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1. Introduction 

To tolerate environmental fluctuations and overcome the invasion by pathogens, plant 

metabolism must be flexible and dynamic. However, biotic and abiotic stresses disrupt the 

metabolic balance of cells, resulting in accumulation of reactive oxygen species (ROS) and 

oxidative burst [1]. ROS are produced as unavoidable byproducts of aerobic metabolism. 

they are known as mediators of various processes including programmed cell death, 

pathogen defense, and stomatal behavior[2, 3]. Plant cells normally produce ROS, 

particularly superoxide and H2O2 as signaling molecules in many processes associated with 

plant growth and development [4]. Change in steady-state levels of ROS in the cell is 

perceived by different proteins, enzymes and receptors which lead to the modulation of 

different developmental, metabolic, and defense pathways[1]. Although ROS are produced 

during normal metabolic processes but their formation is accelerated under stress 

conditions. In plant cells, most of these ROS are originated from chloroplasts or 

peroxisomes, but in non-green tissues or in the dark, mitochondria is the dominant site of 

ROS production.The lifetime of active oxygen species within the cellular environment is 

determined by numerous antioxidative systems, which provide crucial protection against 

oxidative stress imposed by these molecules. The antioxidative systems comprise numerous 

enzymes (superoxide dismutase, ascorbate peroxidase, catalase, gluthatione reductase, 

monodehydroascorbate reductase, dehydroascorbate reductase) and various compounds of 

low molecular weight (ascorbate, gluthatione, tocopherols, carotenoids, phenols) [3, 5,6]. 

Environmental factors such as low temperature, salinity, drought, high light, and heavy 

metals may affect the equilibrium between the production and removal of ROS in the cell. 

Generation of ROS during abiotic stresses is believed to be mediated by photorespiration 
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reaction and activity of NADPH oxidases[7].Enhanced generation of ROS during stress 

condition can be viewed as cellular indicators of stress and as signaling molecules 

involved in signal transduction for the stress response [7].Various studies have been 

conducted in different plants in order to evaluate the antioxidative systems under 

different abiotic stresses. In the following I will present the results of some of these 

studies. 

Drought stress induces the generation of active oxygen species which their steady-state 

levels are tightly controlled in turn by increasing the activity of antioxidative systems[8]. In 

Catharanthus roseus for example it was shown that drought tolerance is mediated by 

enhanced antioxidant potentials and secondary metabolite accumulation[9]. In addition, It 

has been shown that some plant growth regulators like methyl jasmonate and uniconazole 

have inducing effects on the antioxidant system which causes higher drought tolerance in 

resistant cultivar of Zea mays[10]. 

Change in the activity of antioxidant enzymes such as superoxide dismutase (SOD: EC 

1.15.1.1), peroxidase (POD: EC 1.11.1.7), catalase (CAT: EC 1.11.1.6), gluthatione reductase 

(GR: EC 1.6.4.2) and gluthatione S-transferase (GST: EC 2.5.1.18) were studied under salt 

stress in two susceptible and tolerant high yielding genotypes of mulberry under salt stress 

condition. Antioxidative enzymes activities were changed, but the extent of alteration varied 

between two geneotypes and higher amounts of antioxidative enzymes were observed in 

tolerant species[11].  

Temperature is a key environmental factor that limits the productivity and geographical 

distribution of plant species. Studies have shown that cold stress changes the oxidative 

status and modulates the ROS production.Like the previous examples H2O2 content and 

activities of peroxidase, ascorbate peroxidase and gluthatione reductase were compared in 

cold acclimated and non-acclimated plants during freezing stress. It is supposed that cold 

acclimation induces H2O2 production, which in turn enhances the activities of antioxidative 

enzymes, resulting in alleviation of oxidative stress caused by freezing[6]. 

The effects of heavy metal stress on the activity of antioxidative enzymes superoxide 

dismutase (SOD), peroxidase (POD) and catalase (CAT) have also been studied. The 

increase in enzyme activities was accompanied with higher tolerance to heavy metal 

stress[11-13].The deficiency of some elements also causes the changes in the activities of 

some ROS scavenging enzymes, for example see [14]. 

Generally, plant antioxidative enzymes are important as a plant defense mechanism against 

reactive oxygen species. Besides different environmental stresses, reactive oxygen species 

play crucial roles in different stages of organogenesis and somatic embryogenesis. 

In previous study[15] we focused on adventitious shoot induction from corm explants of 

saffron and reported the relationship between total protein content, peroxidase, 

polyphenoloxidase, catalase, superoxide dismutase, esterase activities and shoot 

formation. 
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Saffron is one of the most valuable crop species world-wide and is the only plant whose 

product is sold in grams. The three-branched stigma of Crocus sativus flower, economically 

the most important part of plant, is known as saffron [16]. Several hundreds of the flowers 

are needed to produce one gram of saffron. Cultivated saffron is of great value throughout 

the world. It is widely cultivated in Khorasan province of Iran. Historical evidences indicate 

that either in the past or present times, Iran has been the home of cultivated saffron [17]. 

Saffron is a sterile triploid plant and therefore, corms are used for its vegetative 

propagation. Bacterial, fungal and viral diseases usually infect corms and remain active after 

the harvest. Despite care and sanitation, these pathogens are the main cause of necrosis in 

corms and young leaves, and consequently decrease the flowering. Plants infected by fungal 

or bacterial pathogens could be treated with appropriate chemicals but such treatments are 

not effective in viral infections. Meristem tip-culture and plant regeneration from the 

cultured tissues is the only way to produce pathogen-free saffron. 

