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1. Introduction 

Clinical evidence shows that oxidative stress plays vital roles in a wide variety of 
pathological processes. Oxidative stress can arise as result of the production of free radicals, 
highly reactive molecules containing one or more unpaired electrons, which overwhelms 
the body’s endogenous antioxidant defense capacity. In general, free radical molecules are 
representative of both reactive oxygen species (ROS) and reactive nitrogen species (RNS). 
The term ROS refers to several products that result from the partial reduction of oxygen, 
including oxygen free radicals (superoxide [O2*-], hydroxyl [OH*], peroxyl [RO2*], and 
alkoxyl [RO*]), and some non-radical derivatives of oxygen such as hydrogen peroxide 
(H2O2), singlet oxygen (1O2), and hypochlorous acid (HOCl). ROS can be further converted 
to RNS such as nitric oxide (NO*), peroxynitrite (ONOO-), nitrogen dioxide (NO2*), and 
other oxides of nitrogen (Wiseman and Halliwell, 1996). The excessive generation of ROS 
and/or RNS can be attributable to the action of nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, p450 monooxygenase, xanthine oxidase, monoamine oxidase, 
mitochondrial oxidative phosphorylation, lipoxygenase, cyclooxygenase, endothelial NOS 
(eNOS) uncoupling, and myeloperoxidase (Muller and Morawietz, 2009). 

Mitochondrial oxidative phosphorylation is regarded as the main source of free radicals 
(Naoi and Maruyama, 2009). Once generated, free radicals can directly impair mitochondrial 
structure and function. A decline in mitochondrial respiratory function along with an 
insufficient supply of energy can significantly increase mitochondrial free radical 
production (Van Houten et al., 2006; Lee et al., 2007). Increased oxidative damage may 
enhance inflammatory responses and alter immune function and appear to be involved in 
the pathologic mechanisms of many diseases. 

This review article focuses on the production of free radicals from the mitochondria, as well 
as oxidative stress and antioxidant defense in patients with chronic viral hepatitis C. In 
addition, this article discusses recent advances in the antioxidant therapeutic intervention. 
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2. Chronic Hepatitis C 

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease. HCV infection 
frequently does not resolve, leading to chronic hepatitis with increasing risk of developing 
hepatic fibrosis, steatosis, liver cirrhosis, hepatocellular carcinoma, and extrahepatic 
diseases (Choi and Ou, 2006). The combination of pegylated interferon (IFN)-a and ribavirin 
is the only treatment for chronic HCV infections with proven efficacy. Unfortunately, this 
therapeutic strategy results in a low sustained virologic response (SVR), defined as an 
absence of detectable serum HCV-RNA at six months after completion of antiviral therapy; 
SVR is achieved in less than 50% of treated patients that have HCV genotype 1 and a high 
viral load (Ghany et al., 2009). 

There is evidence indicating that SVR is associated with long-term clearance of HCV 
infection and lower HCV-related complications (Ghany et al., 2011; Pearlman and Traub, 
2011). However, IFN-a in combination with ribavirin is generally not well tolerated, and the 
adverse side effects may lead to interruption or cessation of therapy. The major adverse 
effects are anemia, fatigue, hair loss, depression, insomnia, vertigo, anorexia, nausea, nasal 
congestion, cough, dyspnea, pruritus, and growth delay (Ko et al., 2005a). Thus, further 
advances in effective antiviral treatments against chronic hepatitis C are necessary. 

3. Oxidative stress and related risk factors in chronic Hepatitis C 

Recent studies indicate that oxidative stress not only accelerates the progression of liver 
damage (Vidali et al., 2008), but also affects the immune response to HCV infection and 
decreases SVR (Onoda et al., 2004; Polyak et al., 2007). Altered innate immunity (i.e., NK 
cells, neutrophils, dendritic cells, monocytes, and macrophages) and adaptive immunity (T- 
and B-lymphocytes) have influences in the development and progression of HCV infection. 
Although innate immunity can regulate adaptive immune response, HCV may escapes 
innate immune sensing by Toll-like receptors and acerbates HCV infection and replication 
(Zhang et al., 2006; Montero Vega and de Andrés Martín, 2008). Thus, this sometimes makes 
it difficult for the immune response to suppress or eliminate HCV. The imbalance between 
cell-mediated and humoral immunity in chronic HCV-infected patients was also observed. 
Insufficient helper (CD4) and cytotoxic (CD8) T-lymphocytes have been shown significantly 
linked to HCV persistence (Grüngreiff and Reinhold, 2010). Recent evidence has shown that 
damaging ROS and mitochondrial injury play a vital role in immune responses (Kohchi et 
al., 2009; West et al., 2011). 

Further, potential risk factors associated with SVR in HCV-infected patients include baseline 
HCV-RNA and aminotransferase levels, obesity, alcohol, insulin resistance (IR), non-
alcoholic fatty liver disease (NAFLD), and fibrosis stage (Yamada et al., 2008; Pillai et al., 
2010). In particular, NAFLD is not only strongly associated with IR and metabolic 
syndrome, but also with chronic HCV infection. The presence of hepatic steatosis correlates 
directly with serum and intra-hepatic titers of HCV-RNA (Younossi et al., 2004; Hübscher, 
2006). Hepatic stellate cells can be activated by pro-inflammatory cytokines thus contributed 
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to liver fibrosis. Evidence have shown that the involvement of oxidative stress and 
inflammation in the progression of NAFLD and IR (Reiman et al., 2006; Narasimhan et al., 
2010). 

