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1. Introduction

Arthropods are one of the most ancient groups of animals in earth and their venoms have
been responsible for their chemical defense in a very efficient way. Resulting from an in‐
tense and elaborated evolutionary process, venoms produced by arthropods have a very
complex repertoire of biologically active molecules. When inoculated in mammals these
molecules induce a wide range of systemic effects, including actions in the CNS. In mamma‐
lian CNS, venom compounds may either inhibit or stimulate with affinity and specificity
structures such as: ion channels, neurotransmitter receptors and transporters [1-3]. Not sur‐
prisingly, these actions have attracted the attention of many investigators in search of tools
to help the understanding of neural mechanisms as well as those in search of novel probes
in CNS drug design for the last 20 years [3,4]. In addition to the growing interest in finding
new neuroactive compounds, the improvement of proteomic and transcriptome techniques
has stimulated great progress in the bioprospecting, enabling and accelerating the testing of
new toxins in several animal models. Animal research aiming at the efficacy of peptides and
acylpoliamines, isolated from arthropod venoms, have revealed the great potential of these
compounds to treat various diseases, such as epilepsy, Parkinson's, Alzheimer's, chronic
pain and anxiety disorders

According to World Health Organization (WHO), neurological and mental disorders are
one of the greatest threats to public health not only for its direct and immediate effects, but
also for the progressive nature of these diseases, often leading to disability and death [5].
The symptoms of most of these diseases are often well treated with a several pharmaceuti‐
cals, such as antidepressants, anxiolytics, anticonvulsants and analgesics. However, it is well
known that neuroactive drugs may induce a complex range of adverse effects that limit the
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usage in some patients or may even function as a factor of impairment in people’s quality of
life. According to [6], none of antiepileptic drugs discovered in the last 20 years, was effi‐
cient to cure or even suppress seizures in epileptic patients. Therefore, there is a continued
need for the discovery of novel drugs to treat most neurological and mental disorders [7].

This chapter will target the discussion of recent contributions of research on the compounds
of arthropod venom, for the discovery of novel tools to study the functioning of the struc‐
tures of mammalian CNS, as well as the supply of novel alternatives to the treatment of neu‐
rological disorders. Among the major compounds, it will be highlighted those with the
analgesic, anxiolytic, antiepileptic and neuroprotective effects, with emphasis on the most
promising on preclinical or clinic evaluation.

2. Main targets of the neuroactive compounds isolated from arthropod
venoms

Venom isolated from bee, scorpion and spider have been used to the treatment of various
diseases in Chinese and Korean traditional medicine, such as epilepsy, stroke, facial paraly‐
sis, arthritis, rheumatism, back pain, cancerous, tumors, and skin diseases [8-10]. Moreover,
venoms of arthropod animals have been used to study various physiopathological process‐
es, and also offer opportunity to design and develop new therapeutic drugs [3,11,12] .

Arthropod venoms are rich in biologically active substances with different physiological ac‐
tions, specially the neurotoxins. So far, identified neurotoxins generally comprise the classes
of peptides or acylpolyamines, acting with affinity and specificity over excitatory or inhibi‐
tory neurotransmissions (for revision see [12]. The actions of these compounds include the
interaction with Na+, K+ and Ca2+ ion channels, agonism or antagonism of metabotropic and
ionotropic receptors for neurotransmitters as the excitatory neurotransmitter glutamate. At
the presynaptic level, several studies have shown the interaction of arthropod neurotoxins
with protein transporters of neurotransmitters, resulting in the facilitation or inhibition of
their uptake.

3. Antinociceptive effects

Of extreme importance for the organism, pain is an indicator of corporal integrity and has
been considered since January 2000, by the Joint Commission on Accreditation on Health‐
care Organizations (JCAHO) as the fifth vital sign that should be assessed and recorded to‐
gether with other signals immediately after birth. According to the International Association
for the Study of Pain (IASP), pain is defined as an unpleasant sensation and emotional expe‐
rience associated with actual or potential tissue damage. However, approximately one third
of world population suffers from pathological persistent or recurrent pain, which is a com‐
mon complaint in patients with different diseases, and exerts great impact on their social life
[13]. In these cases, treatment is a challenge for researchers and health professionals who
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constantly seek new therapeutic strategies, since most of these are inadequate or cause seri‐
ous side effects [14].

Analgesics and systemic conservative therapies are widely used for pain control. However, in
many cases, especially in patients with neuropathic pain, more aggressive treatments are
needed, which promote a significant clinical improvement but only in 30-50% of patients [15,16].

Although an injection of arthropod venoms is commonly reported to cause tonic pain and
hyperalgesia, there is also evidence suggesting that these venoms might have antinocicep‐
tive effects on inflammation. Thus, nowadays, toxins isolated from arthropods are consid‐
ered powerful tools, since they have congruent targets of the impulse transmission of pain,
and may provide an attractive alternative to opioid treatments.

3.1. Polypeptide toxins from Scorpion

The most studied Arthropod venom is extracted from the Asian scorpion Mesobuthus mar‐
tensi Karsch (BmK). It is composed of several toxins, and so far, ten have been described,
which produce powerful antinociceptive effects. This is the case of the two β-excitatory anti-
insect toxins BmK IT-AP (or Bm33-I) and BmK AngP1, two β- depressant anti-insect toxins
BmK dITAP3 and BmK IT2, as well as six toxins yet without consensus classification, BmK
AS, BmK AS1, BmK AGAP, BmK Ang M1, BmK AGP-SYPU1 and BmK AGP-SYPU2. These
compounds probably belong to a family of peptides NaScTx that are composed of 60-76 ami‐
no acid residues with four disulfide bonds, the cysteine positions among these toxins are
highly conserved [17,18]. Considering their structures, they might be able to bind to sodium
channels impairing depolarization of the action potential in nerve and muscle, resulting in
neurotoxicity [18], although it remains to be fully investigated.

