for execution of operation Oi. A decoder (named D1) is placed near each set of memory cells 

in the first and fourth layers. Similarly, two decoders are placed in the second layer (one D1 

and one that is different from D1 is named D2). Decoder D1 has one group of outputs and 

two groups of inputs. The states of outputs can be 0 and 1. They are connected to 

modulators of layer the just the same way as the outputs of memory cells in the source 

matrix S. The first group of inputs of decoder D1 is for control. The codes of operations Oi (i 

= 1, …, k) come to it. The second group of inputs has k pairs of inputs. The pair of outputs of 

the i-th memory cell of a set is connected to the i-th pair of inputs. If an operation code Oi 

comes to the control input of a decoder, the states of the i-th pair of the second input group 

are sent to the outputs of decoder D1. Decoder D2 is also controlled by operation codes. But 

its input group has two inputs, and it output group has k pairs of outputs. The inputs are 

connected to the outputs of photodetectors of the second layer the same way as the inputs of 

memory cells in the source matrix S. The i-th pair of outputs of decode D2 is connected to 

the inputs of the i-th memory cell of a set. If an operation code Oi came to the control input 

of decoder D2, the states of inputs are sent to the outputs of i-th pair of decoder D2. Each set 
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of input data has to be accompanied by an operation code for such a matrix so as to specify 

what has to be done with these data. The transfer of operation codes from one micro-

pipeline tier to another and their delivery to the decoders of the destination tier must be 

implemented. These actions can be performed for example by using additional shift 

registers that have to be inserted in the first, second and third layers of the matrix S2. As a 

result a matrix is built, in which one can change the image of a digital scheme and its setup 

table dynamically. That means that k different digital schemes can reside simultaneously in 

such a matrix. Thus from a logical standpoint the matrix is dynamically reconfigurable in 

the process of computations done by its pipeline. Matrix S2 has undoubted advantages in 

comparison with matrices S, S1. The delays of its pipeline are virtually eliminated, because 

its control device would always "find" a data set and an operation to perform and deliver 

those to the inputs of matrix S2. 

The list of matrices is not limited by the samples presented above. Let us briefly outline 

some more possible ways of constructing new modifications of matrices. For example, a 

dynamically reconfigurable matrix can be built on the basis of a two layer matrix. In order to 

make it reconfigurable, one has to introduce electronic masking control first of all. Then an 

additional hardware is to be added just as it was shown in the previous section. A group of 

E-shifts of a digital image can be eliminated in all the proposed matrices by increasing the 

vertical sizes of blocks that are compared in layers at least by a factor of three. This 

technique helps in shortening the duration of a micro-pipeline cycle. An assessment of 

creating vertical assemblies built, for example, on the basis of two-layer matrices, seems to 

be rather interesting. Double-layer matrices are interleaved with layers of light sources in 

such kind of assemblies. 

And finally, let us mark one more important advantage of optoelectronic configurable 

matrices. Their application replaces the design (logical and physical) and production of 

digital circuitry by a programming of an already existing matrix. Indeed, in order to get a 

digital circuit in a matrix, one need only to write specially selected long vectors to its layers, 

using the shift registers, which are formed by memory elements of the matrix layers. 

4. Conclusion 

Two most pressing problems appeared in constructing computing systems: 1) an increase in 

the number and length of the connections inside 2D ICs, 2) a massive parallelization of 

computations. 

Using a 3D (multilayer) IC structure is proposed in this chapter in order to solve these 

problems. Each of the layers, forming such an IC, has a homogeneous cell structure. A data 

exchange between these cells is performed by the means of local electronic (intralayer) and 

parallel optical (interlayer) communication channels. Data exchange between layers is 

combined with their processing. Cellular 3D ICs are oriented to computations with fine 

grain parallelism. 

The physical and computing aspects of creating such ICs were considered. 
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The physical aspects include constructing an optoelectronic gate that allows combining 

single-layer ICs in the two-layer structures and an experimental test of its operability. The 

assessment of potential of project of a customized device, a matrix processor for the image 

processing from the standpoint of its performance and of its manufacturability permits to 

draw the following conclusions about the prospects of the chosen direction of constructing 

optoelectronic circuits. 

Despite the fact that the size of one of the components (light modulator) of the 

optoelectronic logic gate is much larger than the active components of the modern 

microelectronics because of the wave nature of the optical signal, the performance and 

manufacturability of specialized devices of this type can greatly exceed similar 

characteristics of a purely electronic device. This is due to the fact that the number of 

elementary components in an optoelectronic device is significantly less than that in a purely 

electronic device with the same functionality. Reducing the number of components results 

from a local structure of logical connections and from the unidirectional light propagation 

(in electronic conductors a required direction of motion of the electrons is obtained by using 

a set of gates). There are virtually no intersections in optical conductors. This greatly 

facilitates the design of ICs and lets them be cheaper, more reliable and easily 

manufacturable. High throughput between layers by the means of optical channels gives a 

hope that an essentially greater performance could be reachable in comparison with purely 

electronic schemes. 

Computer aspects of the work are devoted to the foundations of the algorithmic design of 

3D ICs based on the formal model of fine-grain parallel computing, Parallel Substitution 

Algorithm, and to WinALT simulation system, presented in [15, 16]. A family of 

optoelectronic matrices was developed using WinALT. Comparison of two graphic images 

in all matrices, which is a main logical operation, is carried out optically exactly the same 

way as in devices built on the basis of optoelectronic gate. The functions of information 

storage are carried out electrically. High homogeneity, simplicity of topology and a low 

complexity of cells are the features of the matrix. A wide range of matrices was built. They 

vary by a number of layers, by functionality and by ratio of optical and electronic 

components. The proposed matrices can serve as an ALU basis in a general purpose CPU. 