 HCV-infected patients have significantly higher oxidative stress status, including increased 
hepatic, erythrocyte, lymphocyte, plasma, and serum malondialdehyde (MDA)(Farinati et 
al., 1995; De Maria et al., 1996; Barbaro et al., 1999a; Farinati et al., 1999; Mahmood et al., 
2004; Guo et al., 2012), hepatic and serum 4-hydroxy-2-nonenal (4-HNE)(Kageyama et al., 
2000; Mahmood et al., 2004), plasma F2-iso- prostanes levels (Konishi et al., 2006), serum 
protein carbonyl (De Maria et al., 1996), plasma, hepatic and leukocyte 8-oxo-7-hydrodeoxy-
guanosine (8-oxo-dG)(Farinati et al., 1999; Cardin et al., 2001; Mahmood et al., 2004; Chuma 
et al., 2008; Lin and Yin, 2009), as well as hepatic inducible nitric oxide synthase (iNOS) 
expression and nitrotyrosine production (i.e., nitration on the ortho- position of aromatic 
amino acids)(Garcia-Monzón et al., 2000). 

Recent evidence has demonstrated that this oxidative stress induced during HCV infection 
via mitochondrial dysfunction generates ROS (Choi and Ou, 2006). High serum, plasma, 
erythrocyte and PBMC concentrations of MDA, 4-HNE, and F2-isoprostanes, in combination 
with decreased levels of the antioxidant enzymes catalase, superoxide dismutase (SOD) and 
glutathione peroxidase (GPx), and decreased glutathione (GSH) and ascorbic acid (vitamin 
C) levels could reflect mitochondrial dysfunction (Wiswedel et al., 2002; Wen et al., 2006; 
Gomez-Cabrera et al., 2008; Sahach et al., 2008). The determination of serum, plasma, 
erythrocyte, urine, and PBMC concentrations of oxidative stress markers serves as an 
indirect index of mitochondrial oxidative stress in pathologic conditions (Modica-
Napolitano et al., 2007). However, few studies have elucidated clinical importance of 
mitochondrial oxidative damage in chronic hepatitis C. 

4. Mitochondria-driven free radical propagation 

Not only are mitochondria the source of adenosine triphosphate (ATP) through oxidative 
phosphorylation on the inner mitochondrial membrane, but also the target of potentially 
damaging free radicals (Orrenius et al., 2007). Mitochondrial energy generation is first 
accomplished by tricarboxylic acid (TCA) cycle and represented in the form of ATP, 
nicotinamide adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide 
(FADH2). Furthermore, oxidative phosphorylation is the primary energy process by which 
the oxidoreduction energy of mitochondrial electron transport is converted to the high-
energy phosphate bond of ATP. Oxygen (O2) serves as the terminal electron acceptor for 
cytochrome c oxidase of complex IV in the mitochondrial electron transport chain (ETC) that 
catalyzes the four electrons reduction of O2 to H2O (Thannickal and Fanburg, 2000). 

Coenzyme Q (CoQ, ubiquinone) behaves as an electron pool and a mediator of the electron 
transport between complex II (succinate dehydrogenase; also referred to as FADH2: 
succinate CoQ reductase) and complex III (ubiquinone-cytochrome c reductase) with 
complex I (NADH dehydrogenase; also referred to as NADH: ubiquinone oxidoreductase). 
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A decrease in CoQ concentrations, activated reverse electron transfer, decline in the electron 
transport rate, or inhibition of electron flow can result in high-energy electrons leaking from 
the ETC at complexes I, II, III, and IV to produce O2*- (Lenaz et al., 2007). The major 
production site of O2*- is reportedly complexes I and III. Complex I produces O2*- 
predominantly on the matrix side of the inner membrane, whereas complex III-derived O2*- 
is produced both towards the inner-membrane space and the matrix (Matsuzaki et al., 2009). 
In particular, the matrix contains the components of the TCA cycle and fatty acid β-
oxidation pathway, as well as mitochondrial deoxyribonucleic acid (mtDNA). The mtDNA 
is also a critical target for oxidative damage. Once damaged, mDNA can amplify the 
secondary ROS generation (Van Houten et al., 2006). It appears that mitochondria are the 
organelle responsible for the majority of ROS production. 

It is also noteworthy that self-amplification of the mitochondrial ROS generation can occur 
following ROS activation of mitochondrial permeability transition pore (MPTP). Once 
MPTP opening is triggered, ROS can induce the simultaneous collapse of the mitochondrial 
membrane potential (Δѱ, Dym) and a further increase in ROS generation by the ETC 
(Andreyev et al., 2005). In addition, damaged mitochondria produce increasingly more ROS 
in a process known as ROS-induced ROS release (RIRR) activation. In turn, cytosolic ROS 
released from the mitochondria could potentially function as second messengers to activate 
RIRR in neighboring mitochondria (Zorov et al., 2006). 

4.1. Mitochondrial oxidant production 

O2*- is the initial ROS generated in mitochondria during oxidative phosphorylation. Leakage 
of electrons from the mitochondrial ETC can result in incomplete reduction of molecular 
oxygen to produce O2*-. The O2*- itself is not particularly reactive in biological systems; 
however, O2*- anions can damage heme moieties or enzymes with iron-sulfur centers such as 
aconitase ([4Fe-4S]→[3Fe-4S]+) to release ferrous ion (Fe+2)(Ott et al., 2007). The Fe+2 can 
subsequently react with H2O2 to generate hydroxyl radicals (i.e., a Fenton process). Those 
superoxide radical anions can also react with NO* to form the damaging oxidant ONOO-, 
which is more reactive than either precursor (Barber et al., 2006). In turn, hydroxyl radical 
and nitric dioxide can be produced from ONOO-, and membrane lipid peroxidation and 
nitration of proteins on tyrosine residues are promoted (Beckman and Crow, 1993). ONOO- 
further damages complex I, II, and V as well as mitochondrial SOD, GPx, and aconitase 
(Holley et al., 2011). A growing body of evidence demonstrates that NO diffuses easily 
along its gradient into mitochondria and that NO is also produced by mitochondria 
(Alvarez et al., 2003). The above-described reactions are summarized in the following 
equations: 

O2 (in mitochondria) + e- → O2*- 

O2*- + NO* (in mitochondria) → ONOO– 

ONOO– + H+ → OH* + NO2* 
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As illustrated in the equations below, O2*- can either spontaneously dismute to H2O2 by 
reacting with itself or O2*- can be catalyzed by antioxidant enzymes. Because the 
mitochondrial membrane is permeable to H2O2, hydrogen peroxide can diffuse into the 
cytoplasm. H2O2 also decomposes to form the highly reactive hydroxyl radical, and this 
decomposition is accelerated in the presence of either ferrous or cuprous ions (Cu+). 
Moreover, superoxide can react with the radical OH* to form highly reactive single oxygen. 