The NaScTx family can be classified in at least two major families, α and β, according to the
mode of action on Na+ channels [19]. The binding of α-toxins delays Nav channel inactiva‐
tion, while that of β-toxins shifts the membrane potential dependence of channel activation
to more negative potentials. α and β-toxins also exhibit pharmacological preferences for
mammals or insects sodium channels. Therefore, considering their pharmacological activi‐
ties, α and β NAScTx can be also divided into three groups:

i. “classic” highly specific for mammals;

ii. “α-like toxins” active both on mammals and insects, which are far less specific and
less active than the “classical” ones;

iii. α-toxins only specific for insects and without any toxicity on mammals, even at
high concentrations. Moreover, the insect selective β-toxins have been divided into
two groups: the excitatory insect toxins and the depressant insect toxins.

Regarding the β-excitatory anti-insect toxins, BmK IT-AP (Insect Toxin-Analgesic Peptide),
which was isolated in 1999, produces a potent antinociceptive effect in mouse-twisting mod‐
el, after i.v. injection [20]. The same toxin has also been sequenced by another group and
named Bm K 33-I [21]. Later, Guan and colleagues [22] identified a novel toxin with analge‐
sic effects, BmK AngP1, which shows an evident analgesic effect with simultaneous excitato‐
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ry insect toxicity, but is devoid of any toxicity on mice even at high dosages. The analgesic
effect was assessed with a mouse-twisting model. The analgesic effect on mice of the AngP1

is at least 4-5 times weaker than that of IT-AP, but the toxicity to insects is twice as strong as
that of IT-AP [20,22]

In relation of depressant toxins isolated from BmK venom, BmK IT2 has been more studied
from the venom of BmK (Fig 1). Intraplantar injection of BmK IT2 inhibited thermal hyperal‐
gesia in carrageenan-treated rats and significantly prolonged paw withdrawal latency in
normal rats [23]. This toxin also displays an inhibitory effect on the C component of the rat
nociceptive flexion reflex by subcutaneous injection in vivo [24]. Peripheral or spinal deliv‐
ery of BmK IT2 suppressed formalin-induced nociceptive behaviors and c-Fos expression in
spinal cord [25,26]. Both BmK IT2 and Bm K dIT-AP3 (depressant Insect Toxin-Analgesic
Peptide 3) are toxic for insects, but not for mammals [27], and shows 86.7% of sequence simi‐
larity [23]. BmK dIT-AP3 also induces analgesia in the mouse-twisting model [18]. Using
whole-cell patch clamp, it has been shown that BmK dIT-AP3 inhibits Nav currents of rat
dorsal root ganglion (DRG) neurons, blocking more selectively the tetrodotoxin-resistant
(TTX-R) component of the Na+ currents. These results suggest that the inhibition of the rat
nociceptive flexion reflex by BmK dITAP3 may be attributed to modulation of the DRG’s
voltage-gated Na+ channels [24].

Wang and colleagues [28] isolated a new antinociceptive peptide, named BmK AGP-SYPU1.
Recombinant BmK AGP-SYPU1 showed similar analgesic effects on mice compared to natu‐
ral when assayed using a mouse-twisting model [28]. More recently, BmK AGP-SYPU2 was
purified and tested, also in mouse-twisting model. Sequence determination showed that the
mature BmK AGP-SYPU2 peptide is composed of 66 amino acid residues, and BmK AGP-
SYPU2 is identical to BmK alpha2 and BmK alphaTX11.

BmK AS had a strong analgesic effect on both visceral and somatic pain [29,30]. It relieves
formalin-induced two-phase spontaneous flinching response and carrageenan-induced me‐
chanical hyperalgesia, probably by modulating the voltage-gated Na+ channels of sensory
neurons [31,32]. Moreover, BmK AS showed activity nearly equivalent to that of morphine.
Later, a new peptide that possesses 86.3% of similarity with BmK AS was identified. Both
polypeptides have 66 amino acids cross-linked by four disulfide bridges [29]. In addition,
these two peptides show a poor similarity with other known types of scorpion toxins. BmK
AS and AS1 are not toxic against mammals and only have a weak toxicity to insects. BmK
AS, then BmK AS1, have been found to significantly stimulate the binding of [3H]-ryano‐
dine to partially purified ryanodine receptors [33]. More recently, electrophysiological stud‐
ies have shown that they are able to inhibit Na+ currents in NG108-15 cells [34] and to
depress TTX-sensitive and TTX-resistant Na+ currents in rat small DRG neurons. Interesting‐
ly, in rat models, BmK AS1 also displays antinociceptive effects according to [33]. These au‐
thors concluded that the effects could be mediated by the modulation of voltage-gated Na+

channels and they also suggested that BmK AS and BmK AS1 could form a new family of
scorpion insect toxins.

BmK AGAP (antitumor-analgesic peptide), isolated in 2003, had strong inhibitory effect on
both viscera and soma pain [35]. To evaluate the extent to which residues of the toxin core
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contribute to its analgesic activity, nine mutants of BmK AGAP were produced and tested.
However, further studies are necessarily to elucidate the mechanism of action as well as to
exploit its analgesic activity [36]. In relation to BmK Ang M1 [37], it also was reported to exhibit
potential analgesic effect. Moreover, electrophysiological studies showed that BmK AngM1
at the concentration of 1 µM inhibited voltage-dependent Na+ current (INa) and voltage-de‐
pendent delayed rectifier K+ current (IK), but had no effects on transient K+ current [37].