The selection of a particular choice depends primarily on the kind of physical parameters, 

on which a designer can be oriented to, and on the kind of operations that a matrix has to 

perform. And this requires interaction between experts in different domains: physics, 

algorithm, programming, etc. The above suggests the following conclusions about the 

directions in which algorithmic design tools are to be developed. 

The system's site must evolve into a fully functional online resource providing the ability to 

create a network (virtual) team consisting of specialists in different domains, and let them 

actively participate in a joint development of a 3D IC using the Internet. 

The mapping of only one version of a fine-grain structure, a reconfigurable CA, to an 

optoelectronic structure is presented in the paper. There are many fine-grain structures and 

algorithms for different purposes, which may be of interest for optoelectronic implementation. 
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It is advisable to perform a constant replenishment of the collection of simulation models on 

the system's site both by its developers and by users. Also a collection of simulation models 

of optoelectronic implementations of fine grain structures and algorithms must be created. 

Let us also note the need to constantly replenish the system by new modules that extend its 

functionality with the emergence of new kinds of fine-grain structures and algorithms. 

Constructing realistic optoelectronic structures requires constructing simulation models 

with huge amount of data and computations. It is expedient to launch such models on 

supercomputers. Thus, a WinALT subsystem must be developed for parallel execution of 

these models on clusters and supercomputers. 

Author details 

Edward G. Kostsov 

Institute of Automation and Electrometry, Russian Academy of Sciences, Russia 

Sergey V. Piskunov and Mike B. Ostapkevich 

Institute of Computational Mathematics and Mathematical Geophysics,  

Russian Academy of Sciences, Russia 

5. References 

[1] Jin-Sung Y, Myung-Jae L, Kang-Yeob P, Woo-Young C. 10-Gb/s 850-nm CMOS OEIC 

Receiver with a Silicon Avalanche Photodetector. IEEE journal of quantum electronics 

2012; 48(2) 229-236. 

[2] Young I A, Edris M, Liao J T S; Kern A M, Palermo S, Block B A, Reshotko M R, Chang 

P L D. Optical I/O Technology for Tera-Scale Computting. IEEE Journal of solid-state 

circuits 2009; 45(1) 235-248. 

[3] Beausoleil R G. Large-Scale Integrated Photonics for High-Performance Interconnects. 

ACM Journal on emerging technologies in computing systems 2011;7(2), Special Issue 

SI N 6. 

[4] Krishnamoorthy A V, Goossen K W, William J et al. Progress in Low-Power Switched 

Optical Interconnects. IEEE Journal of selected topics in quantum electronics 2011;17(2) 

357-376. 

[5] Hoshino K, Yamada K, Matsumoto K, Shimoyama I. Creating a nano-sized light source 

by electrostatic trapping of nanoparticles in a nanogap. J. Micromech. Microeng. 2006;16 

1285-1289. 

[6] Nozaki K, Baba T. Laser characteristics with ultimate-small modal volume in photonic 

crystal slab point-shift nanolasers. Appl. Phys. Lett. 2006;88, 211101. 

[7] Nozaki K, Kita S, Baba T. Room temperature continuous wave operation and controlled 

spontaneous emission in ultrasmall photonic crystal nanolaser. Optics express. 

2007;15(12) 7506 -7514. 



 

Optical Communication 82 

[8] Egorov V M, Kostsov E G. The prospects for constructing high-performance optical 

digital computers. Optoelectronics, Instrumentation and Data Processing. 1985;1 106-

116. 

[9] Egorov V M, Kostsov E G. Microelectronic optical digital computing device. 

Optoelectronics, Instrumentation and Data Processing. 1989;3 61- 68. 

[10] Egorov V. M., Kostsov E. G. Integral optical digital computers. Appl.Opt. 1990;29(8) 

1178 - 1185. 

[11] Kostsov E. G., Piskunov S.V. 3D ICs with optical interconnections. In: Tverdokhleb P.E. 

(ed.). 3D Laser Information Technologies. Novosibirsk; 2003. p168-242. 

[12] Markov A. A. Theory of Algorithms. Proc. Steklov. Moscow-Leningrad: USSR Academy 

of Sciences Publishing House. 1954;42. 

[13] Toffoli T., Margolus N. Cellular automata machines: a new environment for modeling. 

Cambridge, Massachusetts: MIT Press; 1987. 

[14] Achasova S., Bandman O., Markova V., Piskunov S. Parallel Substitution Algorithm. 

Theory and Application. Singapore: World Sci.; 1994. 

[15] Ostapkevich M., Piskunov S. The Construction of Simulation Models of Algorithms and 

Structures with Fine-Grain Parallelism in WinALT. In: V. Malyshkin (ed.) PaCT 2011. 

LNCS. 6873. Heidelberg, Springer; 2011. p192-203. 

[16] WinALT site. http://winalt.sscc.ru/ (accessed 25 Apr 2012). 

[17] Kartsev M.A., Brick V.A. Computing systems and synchronous arithmetic. Moscow: 

Radio and Communications; 1981. 

[18] Kostsov E.G., Piskunov S.V. Computer design of a two-layer computational array with 

optical interconnections. Optoelectronics Instrumentation and Data Processing C/C of 

Avtometriia. Allerton Press. 2000;3 3-14. 

[19] Kostsov E G, Piskunov S V, Umrikhina E V. Configurable multilayer pipeline electro-

optical structures. Optoelectronics Instrumentation and Data Processing C/C of 

Avtometriia. Allerton Press. 2005;6 62-71. 