2 O2* – + 2H+ → H2O2 + O2 (i.e., the dismutation reaction of superoxide) 

O2* – + Fe+3 → O2 + Fe+2 

Fe+2 + H2O2 → Fe+3 + OH* + OH-; (Cu+ → Cu+2) 

O2* – + OH* → 1O2* + OH- 

4.2. Consequences of mitochondrial oxidative stress 

Increased free radicals generated by damaged mitochondria can cause oxidative damage 
and a significant decline in metabolic processes; increase the mitochondrial membrane 
potential; impair the flow of electrons along the ETC; decrease mitochondrial membrane 
fluidity; decrease respiratory control ratios and cellular oxygen consumption; oxidate 
cardiolipin (a phospholipid and located at both the inner and outer membranes); deplete 
cytochrome c; induce cellular calcium (Ca+2) dyshomeostasis; and produce high levels of 
unwanted oxidants (Mecocci et al., 1997; Petrosillo et al., 2003; Mei et al., 2012; Nowak et al., 
2012). The inevitable by-products of oxidative phosphorylation can modify and damage 
mtDNA, proteins, lipid, and matrix components in the mitochondria, as well as deplete 
cellular antioxidants, which all lead to cell death (Marchi et al., 2012). 

Mitochondrial membranes are primarily composed of protein and phospholipids, whose 
interdependence is crucial for mitochondrial function (Gohil and Greenberg, 2009). In 
particular, fatty acids of the inner membrane are highly unsaturated (Berdanier, 1988). ROS 
attack to the mitochondrial membrane lipid components result in lipid peroxidation, which 
alter the membrane potential (Paradies et al., 2004). Therefore, ROS-induced mitochondrial 
damage that is considered an important mechanism involved in the onset and development 
of a diverse series of pathologies. 

5. Enzymatic antioxidants in mitochondria 

A network of specific non-enzymatic and enzymatic antioxidants can counteract 
mitochondrial ROS generation. Among these antioxidants, the non-enzymatic antioxidant 
systems are the second line of defense against free radical damage. It has been known that 
non-enzymatic antioxidants can act synergistically with enzymatic antioxidants. In animal 
models, administration of antioxidant vitamins increases mitochondrial SOD, GPx and 
catalase activity and significantly decreases MDA and carbonyl group levels, and thus 
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prevents rupture of mitochondrial membrane (Siler-Marsiglio et al., 2005; Zang et al., 2007; 
Rosa et al., 2009). The GSH, CoQ, lipoic acid, vitamin C and E are the non-enzymatic 
components of the antioxidant defense system in mitochondria (Ott et al., 2007; Liu, 2009). 

The enzymatic antioxidant systems in mitochondria involve SOD, GPx, glutathione 
reductase (GR), catalase, glutaredoxin, thioredoxin, thioredoxin reductase (TrxR), and 
peroxiredoxin (PRx). Decreased activity of mitochondrial SOD and GPx were associated 
with mitochondrial oxidative stress (Zang et al., 2007). In this review, we discuss the 
characteristics and functions of SOD, GPx, and catalase. 

5.1. Manganese-dependent superoxide dismutase 

Mn-SOD is highly restricted and located in the mitochondrial matrix. This enzyme is a 
nuclear- encoded primary antioxidant and plays a vital role in the modulation of redox 
states. Although the dismutation reaction of O2*- can take place spontaneously, Mn-SOD can 
accelerate the reaction and rapidly convert O2*- to H2O2. In the equations that follow, both 
the +2 and +3 states of manganese (Mn) are involved in the course of Mn-SOD turnover and 
the dismutation cycle. 

Mn+3 -SOD + O2*- → Mn+2 -SOD + O2 

Mn+2 -SOD +O2*- + 2H+ → Mn+3 -SOD + H2O2 

Mn-SOD not only suppresses ONOO- production and tyrosine residue nitration, but also 
inhibits membrane lipid peroxidation and mtDNA damage (Stojanović et al., 2005). O2*- has 
a pro-inflammatory role and induces ONOO- formation, lipid peroxidation, and recruitment 
of neutrophils to sites of inflammation. Mn-SOD can scavenge O2*- and therefore mimics 
anti-inflammatory agent. Altered Mn-SOD levels and chronic inflammation have been 
associated with neurodegenerative diseases (Li and Zhou, 2011), metabolic diseases, and 
liver diseases (Kitada et al., 2011). Additionally, Mn-SOD participates in the mitochondrial 
repair processes and has a role along with p53 in preventing mitochondrial DNA damage 
(Bakthavatchalu et al., 2012). 

The essential trace element Mn principally supports Mn-SOD activity and is required for a 
variety of physiological processes. Mn-SOD activity is positively related to the nutritional 
status of Mn (Luk et al., 2005). Clinical Mn deficiency is not common; however, many 
patients have decreased Mn levels and marked impairments in insulin sensitivity, glucose 
tolerance, and lipoprotein metabolism, resulting in decreased Mn-SOD and GPx levels, 
higher oxidative stress, and high mitochondrial abnormalities (Han et al., 2005; Rodríguez-
Rodríguez et al., 2011). Thus, Mn dys-homeostasis may be inactive or decrease Mn-SOD 
levels, leading to mitochondrial oxidative damage. 