It is important to note that the excitatory and depressant anti-insect toxins belong to differ‐
ent groups, which have distinct modes of interaction with receptors. Thus, one can infer that
the analgesic effect of these peptides may have a molecular mode and mechanism different
from that of insect toxicity. Still, the mechanisms by which these scorpion toxins can modu‐
late pain pathways remain to be clarified. According to [8], four different possibilities might
be described:

i. peptides act directly Na+ channels involved in the pathway of pain,

ii. peptides modulate indirectly the pain sensation,

iii. peptides also modulate other targets involved in pain pathway

iv. pain alleviation is only apparent and results from misinterpretations that might
have occurred from animal models used.

3.2. Polypeptide toxins from Spider

Another group of arthropods that have very promising antinociceptive compounds are spi‐
ders [41]. In 1996, Roerig & Howse reported the effect of ω-agatoxina IVA (Fig 1) isolated
from funnel spider Agelenopsis aperta venom, against thermal stimulation in the tail flick test,
when co-administrated with morphine intrathecal. Intrathecal injection of ω-agatoxin IVA
(0.2 nmol/kg) also decreased the licking time in both the early and late response phases in a
dose-dependent manner in the Formalin test [42]. The use of this peptide as an analgesic
could be of particular benefit in patients tolerant or opioid-dependent, since this compound
exhibits selectivity for the P/Q Ca2+ channels [43]. Other spider venom very promissory is
the venom of the Brazilian armed spider Phoneutria nigriventer, the purified fraction 3
(PhTx3) contains 6 toxin isoforms (Tx3-1 to -6) [44,45] that target Ca2+ channels with different
affinity patterns. Moreover, one toxin, Tx3-6 (Phα1β), demonstrated that it preferentially
blocks the N-type calcium current [46] and produce a potent antinociceptive effect with
higher therapeutic index [44]. Dalmolin and colleagues [45] showed that Tx3-3 (purified the
same fraction) caused a short-lasting antinociceptive effect in the nociceptive pain test and a
long-lasting antinociceptive effect in neuropathic pain models, without producing detecta‐
ble side effects. However, Tx3-3 did not change the inflammatory pain. Tx3-3 blockade of
P/Q- and R-type Ca2+ channels and inhibit the glutamate release in rat brain cortical synapto‐
somes [47]. Other neurotoxin isolated from spider Phoneutria nigriventer is Phα1β, which is a
potent toxin blocking neuronal voltage-sensitive Ca2+ channels. This peptide induced longer
antiallodynic effect than µ-conotoxin MVIIA and morphine in mice [48].

New Perspectives in Drug Discovery Using Neuroactive Molecules From the Venom of Arthropods
http://dx.doi.org/10.5772/ 52382

95



In addition to toxins calcium modulators, compounds isolated from spider that interact with
other ionic channels have shown great potential. A new class of peptide toxins named is the
Huwentoxin I (HWTX-I, Fig 1) that is the most abundant toxic component in the crude ven‐
om of the Chinese bird spider Ornithoctonus huwena. Whole-cell patch clamp records re‐
vealed that HWTX-I selectively inhibits N-type Ca2+ channels in NG108-15 cells, and it also
can block transmitter release from nerve endings by preventing depolarization induced by
calcium influx [38] Antinociception effect of the HWTX-I in formalin test was greater and
lasted two-fold longer time compared to morphine [39]. Furthermore, Tao and collaborators
[40] demonstrated that intrathecal administration of HWTX-I is effective in antinociception
in the rat model of rheumatoid arthritis more effective than ibuprofen.

Several studies have reported that intrathecal administration of non-selective blockers of
Ca2+ channels shows antinociceptive effects in animals tested with thermal stimuli: hot plate
and tail flick. According to [49], N and P/Q Ca2+ channels are probably involved in nocicep‐
tive behavior induced by formalin injection in rats, while the L-type channels has no effect.
N- and P/Q-type Ca2+ channels are expressed specifically in the nervous system, and they
have a major importance in controlling the excitation of spinal neurons from sensory affer‐
ents of inflamed tissues, relieving inflammatory pain.

A new class of peptide toxins named π-theraphotoxin-Pc1a (π-TRTX-Pc1a; also known as
psalmotoxin-1 (PcTx1) was isolated from the venom of the spider neotropical Psalmopoeus
cambridgei (Fig.1). π-TRTX-Pc1a is the most potent and selective blocker of ion channels sen‐
sitive to acid – ASICa [50]. These channels play important roles in pathological conditions
such as cerebral ischemia or epilepsy, as well as being responsible for the sensation of pain
that accompanies tissue acidosis and inflammation [51]. Since external acidification is a ma‐
jor factor in pain associated with inflammation (hematosis muscle and cardiac ischemia, or
cancer), these neurotoxins can be used to control the pain sensation triggered by these chan‐
nels [52]. π-TRTX-Pc1a was shown to be an effective analgesic, comparable to morphine, in
rat models of acute and neuropathic pain when injected directly in Central Nervous System
[53] and intranasal administration of this peptide resulted in neuroprotection of neurons in a
mouse model of ischemic stroke even when administered hours after injury [54].

Other important target in the search for new analgesics isolated from spider venoms are NaV

channels, since modulatory compounds of these channels are the dominant pharmacological
species in spider venoms, although still poorly characterized. In this context, Intrathecal ad‐
ministration of β-TRTX-Gr1b (formerly GsAFI), a peptide obtained from venom of Grammos‐
tola spatulata, the Chilean pink tarantula spider, induced analgesia in a variety of rat pain
models such as the tail flick latency test, hot plate threshold test, von Frey threshold test,
and formalin pain test, without any confounding side-effects. Moreover, the β-TRTX-Gr1b
peptide did not exhibit cross tolerance with morphine [55].