5.2. Copper, zinc-dependent superoxide dismutase 

A SOD isozyme, similar to cytoplasmic Cu,Zn-SOD, that contains Cu and Zn, is also found 
localized in the mitochondrial inter-membrane space (Kira et al., 2002), nuclei, lysosomes, 
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and peroxisomes (Culotta et al., 2006). Thus, while some O2*- escapes into the inter- 
membrane space from the matrix side of the inner mitochondrial membrane, it can be 
partially catalyzed to H2O2 by Cu,Zn-SOD. Both trace elements Cu and Zn participate in the 
SOD enzymatic mechanisms that play an important role in oxidative balance. Apparently, 
deficiencies of Cu and Zn can result in impairment of the oxidant defense system (i.e., lower 
Cu,Zn-SOD, catalase, GPx, and cytochrome c oxidase activities), DNA repair, alterations in 
immune regulation, and increased oxidative stress (Ho and Song, 2009; Song et al., 2009; 
Guo et al., 2011). Mutations in the mitochondrial Cu,Zn-SOD gene result in SOD that are 
highly susceptible to glycation and are linked to elevated ROS production (Takamiya et al., 
2003). Significantly lower serum and erythrocyte Cu,Zn-SOD activity and higher lipid 
peroxidation compared to controls have also been observed in patients with mitochondria 
injury-related disease confitions (Pawlak et al., 2005; Russo, 2009, 2010; Sagdic et al., 2011). 

The electron carrier cytochrome c, which is also located in the mitochondrial inter-
membrane space, oxidizes O2*- back to O2 (Pereverzev et al., 2003). Cytochrome c also 
scavenges H2O2 and significantly decreases H2O2 production in vitro (Wang et al., 2003). 
Recent evidence has shown that transgenic mice with overexpressing mutant Cu,Zn-SOD, 
have significantly decreased levels of inner mitochondrial membrane-associated cytochrome 
c and increased mitochondrial lipid peroxidation (Kirkinezos et al., 2005). Therefore, Cu,Zn-
SOD deletion and the loss of cytochrome c from the mitochondrial inter- membrane space 
can lead to reduced ETC and increased O2*- production in disease conditions. 

5.3. Glutathione peroxidase 

Selenium (Se)-containing GPx is a selenocysteine-containing enzyme, of which multiple 
isoforms have been identified, including GPx-1, GPx-2, GPx-3, GPx-4, GPx-5, and GPx-6. 
GPx-1 is a major isoform localized in the cytoplasm and mitochondrial matrix (Orrenius et 
al., 2007) that metabolized H2O2 to O2 and H2O. However, GPx-1 levels in mitochondria are 
very low, compared with those in the cytoplasma. GPx-4 is membrane-associated that is 
found in the inter-membrane space of mitochondria, and is capable of reducing lipid 
hydroperoxides, alkyl peroxides, and fatty acid hydroperoxides with protect mitochondrial 
ATP generation. GPx-4 has also been shown to repair mitochondrial oxidative damage 
(Liang et al., 2009). 

Se deficiency is associated with marked decreases in GPx activity and expression and the 
inhibition of ATP production. Patients with low GPx activity, have significant associations 
with increased levels of MDA, viral infection, and retroviral therapy (Stephensen et al., 
2007). GPx can interfere with nuclear factor-kB (NF-kB) activation by IL-1 and TNF-a, inhibit 
cyclooxygenase-2 (COX-2) expression along with reduce production of arachidonic acid 
(AA) metabolites, prevent transport of lipid peroxides and oxidative damage, and maintain 
the mitochondrial oxidative-phosphorylation (Brigelius-Flohé, 2006; Cole-Ezea et al., 2012). 
Further, lipoproteins synthesis and secretions have been shown to decline by lipid peroxides 
(Murthy et al., 1998), indicating that activated GPx can attenuate hepatic triglyceride 
accumulation. 
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5.4. Catalase 

Catalase is also an important antioxidant enzyme that catalyzes the conversion of H2O2 to 
H2O. Catalase consists of four subunits, each of which contains a ferric (Fe+3) heme group 
bound to its active site (Bras et al., 2005); however, Fe deficiency causes a significant 
decrease of catalase activity. The mitochondrial membrane is impermeable to catalase. 
Catalase is found primarily in peroxisomes and is also present in heart mitochondria (Bai 
and Cederbaum, 2001), but has not been found in mitochondria from other tissues (Phung et 
al., 1994). In fact, in the presence of large amounts of H2O2 and thereby diffusing to the 
cytosol from the mitochondria, catalase along with GPx becomes the most important 
scavenger in the cytosol. Various studies have reported lower plasma and erythrocyte 
catalase activity and increased oxidative stress in patients suffering from mitochondria-
related diseases (Wang et al., 2005; Tinahones et al., 2009; Guo et al., 2011). 

6. Mitochondrial injury in chronic Hepatitis C 

Aberrant production of mitochondrial ROS and decrease GSH is though to be caused by 
HCV core proteins and possibly contributes to oxidative stress in HCV-infected patients 
(Thorén et al., 2004; Choi and Ou, 2006; Simula and de Re, 2010). Decreased mtDNA levels 
have also been found in these patients (Barbaro et al., 1999; Bäuerle et al., 2005). 

In infectious cell system, MPTP was shown to prevent a range of pathological changes 
included by HCV core proteins, including the following: induction of ROS, reduction of 
respiration, disruption of mitochondrial membrane potential, increased mitochondrial 
permeability transition in response to exogenous oxidants and TNF-a, loss of complex I 
activity, cleavage of DNA repair enzyme poly (ADP-ribose) polymerase, overproduction of 
mitochondrial ROS and 8-oxo-dG, Ca+2 overload, decreased GSH, incorporation of core 
proteins into the mitochondrial outer membranes and endoplasmic reticulum via its COOH-
terminal region, and enhanced release of cytochrome c from the mitochondrial to the 
cytosolic fraction (Okuda et al., 2002; Korenaga et al., 2005a, b; Hara et al., 2006; Piccoli et al., 
2007; Quarato et al., 2012). On the other hand, HCV core protein has been shown to induced 
IR (Cheng et al., 2005). HCV-induced ROS generation suppresses the expression of hepcidin 
(i.e., a peptide which regulate Fe metabolism by decreasing Fe absorption), facilitating the 
Fe overload; whereas hepcidin expression was restored by antioxidants (Miura et al., 2008). 
Fe overload in vitro were observed to cause further ROS augmentation and amplify the 
expression of catalase, Cu,Zn-SOD, and NADPH dehydrogenase (Moriya et al., 2010). These 
observations presented that increased intracellular Fe and oxidative stress, in turn, 
aggravates HCV-induced mitochondrial damage. 

In animal models of HCV infection, increased ROS, decreased GSH and NADPH levels in 
liver mitochondria, and increased intrahepatic lipid peroxidation in response to CCl4 have 
been observed (Okuda et al., 2002; Korenaga et al., 2005a, b). Further, altered mitochondrial 
function has shown that not only results in hepatic fat accumulation but also leads to 
increased ROS that induces inflammatory response, thereby activating stellate cells and 
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fibrogenesis (Fromenty et al., 2004; Rolo et al., 2012). HCV core proteins induced ROS 
generation leads to a decreased hepcidin expression also contribute to Fe accumulation 
(Nagashima et al., 2006). Fe overload induced hepatic 8-oxo-dG and eventually increased 
mitochondrial injury and the risk of hepatocellular carcinoma development (Furutani et al., 
2006; Moriya et al., 2010). Thus, increased oxidative stress and altered mitochondrial 
function both in vitro and in vivo is proven to be involved in chronic hepatitis C infection 
and is thought to contribute to its progression. 

6.1. Alterations in enzymatic antioxidants and cofactors 

Chronic HCV-infected patients were observed to have an increase or decrease in plasma and 
erythrocyte SOD and GPx activity, higher, lower, or unchanged catalase levels (Ko et al., 
2005b; Kaya et al., 2006; Levent et al., 2006), increased serum and plasma Fe, and decreases 
in serum, plasma, and erythrocyte Zn and Se concentrations (Czuczejko et al., 2003; Ko et al., 
2005b; Himoto et al., 2011; Khan et al., 2012). Associations have been observed between 
plasma MDA, SOD, and GPx levels with viral loads (Ko et al., 2005b). There were significant 
negative relationships between MDA and HCV-RNA levels with Zn contents in 
erythrocytes and whole blood. Se deficiency has been observed to be inversely associated 
with HCV-RNA loads, the severity of hepatic fibrosis, and IR in HCV-infected patients (Ko 
et al., 2005b; Himoto et al., 2011; Chen et al., 2012). On the other hand, serum, plasma, and 
erythrocyte levels of Fe and Cu were significantly higher in hepatitis C patients. Positive 
correlations were also noted between plasma Cu and hepatic Fe levels with HCV-RNA in 
these patients (Fargion et al., 1997; Ko et al., 2005b; Guo et al., 2012). 

6.2. Inadequate vitamins and glutathione status 

The evidence regarding antioxidants, some nutrients along with substances play an 
important role in mitochondrial resuscitation (Liu and Ames, 2005). GSH and vitamin B 
complex (B1, B2, B3, B6, pantothenic acid, biotin, and folic acid) protect mitochondria from 
oxidative damage, improve mitochondrial function, act as cofactors or substrates to protect 
mitochondrial enzymes, and restore GSH content. Further, these components can enter 
cells and mitochondria following exogenous treatment (Liu et al., 2009). Deficiency in 
vitamin B complex and GSH leads to decreased mitochondrial membrane potential, 
decreased ATP synthesis, and increased oxidative stress and inflammatory responses 
(Depeint et al., 2006). 

Patients with chronic HCV infection have significantly lowered plasma vitamin B1, B2, B6, 
C, and folic acid levels. Anti-HCV therapy causes further decrease in vitamin B1, B2, B6 and 
E concentrations and reduces SOD and GPx activity (Lin and Yin, 2009). These patients were 
also observed to have significantly higher plasma homocysteine (a sulfur-containing amino 
acid, which is influence by vitamin B2, 6, 12, and folic acid) concentrations and lower 
concentrations of folic acid and vitamin B12 (Roca et al., 2012). The plasma homocysteine 
levels were inversely correlated with the concentrations of folic acid in HCV-infected 
patients (our unpublished observation). SVR patients have been observed to have lower 
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plasma homocysteine levels than non-SVR patients (Borgia et al., 2009). Pre-treatment with 
IFN-a and ribavirin in chronic HCV-infected patients, serum vitamin B12 levels are 
positively correlated to end-of-treatment response (Rosenberg and Hagen, 2011). 

Besides the above-noted findings, HCV-infected patients have lower GSH and higher GSSG 
concentrations in blood, plasma, liver, and the lymphatic system. However, the ratio of 
GSSG to GSH increases, indicating a high GSH turnover and oxidative stress (Seronello et 
al., 2007; Lin and Yin, 2009). Thus, GSH depletion might be one reason for the low rate of 
patient response to treatment (Bernhard et al., 1998). Taken together, these observations 
suggest that the antioxidant defense is clearly depleted in patients suffering from hepatitis 
C. 

7. Effects of antioxidants and nutrient substances in Hepatitis C 

The supplementation of antioxidants or cofactors may show greater benefits in 
mitochondrial function and antiviral therapy in patients infected with HCV. Recently, the 
combination of antioxidant with antiviral therapy is recommended for hepatitis C. 

7.1. Zn supplementation 

Zn as a cofactor of Cu,Zn-SOD and thus is a potential modulator of mitochondrial oxidative 
phosphorylation. Decreased serum and plasma Zn may serve as a potential inflammatory 
marker, similar to CRP, but it may also reduce hepatic inflammation in chronic hepatitis C 
patients through induction of Zn metallothionein, which functions as a free radical 
scavenger and immune-modulator (Ko et al., 2005a; Guo et al., 2012). Zn has been shown to 
influence antigen-specific immune response and unspecific immune mechanisms 
(Grüngreiff and Reinhold, 2010). Disturbances in Zn homeostasis can lead to a shift in the 
Th1/Th2 balance towards a Th2 response (Rink and Haase, 2007; Prasad, 2009). HCV 
replication enhances activation of the NF-kB-signal pathway triggered by TNF-a (Kanda et 
al., 2006); however, Zn inhibits NF-kB activation results in decreasing inflammatory 
cytokine levels (Prasad, 2008). The non-structural protein NS5A is an active component of 
HCV replicase and is a Zn metalloprotein, suggesting complex interaction between Zn and 
NS5A activation (Tellinghuisen et al., 2004). In addition, some of the adverse side effects 
seen during antiviral treatment were similar to the symptoms of Zn deficiency (Saper and 
Rash, 2009). The effects of Zn administration on these side effects, oxidative stress, and 
inflammatory responses remain to be determined. 