Further on spider venoms, Purotoxin-1 (PT1) was recently isolated the, from the venom of the
Central Asian spider Geolycosa sp [56]. PT1 is a 35-residue peptide with four disulfide bonds,
and it exerts a potent analgesic effect in rat models of acute and chronic inflammatory pain by
injection of either carrageenan or Freund’s complete adjuvant, respectively. PT1 was also
effective in reducing the number of nocifensive events triggered by the injection of capsaicin
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or formalin (only second phase) [56]. This molecule also inhibits P2X3 receptors in a power‐
ful and selective manner. These ATP-activated receptors are largely expressed in mammali‐
an sensory neurons play a key role in the pain perception. Thus, PT1 appears to be a promising
lead compound for the development of analgesics that target these receptors [56].

3.3. Polypeptide toxins from Bees and Wasps

Bee venom has been traditionally used to relieve pain and treat chronic pain diseases (for
revision see [57]). Moreover, acupoint stimulation into the subcutaneous region (acupunc‐
ture) rather than other injection sites may be important for the antinociceptive effects of this
venom. There is increasing evidence suggesting that bee venom has antinociceptive effects
on visceral nociceptive effects, mechanical and thermal hyperplasia, formalin-induced pain
behavior and collagen-induced arthritic pain, as well as knee osteoarthritis (OA)-related
pain [58-63]. BV contains at least 18 active components, including enzymes, peptides, and
biogenic amines, which have a wide variety of pharmaceutical properties, and so multiple
mechanisms associated to antinociceptive effects have been suggested, such as activation of
the central and spinal opioid receptor and α2-adrenergic receptor, as well as activation of the
descending serotonergic pathways (for revision see [64]).

Melittin is a small protein containing 26 amino acid residues and is the major bioactive com‐
ponent in BV (Fig.1). This polypeptide readily integrates into and disrupts both natural and
synthetic phospholipid bilayers [65,66]. Melittin also enhances the activity of PLA2 [67] and
has a variety of effects on living cells possibly through the disruption of the membrane [68].
The decrease in cyclooxygenase (COX)-2 and phospholipase PLA2 expression and the de‐
crease in the levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-1, IL-6, nitric ox‐
ide (NO) and oxygen reactive species (ROS) are suggested to be associated with the anti-
arthritis effect of melittin [69]. This peptide has also been thought to play a role in
production of anti-nociceptive and anti-inflammatory effects [64]. In addition, Merlo and
colleagues [70] demonstrated the antinociceptive activity of the melittin in experimental
models of nociceptive and inflammatory pain. Interestingly, melittin failed to increase the
latency for the nociceptive response in the hot-plate model and in the first phase of the for‐
malin test, revealing that melittin presents an activity that resembles more that of anti-in‐
flammatory drugs and less that of centrally acting drugs [70]. Nevertheless, the molecular
and cellular mechanisms underlying the anti-nociceptive effects of melittin are not entirely
clear and remain to be further clarified by further experimental studies [57].

Addition of melittin, adolapin has been isolated from BV and it demonstrated a potent anal‐
gesic effect in mouse-twisting model and the Randall-Sellito's test [71]. The anti-inflammato‐
ry activity of adolapin was evaluated and it had a pronounced activity in the following tests:
carrageenan, PG, adjuvant rat hind paw edema and adjuvant polyarthritis. The effects of
adolapin are presumably due to its ability to inhibit the prostaglandin synthesis via inhibi‐
tion of cyclooxygenase activity [71,72].

Venoms of wasps also have analgesic peptides. Mortari and colleagues [73] isolated a com‐
pound with antinociceptive activity from the venom of the Brazilian social wasp Polybia occi‐
dentalis. The isolated peptide is a neurokinin named Thr6-Bradykinin. This neurokinin is a
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small peptide consisting of nine amino acid residues, Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-
Arg-OH, which exhibits a high degree of homology with bradykinin (BK), except for the
substitution of Thr for Ser in position 6 at BK. As a result, small changes in their secondary
structures are observed [74]. This modification has been regarded as responsible for increas‐
ing B2 receptor affinity and potency of Thr6-BK in relation to BK in vitro and in vivo [74,75].
Thr6-BK antinociceptive effect was dose- and time- dependent, when injected directly into
the CNS of rats in hot-plate and tail-flick tests, and it was three times more potent than mor‐
phine and 4 times more potent than BK in tail-flick test. Thr6-BK induced antinociception by
activating presynaptic B2 receptors, which activate descending adrenergic pathways. Studies
investigating the role of kinins in the CNS provide new information on the supraspinal sys‐
tem of the pain control, whose modulation may represent a new strategy to control pain-
related pathologies [76].

Figure 1. Tridimensional structure of antinociceptive peptides isolated from arthropod venoms. (A) BMK IT2; (B)
HWTX 1; (C) ω-Agatoxin IVA; (D) π-Theraphotoxin-Pc1a; (E) Mellitin. Uniprot entry code: P68727, P56676, P30288,
P60514 and P01501, respectively.

Besides peptides, some studies have evaluated the analgesic activity of acylpolyamines that
can be used as new alternative drugs for the treatment of chronic pain, as well as tools for
the study of the functional role of the AMPA/kainate receptors in the processing of nocicep‐
tive pain [77]. In this regard, intrathecal administration of different doses of these toxins
blocked thermally induced allodynia [78] and hyperalgesia [79]. The effect of these neuro‐
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toxins may suggest a possible involvement of AMPA receptors in the spinal cord during the
nociceptive excitatory stimulation [80,81].