The concentrations of serum Zn were declined further in hepatitis C patients receiving 
treatment with IFN-a and ribavirin; whereas Zn concentrations were remediable by daily 
administration of 50 mg elemental Zn from Zn gluconate for six months. Serum Zn level 
was also found to be significantly higher in complete responders to IFN-a therapy than in 
non-responders. No apparent difference was seen in virologic response, but adverse side 
effects including gastrointestinal disturbance, weight loss, and mild anemia were 
significantly decreased (Ko et al., 2005a). 
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In clinical observation, the daily dose of polaprezinc includes 34 mg elemental Zn for six 
months that markedly decreases both ALT and aspartate aminotransferase (AST) levels and 
enhances the response to IFN-a therapy (Takagi et al., 2001; Nagamine et al., 2000; Matsuoka 
et al., 2009). However, Zn administration did not affect virologic response (Takagi et al., 
2001), SVR, and adverse side effects except for gastrointestinal disturbance (Suzuki et al., 
2006). On the other hand, Zn responders were observed to have a clearly lower cumulative 
incidence of hepatocellular carcinoma in patients suffering from chronic HCV infection and 
liver cirrhosis. For those Zn non-responders, suggesting a higher daily Zn dose may be 
needed to increase the response to IFN-a treatment (Matsuoka et al., 2009). Polaprezinc was 
administrated at 51 mg elemental Zn per day for six months to hepatitis C patients, the rate 
of reduction of ALT levels was observed to positively correlate with that of ferritin (i.e., a 
clinical marker of iron storage protein, inflammation and oxidative stress), whereas Zn 
administration did not affect virologic response (Himoto et al., 2007). 

These observations suggest that Zn supplementation in HCV-infected patients may improve 
nutritional status, and thereby decrease inflammation and liver enzyme levels. 
Administration of Zn supplement has shown to reduce potential oxidative stress and 
stabilize erythrocyte membrane, but not to inhibit virus. 

7.2. Vitamin C and E supplementation 

Vitamin C is an essential and water-soluble antioxidant molecule efficiently protects 
biological materials against damaging free radicals such as OH* and O2*-. Vitamin C severs 
as a cofactor for enzymes involved in synthesis of collagen or carnitine (essential for the 
transport of fatty acids into mitochondria), and the mitochondrial reduction of vitamin E, 
ferricytochrome c, lipoic acid, and GSH (Sagun et al., 2005; Levine et al., 2011). In vivo study 
has shown that administration of vitamin C supplementation markedly increases plasma, 
leukocyte, and mitochondrial vitamin C concentrations and mitochondria themselves can 
produce vitamin C (May et al., 2007). Vitamin C supplementation is observed to 
significantly enhance NK cells activity, monocytes, T- and B-lymphocytes, and increase the 
Th1/Th2 ratio, balancing the immune function (Heuser and Vojdani, 1997; Chang et al., 
2009). Deficiency in vitamin C can cause oxidative stress and lead to decreased immune 
response, impaired membrane integrity, and altered membrane fluidity (Maggini et al., 
2007). On the other hand, vitamin E (a-tocopherol) is a fat-soluble antioxidant that prevents 
lipid peroxidation and scavenges lipid peroxyl radicals. Vitamin E administered in the diet 
predominantly localizes in the mitochondrial inner- and outer-membranes (Lauridsen and 
Jensen, 2012). Effects of vitamin E were also observed which involving in heme biosynthesis, 
immune system modulation, Se-containing proteins formation, and the integrity of 
mitochondrial membranes (Mabalirajan et al., 2009). 

Studies in an animal model demonstrates that combined administration of vitamin E and C, 
markedly decreases the carbonyl group content in mitochondrial proteins and enhances 
SOD and citrate synthase activity (Rosa et al., 2009). On the other hand, clinical observation 
has been shown to have significantly lower plasma concentrations of a-tocopherol, ascorbic 
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acid, and GSH in HCV- infected patients (Lin and Yin, 2009). Plasma a-tocopherol or 
ascorbic acid levels were negatively correlated with F2-isoprostane and ALT levels (our 
unpublished results). Thus, further studies will be needed to clarify the effect of a 
combination of vitamin C and vitamin E on chronic hepatitis C patients treated with IFN-a 
and ribavirin. 

Administration of vitamin E (804 mg a-tocopherol/day) for eight weeks has been shown to 
decrease protein carbonyl group levels; whereas did not significantly affect ALT levels, 
virologic response, and fibrosis process in HCV-infected patients (Houglum et al., 1997). 
Further studies indicate that plasma and erythrocyte a-tocopherol and plasma ascorbic acid 
levels increased, and serum levels of ALT decreased significantly after two weeks of 
treatment with Vitamin E (500 mg a-tocopherol/day) and C (750 mg ascorbic acid/day) 
supplementation (Murakami et al., 2006). The combined administration of vitamin E (1342 
mg a-tocopherol/day) with vitamin C (100 mg ascorbic acid/day) for 48 weeks has been 
shown to decreases in ribavirin-induced anemia but not SVR in patients with HCV infection 
(Kawaguchi et al., 2007). Patients undergoing IFN-a and ribavirin treatment have markedly 
higher AA and decreased EPA levels in PBMC. The combined administration of vitamin E 
with vitamin C for four weeks prevents the decrease in PBMC EPA and the increase in the 
ratio of AA to EPA in these patients (Murakami et al., 2006). Eight weeks of such treatment 
led to increases in hemoglobin levels and significantly elevated erythrocyte EPA 
concentrations in these patients (Hino et al., 2006). 