4. Antiepileptic and neuroprotective effects

Neurodegenerative disorders comprise a wide range of conditions mostly characterized by a
progressive loss of neuronal function and neuronal cell death. The incidence of these diseas‐
es in population differs greatly. In conditions such as Parkinson disease and Alzheimer, the
number of cases significantly increases in elderly, whereas epileptic patients are mostly chil‐
dren and adolescents. Many processes may trigger neuronal cell death, such as trauma,
stroke, tumors, infections, genetic factors and biochemical alterations. Among the latest, the
alterations in Ca2+-mediated signaling is thought to play a key role in many neurodegenera‐
tive disorders and the increase in intracellular Ca2+ concentration might alter neuronal mem‐
brane potential [82]. Moreover, the hyperactivation of excitatory transmission mediated
mostly by L-glutamate and its ionotropic receptors; kainate, AMPA and NMDA, is responsi‐
ble for the excessive cationic influx that depolarizes neuronal cells and lead to sustained hy‐
perexcitation observed in brain pathologies such as epilepsy [83]. This increase in
glutamatergic activity often referred to as glutamate excitotoxicity [84], might also involve
non-receptor neurochemical events such as failure in glutamate uptake system, which ends
with an increase in the availability of this neurotransmitter in the synaptic cleft [85,86]. The
importance of L-glutamate in neurological disorders relies on the fact that this neurotrans‐
mitter is release in the great majority of fast synapses in CNS [84,83]. In this context, many
molecules mostly peptides and acylpolyamines, acting on ion channels, receptors and trans‐
porters were isolated from arthropod venoms, remarkably spiders, scorpions and wasps [3].
According to [82], polyamines are non-specific antagonist of ligand-gated ion channels, act‐
ing at glutamatergic and Ach receptors in an uncompetitive way, that is, the receptor must
be activated in order to occur the blockade. This mode of action might diminish the side ef‐
fects of newly designed medicines, since it blocks only the activated receptors, but does not
prevent their opening.

The venom of the orb-web spider Nephilia clavata was one of the first venoms studied during
the 80s, which resulted in the identification of small compounds named acylpolyamines,
among whose we may find jorotoxin (JSTX), one of the first glutamate receptor uncompeti‐
tive antagonists [83,84]. Together with JSTX, another polyamines such as argiopin from the
venom of the spider Argiope lobata [85] and philantotoxin (PhTx) from the venom of the soli‐
tary wasp Philanthus triangulum [86]. Following the structural characterization and studies in
insect or crustaceans, the reports on the action of these polyamines in mammalian CNS
started to take place, mostly during the 90s [87]. JSTX-1 and JSTX-3 are synthetic analogues
of JSTX. The first inhibits kainate-induced seizures, whereas the latter block glutamate re‐
lease and hippocampal epileptic discharges [88,89]. Later, JSTX-3 was shown to inhibit the
formation of superoxide dismutase-1 (SOD-1) aggregates that lead mutant motor neurons
(mSOD-1) to death during the familiar form of the neurodegenerative disease, amyotrophic
lateral sclerosis [90]. The authors concluded that increased Ca2+ influx mainly through AM‐
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PA/kainate glutamate receptors make mutant neurons more vulnerable to damage and
therefore, JSTX-3 is an interesting neuroprotective agent in this model.

The fraction of the venom of the spider Agelenopsis aperta containing argiotoxin, was first
demonstrated to have anticonvulsant in NMDA-induced and audiogenic seizures [91]. The
synthetic analogue of argiotoxin, Arg-636, is a selective antagonist of NMDA receptors bind‐
ing to the Mg2+ binding site at the receptor with anticonvulsant and neuroprotective actions.
In addition, from the venom of A. aperta, another NMDA receptor blocker, Agatoxin 489 was
reported as anticonvulsant against kainate-induced seizures and its synthetic analogue
Agel-505, was able to block cationic currents in oocytes transfected with NMDA receptor
cDNA [92].

Aside from antagonizing glutamate receptors, arthropod neurotoxins may exert anticonvul‐
sant and neuroprotective effects targeting other neurotransmitter systems. The venom of the
Brazilian spider Phoneutria nigriventer has been extensively studied over the past 20 years.
Neurotoxins isolated from the venom of P. nigriventer, such as PhTx-3 (Tx-3) were reported
to inhibit Ca2+ dependent-glutamate release [47]. Tx3-3 and Tx3-4 also inhibit voltage-acti‐
vated Ca2+ channels of P/Q type [93] and recently their neuroprotective activity was tested.
According to [94], Tx3-3 and Tx3-4 protected hippocampal slices against damage and cell
death induced by ischemic insult resulted from low oxygen and low glucose. Moreover,
PhTx3, Tx3-3, and Tx3-4, inhibited cell loss in retinal slices submitted to the same ischemic
protocol [95]. Another Brazilian species lives in Cerrado, the colonial spider Parawixia bistria‐
ta and has many neuroactive molecules with different modes of action [96]. Parawixin-1 was
the first isolated neurotoxin from P. bistriata venom. In experiments using rat retinas, sub‐
mitted to ischemic insult, the intravitreal injection of Parawixin inhibited cell loss [97], prob‐
ably through a potent and specific enhancing action on glutamate transporters type EAAT2
[98]. Another neurotoxin isolated from the venom of P. bistriata, Parawixin II, formerly,
FrPbAII, inhibited GABA and glycine uptakes in synaptosomes from rat cerebral cortices. In
addition, the administration of Parawixin II into the vitreous humor of Wistar rats protected
retinal neurons against ischemic insult resulted from an increase in the intra ocular pressure
[96]. Data also show that Parawixin II blocked seizures induced by the injection of GABAer‐
gic antagonists, bicuculline [99], pentylenetetrazole (PTZ) and picrotoxin, as well as pilocar‐
pine and kainic acid [100]. It is worth noting that the acute injection of Parawixin II does not
alter rat behavior in the open field and repeated central injection does not impair acquisition
and learning in the Morris water maze. Finally, Parawixin II induces ataxia in the rotarod in
doses far higher than effective doses, indicating good therapeutic indexes [100].

Also from South America, the Chilean giant pink tarantula Grammostola spatulata paralyzes
its preys by injecting a mixture of toxins that blocks ion channels [101]. w-Grammotoxin SIA
was isolated from the venom of G. spatulata and the potent blocking effect over N-, P-, and
Q-type but not L-type of voltage gated calcium channels was reported [102]. The antagonis‐
tic activity of w-grammotoxin over voltage dependent calcium channels is considered a
therapeutic option to be used in neurodegenerative disorders such as ischemia.
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The African tarantula Hysterocrates gigas known as the giant baboon spider, inhabits the rain
forests of West Africa. The isolation of the venom of H. gigas, resulted in the identification of
the peptide SNX-482 that blocks R-type voltage dependent calcium channels [103].

The arboreal tarantula Psalmopoeus cambridgei is an aggressive spider that lives in the tropi‐
cal forests of Trindad. As mentioned before, PcTx-1 (π-theraphotoxin-Pc1a) present in P.
cambridgei venom is the only gating modifier of ASICs [50]. In addition to pain inhibitor, it
exerts an interesting neuroprotective and a possible antidepressant activity due to the in‐
volvement of ASICs in cell excitability. A drop in pH from neutral 7.4 to more acid extracel‐
lular environments, lead to opening of ASICs Na+ or Ca2+ permeable pore, membrane
depolarization and increase in Ca2+ intracellular concentration [104].

In the light of these facts, Yang and coworkers [105] investigated the neuroprotective activi‐
ty of PcTx in neurons from newborn piglets submitted to a model of asphyxia-induced car‐
diac arrest. Data show that the administration of PcTx before the hypoxia-ischemia insult
partially prevents the death of neurons in putamen, the most vulnerable encephalic area in
this model. The addition of MK-801, a NMDA antagonist, in combination with PcTx exerted
better results in cell survival, but in low doses of MK-801. In addition to protection of neuro‐
nal cells, treatment with PcTx accelerated neurologic recovery. These results point PcTx as a
very unique neurotoxin that should be used as tool in the investigation of processes under‐
lying neuroprotection as well as the design of novel neuroprotective agents.

Bees and wasps are part of the group of the insects, whose stings release a cocktail of toxins,
including enzymes, peptides and biogenic amines [106]. Toxins in bee venom have received
attention for their properties as anti-inflammatory agents, and in many countries, physicians
even prescribe bee stings as treatment of rheumatologic diseases. Recently, Doo and collea‐
gues [107] showed that the bee venom when injected in rats with induced Parkinson disease
prevent dopamine neurons cell death, possibly by the inhibition of Jun activation.

Regarding solitary wasps, the most studied wasp species is the European beewolf, Philan‐
thus triangulum, the natural predators of honeybees. The adult individuals of this species are
herbivores, whereas the larvae eat the paralyzed bees brought to the colony by foraging
wasps. The isolation of venom contents begun in the early 80s and revealed that among oth‐
er classes of molecules, P. triangulum venom contains potent acylpolyamines [86]. Philantho‐
toxins, like other acylpolyamines are mostly potent and selective antagonists of vertebrate
and invertebrate glutamate receptors, particularly AMPA receptors [108]. The first isolated
and most studied philathotoxin is PhTX-433 and its synthetic analogue, PhTx-343, which an‐
tagonize Ach and glutamate ionotropic receptors. The neuroprotective activity of PhTx-343
was tested in cerebellar granule cells culture challenged with NMDA and kainate toxicity
and compared to that of Arg-636 [109]. Data showed that both polyamines protected cul‐
tures against damage, but Arg-636 was found to be less potent than PhTx-343 against kai‐
nate-induced damage. The structural change in PhTx-343 increased its potency, but in
higher doses, toxic side effects, were observed.

Due to their lack of selectivity, the use of philanthotoxins as pharmaceuticals may have been
limited, and so many modified synthetic analogues were designed for medical treatment
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purposes, so far [82]. However, the use of philanthotoxins and other polyamines as tools in
research investigation has aided the understanding of several synaptic mechanisms. As it
has been recently shown using Ca2+-permeable AMPA receptors expressed in HEK cells. Ac‐
cording to [110] the block of these AMPA receptors by PhTx-74, a synthetic analogue of
PhTX-433 will reflect structural and biophysical parameters of the channel, such as its subu‐
nit composition and mean conductance, respectively. In addition, the investigation of the
antagonistic activity of PhTx-343 over ACh receptors showed that the interaction of the tox‐
in with nicotinic receptors is largely voltage dependent, slow and uncompetitive, a similar
mode by which they block glutamate ionotropic channels [111].

Going further on wasp venoms, the anticonvulsant and/or neuroprotective effects of mole‐
cules in the venom of two Brazilian social species of the genus Polybia, were investigated.
According to Cunha and co-workers [112] and Mortari and co-workers [113], the non-enzy‐
matic fraction of the venoms of Polybia ignobilis and Polybia occidentalis inhibit seizures
evoked by the injection of several chemoconvulsants in Wistar rats. The neuroactive mole‐
cules present in the venom of P. ignobilis and P. occidentalis are now in phase of structure-
function investigation.