Studies have demonstrated that ribavirin’s toxicity decrease intracellular energy 
metabolism, increase oxidative membrane damage, and accelerate hemolytic anemia in the 
combined therapy of IFN-a and ribavirin (Assem and Yousri, 2011). Ribavirin-induced ROS 
would increase EPA peroxidation and result in alteration in fatty acid compositions of 
erythrocyte membranes. A combination antioxidant treatment improves the antioxidant 
capacity than vitamin E alone in HCV-infected patients, thereby protecting erythrocyte EPA 
depletion. Based on our previous experience with clinical trials, the dosages of vitamin C 
can range from 1000 mg to 6000 mg. These patients who take greater amount of vitamin C, 
which can offers greater benefit in raising GSH concentrations. Additionally, a combination 
of vitamin C and other antioxidants may further increase the efficiency of antiviral therapy. 

7.3. Vitamin C, E, and Zn supplementation 

There is a need for effective antiviral treatments that decrease the inflammation and increase 
antiviral response. The availability of such treatments would maintain erythrocyte integrity 
and resistance to hemolysis. It seems reasonable that co-administration of Zn and 
antioxidants may be more effective in antiviral therapy. 

HCV-infected patients receiving antioxidant supplementation (combination of 800 mg a-
tocopherol/day, 500 mg ascorbic acid/day and 40 mg Zn/day for six months) showed 
significant improvement in antioxidant enzyme activity and ALT reduction (Farias et al., 
2012). Polaprezinc supplementation (equivalent to 34 mg elemental Zn) daily for 12 months 
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has been observed to significantly decrease plasma MDA, HCV-RNA load, and prevent the 
decrease in polyunsaturated fatty acids of erythrocyte membrane phospholipids in patients 
during IFN-a plus ribavirin therapy with vitamin E (300 mg a-tocopherol acetate/day) and 
vitamin C (600 mg ascorbic acid/day) supplementation (Murakami et al., 2007). Results from 
clinical studies suggest that Zn supplementation is more effective against HCV when given 
along with antioxidants (combinations of vitamin C and vitamin E). 

7.4. Vitamin C, E, and Se supplementation 

Se also plays a vital role in the redox regulation and antioxidant function and immuno-
modulatory effects. These effects are potentiated by the presence of vitamin E. Se deficiency 
was observed to have reduced T-lymphocytes, impaired lymphocyte proliferation and 
function, and altered innate immunity (NK cells, dendritic cells, and neutrophils)(Maggini et 
al., 2007; Hoffmann and Berry, 2008). On the other hand, decreased Se levels and Se-
dependent GPx activity either in plasma or in erythrocytes suggests that the anti-oxidative 
capability is limited in patients with chronic HCV infection (Ko et al., 2005b; Guo et al., 
2012). Significantly higher viral loads correlate with decreased blood Se and GPx activity in 
HCV-infected patients (Ko et al., 2005b; Himoto et al., 2011; Khan et al., 2012). Associations 
have been observed between plasma MDA, protein carbonyl group, and ALT levels with 
plasma Se concentrations (our unpublished results). Serum and plasma Se levels 
significantly decrease in proportion to the severity of hepatic fibrosis, IR, and HCV-RNA 
levels, and correlate positively with plasma, erythrocyte GPx activity and Zn concentrations. 
Also, increased IR is associated with higher HCV-RNA levels (Ko et al., 2005b; Himoto et al., 
2011). 

Se-dependent GPx modules encoded in RNA viruses have been found (Zhang et al., 1999). 
HCV- infected patients with early virological response (EVR), which is defined as 
undetectable HCV-RNA or a less than two log drop in HCV-RNA at week 12, have 
significantly higher plasma Se concentrations and GPx activity compared to those with non-
EVR patients. A similar difference between SVR and non-SVR patients has been observed 
(C-H Guo, W-S Ko, and P-C Chen; unpublished results). Thus, Se status might be a sensitive 
indicator for the sustained response to therapy in chronic hepatitis C patients. 

HCV-infected patients who received antioxidant supplementation (633 mg a-
tocopherol/day, 500 mg ascorbic acid/day, and 200 mg Se/day for six months) had 
significantly higher plasma levels of ascorbic acid and a-tocopherol and higher erythrocyte 
GPx activity. However, the supplementation had no effects on ALT, viral load or oxidative 
markers (Groenbaek et al., 2006). 

This finding is difficult to interpret because the potential synergy between vitamin E and Se 
is well documented. On the basis of the finding, these results might be attributed to viral 
genotypes or a much high viral load. Based on our previous experience with clinical trials, 
this dosage may not be enough to be therapeutic for Se therapy, even though the 
recommended dietary allowances of Se in the USA are 55-70 mg/day for adults. 
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Additionally, there is variability in the absorption and therapeutic mechanism of Se that is 
related to the forms of Se. Further large-scale studies are needed to elucidate the effects of Se 
alone or in combination in chronic hepatitis C patients treated with IFN-a and ribavirin. 

7.5. Vitamin C, E, and eicosapentaeoic acid supplementation 

Two components of fish oil, eicosapentaeoic acid (EPA) and docosahexaenoic acid (DHA), 
are referred to as omega-3 or n-3 fatty acids. Both EPA and DHA have been shown to exert 
antioxidant, anti-inflammatory activities (efficiently suppressed NF-kB activation), and 
reduction of pro- inflammatory lipid mediators (Merzouk et al., 2003; Calder, 2006) and 
subsequently incorporate into the mitochondrial membranes and maintain the membrane 
fluidity (Chapkin et al., 2002, 2009). Thus, both EPA and DHA are essential for 
mitochondrial function, inhibition of HCV-RNA replication (Liu et al., 2010), increases in 
insulin sensitivity (Ye et al., 2001) and hepatic lipid metabolism (Araya et al., 2004; Al-
Gayyar et al., 2011). 

Mitochondrial phospholipid composition, particularly in releases of AA and cardiolipin 
contents are major contributors to trigger MPTP opening. Cardiolipin is composed of four 
linoleic acid side chains, which is essential for normal mitochondrial respiration; however, 
substitute such as long chain saturated and monounsaturated fatty acids weaken 
mitochondrial function (O'Shea et al., 2009). Recent study has shown that increased 
saturated fatty acids and cholesterol associated with alteration in mitochondrial membrane 
and cardiolipin oxidation, which are required for HCV replication (Roe et al., 2011). HCV-
infected patients have markedly higher AA and decreased EPA levels in PBMC compared to 
the healthy controls. In addition, IFN-a and ribavirin treatment can further lead to EPA 
depletion (Murakami et al., 2006). Supplementation with DHA alone or both DHA and EPA 
significantly delays Ca2+-induced MPTP opening in normal and hypertrophied myocardium 
(O'Shea et al., 2009; Khairallah et al., 2010). These changes were accompanied by an increase 
in DHA and EPA level in mitochondrial phospholipids and decreased AA level (Khairallah 
et al., 2010). 

Both EPA and DHA may induce b-oxidation of fatty acid and upregulation of mitochondrial 
biogenesis (Ruzickova et al., 2004; Flachs et al., 2005). In rat model, EPA treatment lowered 
plasma triglyceride and increased b-oxidation of fatty acid in hepatic mitochondria and 
carnitine palmitoyltransferase-1 activity (Madsen et al., 1999). Treatment with EPA and 
DHA was observed to reduce in plasma and urinary F2-isoprostanes, which was due to 
immuno-modulatory effects via EPA and DHA (Mori et al., 2003). Above observations 
suggest that EPA and DHA supplementation have potential beneficial effects in HCV-
infected patients with and without NAFLD. 

It is proposed that administration of either EPA alone or both DHA and EPA may 
compensate the loss of EPA by ribavirin induction in erythrocyte membrane. After oral 
treatment with EPA (1.8 g/day) for 12 weeks, patients were observed to have significantly 
decreased ALT levels and higher Th1/Th2 ratio. These patients had clearly lower plasma 
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and serum 8-oxo-dG levels after six-months of treatment with IFN-a, ribavirin, and 
antioxidants (300 mg a-tocopherol/day and 600 mg ascorbic acid/day). EPA 
supplementation also decreased the ratio of AA to EPA and increased leukocyte levels 
(Tomioka et al., 2005; Kawashima et al., 2008); suggesting treatment with EPA prevents AA 
accumulation. Thus, these observations suggest that the combination of EPA and 
antioxidants (vitamin C and vitamin E) may ameliorate inflammation and oxidative stress 
and thereby increase the response of antiviral therapy in HCV-infected patients. 

The bioavailability and efficacy of fish oils are frequently controversial, although ethyl ester 
(EE)- or triglyceride (TG)-form, has recently been introduced into clinical practices. EE-form 
fish oil has shown some unpredictable side effects in clinical application (Data sources from 
Dr. P-J. Liu). Both ethanol and methanol, the metabolites of EE-form (catalyzed by carboxy 
ester hydrolase) that may contribute to the adverse events include gastrointestinal disorder, 
vomiting, and hypertriglyceridemia. Thus, the choice of fish oils for clinical application will 
have to be considered, particularly in chronic HCV-infected patients with NAFLD. 

7.6. Combination of antioxidants and nutrient substances 

Beside the use of those antioxidants, some nutrient substances treatments in mitochondrial 
damage have been reported to produce a positive effect, as reviewed in Tarnopolsky (2008) 
and Orsucci et al (2009). Further, the combined treatment with antioxidants and other 
nutrients has been show to efficiently decrease mitochondrial oxidative injury, increase 
mitochondrial ATP production, and to arrest the progression of clinical symptoms. 

Beneficial therapeutic responses to CoQ (Gane et al., 2010), carnitine (Romano et al., 2008; 
Malaguarnera et al., 2011), choline (Niederau et al., 1998), or N-acetyl-cysteine (Cimino et al., 
1998; Neri et al., 2000) have been observed in patients with hepatitis C. Furthermore, 
standard treatment with multiple nutrient supplements (including 2000 mg/day of ascorbic 
acid, 150 mg/day of GSH, 150 mg/day of LA, 800 IU/day of d-a-tocopherol as well as 
silymarin, glycyrrhiza, and schizandrae) for six months leads to significant declines in ALT 
levels, improvements in liver histological status, and decreased HCV-RNA loads. Such 
supplements also produce mild beneficial effect in the inflammatory response of patients 
who are non-responders to IFN-a (Melhem et al., 2001; Gabbay et al., 2007). Patients with 
chronic hepatitis C who received a combination of natural supplements (CoQ, EPA/DHA, 
Se, and vitamin B complex) for six months demonstrated significant improvements in 
immune function, reduced adverse side effects, and decreases in HCV-RNA loads. 
Reductions in the rate of non-responders were also observed (manuscript from Dr. Simon 
Hsia). These observations suggest that the synergistic effects of antioxidants and 
mitochondria-related nutrient substances may be effective in antiviral therapy. 

8. Summary 

In conclusion, significant increases in oxidative stress and alterations in mitochondrial 
function have been observed in patients infected with HCV, as well as in animal and cell 



 
Antioxidant Enzyme 

 

252 

models of HCV. HCV-induced mitochondrial oxidative damage and increased ROS 
production facilitate HCV replication and contribute to the progression of hepatitis C. 
Additionally, mitochondrial dysfunction inducted by HCV reduces the b-oxidation of fatty 
acid and accelerates ROS formation, causing fat accumulation and hepatic lipid 
peroxidation. Reduced mitochondrial biogenesis also contributes to development of IR. 
Clinical observations indicate that therapeutic approaches targeting mitochondrial 
biogenesis that decrease oxidative damage and increase the response to antiviral therapy are 
clinically beneficial for chronic HCV-infected patients undergoing IFN-a and ribavirin 
treatment. 
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