Finally, neurotoxins from scorpion venoms have been subject of a wide range of works,
mostly approaching the identification of voltage-dependent ion channel activators/blockers.
The neuroprotective and/or anticonvulsant activity of these peptides, in turn have received a
few lines of investigation [3] despite the ancient use of these animals whole or parts, in the
popular medicine in oriental countries, like China [20]. One of the most studied species is
the Asian scorpion Buthus martensi Karsch whose venom has several neuroactive peptides,
among whose, we may find BmK AEP, which was the first anticonvulsant peptide isolated
from scorpion venoms. According to [28], the injection of BmK AEP blocked seizures in‐
duced by the injection of coriaria lactone in doses causing no visible side effects [114]. Fur‐
ther isolation of venom of B. martensi led to the identification of other peptides, such as BmK
AS and BmK Ts and other mostly with analgesic activity. According to Zhao and co-workers
[115] BmK AS, a sodium channel modulator at site-4 receptor, inhibited PTZ induced behav‐
ioral and electroencephalographic seizures and decreased mean score of pilocarpine-in‐
duced seizures. Moreover, these authors showed that BmK AS does not impair locomotion
or motor behavior.

The venom of the Mexican scorpion Centruroides limpidus limpidus, was fractionated and
many activators of voltage-gated ion channel ligands were identified [116]. An exception is
Cll9, which stands for Centruroides limpidus limpidus toxin nr 9. Cll9 is a 63-residue peptide
that has a divergent mode of action; it inhibits sodium channels in superior cervical gan‐
glion neurons and [117]. When injected in Wistar rats via i.c.v., Cll9 inhibited behavioral and
electroencephalographic seizures evoked by the microinjection of penicillin into the basolat‐
eral amygdala. It is worth noticing that Cll9 has no effect on arthropods such as crickets or
crayfish like many sodium channels modulators found in scorpion venoms.
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5. Actions on mood disorders

According to the World Health Organization, depression, one of the most important mood
disorders, affects up to 5-10% of people worldwide at any time of their lives. Patients with a
diagnosed mood disorder are more likely to be women, in productive years, 20 to 40 year-
old, and will need in most cases, psychotherapy and/or pharmacological intervention. The
costs of these psychiatric and/or psychological disorders are immense, since they affect peo‐
ple regardless of education or socioeconomic status, accounting in the worse cases, for a
huge number of suicides. In the United States up to 95% of all suicides, involve mentally ill
people, accounting for 1.3% of all deaths [118]. A recent survey shows that generalized anxi‐
ety disorder, posttraumatic stress disorder, social anxiety disorder and panic disorder are
highly predictive of suicidal idealization [118]. Many aspects of the pathophysiology of
mood disorders, as well as the regulation of normal mood states remain unknown. Howev‐
er, with the improvement of techniques for research and diagnosis, such as positron emis‐
sion tomography, magnetic resonance and multiple channels recording
electroencephalogram, soon researchers will be capable to identify structures and neuro‐
chemical mechanism involved in the regulation of mental states, including mood. So far, we
know that limbic structures, such as the amygdala, hippocampus, hypothalamus and pre-
frontal cortex control the emotional aspects of brain function. There are plenty of connec‐
tions among these structures, which might be involved in the onset of mood disorders [119].

Pharmacological treatment of mood disorders consists in daily intake of anti-depressants,
anxiolytics or anti-psychotics, most of which cause a wide set of undesired side effects that
impose restrictions to patients quality of life. In this regard novel drugs prescribed for mood
disorder, such as serotonin uptake inhibitors might be better tolerated and safer than classi‐
cal drugs, such as monoamine oxidase inhibitors. Among the observed undesired effects we
can cite; dizziness, sedation, sexual dysfunction and suicidal though, a paradoxical effect of
serotonin uptake inhibitors [119]. Aside from tolerability, medicines used as treatment of de‐
pression for example, take too long to produce effect in only a minority of patients; 35-45%
of treated patients [120]. Therefore, there is a still great need for novel alternatives to be used
both, in basic and clinical science.

The neurochemistry of mood disorders is complex and there is a list of candidates for tar‐
gets of mood stabilizers, such as adrenaline, GABA, serotonin and glutamate receptors and
transporters. There is not many works relating neurotoxins from arthropods and mood dis‐
orders, but the few works available showed that in some cases, these molecules might con‐
tribute for the development of novel drugs.

The venom of the Brazilian colonial spider Parawixia bistriata was fractionated and tested in
many animal models of epilepsy, neurodegeneration and anxiety. According to [121], the
microinjection of Parawixin 2 (formerly FrPbAII) in the dorsal hippocampus of male Wistar
rats increased the time spent in the open arms of the elevated plus maze. Moreover, rats ex‐
posed to the light-dark choice apparatus spent more time in the light side of the box, similar‐
ly to what observed for diazepam or nipecotic acid, a GABA transporter-1 (GAT-1) inhibitor
[121]. In another investigation of P. bistriata venom contents, Saidemberg and co-workers
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[122] isolated PwTx-I and tested the inhibitory activity of this neurotoxin and its enantiom‐
ers on mammalian monoamine oxidases (MAO)-A and -B. According to these authors,
PwTx-I, acted as non-competitive inhibitors of MAO-A and MAO-B. MAO metabolizes
monoamines dopamine, serotonin and adrenaline, terminating monoaminergic transmis‐
sion. Inhibitors or MAO (MAOi) have been extensively used as mood stabilizers and cur‐
rently they have received attention due to their protective activity against age-induced
neurodegenerative disorders [123].

Considering alternative targets for mood stabilizers, interesting results were obtained with
PcTx, isolated from the venom of the spider P. cambridgei, a selective blocker of ASICs. Data
showed that both PcTx and amiloride attenuated the stress-induced hyperthermia, whereas
only the administration of PcTx increased number of punished crosses measured in the
four-plate test. These results indicate that both blockers could attenuate autonomic anxiety
parameters, but only PcTx exerted effects on the behavioral anxiety parameters [124].

The aggressive Brazilian social wasp Agelaia vicina, builds huge nests where with over a mil‐
lion of individuals. The neurobiological activity of the venom of A. vicina, was investigated.
Oliveira and colleagues [125] showed that the central injection of the non-enzymatic fraction
of the venom induced catalepsy in Wistar compared to the neuroleptic drug haloperidol, a
nonselective D2 dopamine antagonist. This effect was reversed by the injection of theophyl‐
line or ketamine. The fractionation of the venom led to the identification of two peptides,
AvTx-7, mastoparan, and AvTx-8. The investigation of AvTx-8 mode of action in vivo, was
performed in a model of panic induction through the activation of GABAergic pathways
connecting mesencephalic substantia nigra pars reticulate to superior colliculus [126]. These
experiments showed that intranigral microinjection of AvTx-8 inhibited the panic like re‐
sponse induced by the GABAergic blockade of superior colliculus. These effects were simi‐
lar to those of baclofen, a GABAB agonist, but differed from the effects of muscimol, a
GABAA agonist. Since post-synaptic GABAB is a metabotropic receptor complex with a po‐
tassium channel, AvTx-8 could act in many different sites that would end in channels open‐
ing and hyperpolarization of neuronal membrane.

6. Tools for the study of the functioning of the CNS: learning and
memory

Neurotoxins isolated from arthropod are important tools to study of the normal function of
the CNS, especially in the structure-function research of the ion channels and the interaction
the blockers and modulators in the regulation of the learning and memory (for revision see
[127]). In this context, the principal compound used in study of the mechanism of the learn‐
ing and memory in models of experimental animals is the apamin. Apamin is a short pep‐
tide (18 aa) isolated from the venom of honeybee, Apis mellifera. It is generally accepted that
apamin selectively blocks small conductance calcium-activated potassium channels (SK or
Kca), although evidences point to an allosteric modulation of opening rather than the block
of the pore [128]. Upon an increase in intracellular calcium, SK channels will open and allow
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an outward current of potassium ions that is responsible for the hyperpolarization phase of
the action potentials. Most studies on structure-function of SK channels were conducted us‐
ing apamin blockade. The homomeric or heteromeric expression of these channels occurs in
higher brain areas such as the neocortex, hippocampus and sub-cortical areas such as thala‐
mus and basal ganglia as well as in cerebellum and brainstem. Substantial data SK channels
show the involvement of SK channels in processes of learning and memory, and apamin
blockade of SK lead to an increase in cellular excitability, facilitates synaptic plasticity and
memory processes run by the hippocampus. In addition, apamin induces alterations in den‐
dritic morphology that might counteract aging and neurodegenerative processes that lead to
cognitive and memory impairment [129]. In fact, SK channels co-localize with Ca2+-permea‐
ble NMDA receptors in the CA1 region of the hippocampus and the entry of calcium in the
cell through these receptors might activate SK that will hyperpolarize membrane. The block‐
ade of SK channels will modulate hippocampal excitability that is essential in memory proc‐
esses such as long-term potentiation a commonly observed event of synaptic plasticity. Due
to its actions, the use of apamin as a tool in research has been consolidated. In addition, the
therapeutic use of apamin, in order to maintain hippocampal function and avoid the delete‐
rious effects of aging in memory and cognitive processes have also been proposed [129].

Besides apamin, modulators peptides of the potassium channel isolated from scorpion also
have been tested in models of the learning and memory. The good examples are: Charybdo‐
toxin isolated from scorpion Leiurus quinquestriatus, Kaliotoxin isolated from Androctonus
mauretanicus and Iberiotoxin from Buthus tasmulus. Charybdotoxin is a potent selective in‐
hibitor of high (large or big) conductance Ca2+-activated potassium channels (KCa1.1, BK, or
maxi-K), as well as a Kv1.3 channel [130]. Kaliotoxin is a specific inhibitor of Kv1.1 and
Kv1.3 [131] and Iberiotoxin is a selective inhibitor of KCa1.1 channels (formerly BK) [132].
These peptides induced an improvement effect in passive avoidance test and olfactory dis‐
crimination task [133,134].

7. Final remarks

The stories of voltage-gated, ligand-gated ion channels and venom toxins are very closely tied.
Indeed, the isolation and structural characterization of venom molecules provided a ple‐
thora of tools that have been used in the investigation of ion channels structure-function
relationships. With the aid of arthropod toxins, remarkably, scorpionic toxins, the character‐
ization of sodium channels was possible. Spider and wasps polyamines, in turn are consid‐
ered unique ligands of  glutamatergic  and cholinergic  ionotropic  receptors.  Regarding to
peptides and small proteins, arthropod venoms possess an arsenal of these molecules that
remain largely unknown and consequently, their pharmacological potential is left unexplored.

Due to the mode of action of neurotoxins, their affinity and selectivity for neuronal struc‐
tures, many researchers consider them as probes to novel drugs design and development.
However, despite of the thousands of patents made with neurotoxins in the past 30 years,
very few molecules came to commercialization.
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