In vitro propagation using tissue culture techniques has been used for the production of 

disease free plants and mass production of many geophytes including saffron. This 

technique is based on totipotency or the ability of plant cells to develop new organs or 

somatic embryos when grown in a specific culture medium [18]. A variety of gene and 

protein expression signatures are involved in the shoot organogenesis that is biologically 

and developmentally complex differentiation process[19]. At optimal concentrations, ROS 

play a critical role in the plant’s normal development and response to the environmental 

stresses [20].Isozymes, or isoenzymes, are enzymes that catalyze the same reaction, but exist 

in multiple molecular forms, possess different properties, and show different tissue 

distributions[21]. Isozymes are the different gene products. They are usually recognized by 

the different electrophoretic mobilities they possess. Oxidative enzyme isozymes have a 

number of roles in the growth and development of plants. Isozyme analysis of some ROS 

scavenging enzymes during different cultural stages might throw light on the physiological, 

biochemical and genetic changes throughout differentiation. Thus, changes in activities of 

some antioxidant enzymes and esterase during organogenesis were monitored. 

TDZ, a non-purine phenylurea derivative, is widely used for plant organogenesis and 

somatic embryogenesis [22]. Peroxidase (POD) is a multifunctional enzyme which known to 

be involved auxin catabolism. Different molecular forms of peroxidases participate in 

growth control, development, differentiation and morphogenesis. Superoxide dismutase 

(SOD) is a metaloprotein, catalyzing the dismutation of superoxide radicals to hydrogen 

peroxide and oxygen [23]. Under normal conditions, the resulting H2O2 is effectively 

scavenged by catalases (CAT) and peroxidases (POD). Superoxide radicals can be formed in 

the most cellular compartments enzymatically by autoxidation of several substrates. The 

major sources of superoxide formation are the reducing side of photosystem I (PSI) in 

chloroplasts, and the NADH-oxidoreductase complex as well as the autoxidation of reduced 

ubiquinone in mitochondria. Furthermore, superoxide radicals are known to be produced 

by an NAD(P)H-dependent microsomal and peroxisomal electron transport chains and by 

xanthine oxidases in peroxisomes [24]. 
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2. Plant media 

The basal salts including vitamins of MS [25] and B5[26] media were used in this study. Plant 

media were enriched with 30 g/l (3% w/v) sucrose and 7g/l (0.7% w/v) agar (BactoAgar®-Difco 

Laboratories), as the solidifying agent, pH was adjusted to 5.7 and the plant hormones, in a 

stock solution of DMSO (Dimethyl sulfoxide), were added to it. All plant media, growth 

regulators and DMSO were purchased from Duchefa (Haarlem, the Netherlands) and Merck 

(Germany). Depending on the experiment, MS and B5 media were supplemented with 

indicated amount of the plant growth regulators. For the induction of organogenic callus in 

MS and B5 media, 1.13, 4.54 and 9.08 μM TDZ, and 2.22, 8.87 and 17.75 μM BA were added as 

the growth regulators. For shoot growth and proliferation of calli, the following combinations 

of NAA and BA were used in MS or B5 media: 2.22 μM NAA and 2.68 μM BA, or 4.44 μM 

NAA and 5.37 μM BA, or 8.88 μM NAA and 10.74 μM BA. 

2.1. Plant materials 

Healthy resting corms were collected between August and October, from the research farm of 

the faculty of sciences, university of Tehran, Mardabad, Karaj, Iran. Corms were washed under 

running tap water for 30 minutes; surface disinfected with detergent (dish washing liquid), 

soaked in Hygen (Benzalkonium chloride1%) for 10 minutes and rinsed under tap water. 

Corm explants were transferred into a sterile laminar air flow cabinet. They first incubated in 

70% ethanol for 2 minutes and then in 20% v/v commercial bleach, containing 1% sodium 

hypochlorite, for 15 minutes then rinsed three timeswithsterile distilled water. A rectangular 

section, from the central meristematic region of corm, was isolated as a starting explant. 

Experiments were done in two series. For each experiment, 25 corm explants, per treatment, 

were placed on shoot-inducing media and incubated in dark at 25 ± 3 °C for 14 weeks to allow 

callus induction. Explants with induced shoots were then transferred into jars, containing 

shoot growth media, and maintained under 16/8 h photoperiod for further growth. Nine 

different samples: 1. corm explant after sterilization and before exposure to the medium 

culture, 2. Nodular callus from B5 medium containing TDZ 4.54 μM, 3. Nodular callus from 

MS medium containing TDZ 4.54 μM, 4. Nodular callus with primary shoots from MS 

medium containing TDZ 4.54 μM, 5. Proliferated nodular callus from MS medium containing 

NAA 2.22 BA 2.68 μM, 6. Proliferated nodular callus from MS medium containing NAA 8.88 

BA 10.74 μM, 7. Proliferated nodular callus from MS medium containing NAA 4.44 BAP 5.37 

μM, 8. Proliferated nodular callus from B5 medium containing NAA 2.22 BA 2.68 μM, 9. 

Developed shoots from MS medium containing NAA 4.44 μM BAP 5.37 μM includes 5 

different developmental stages (Stage 1: sample1; Stage 2: samples2 and 3; Stage 3: Sample4; 

Stage 4: samples5, 6, 7 and 8; Stage 5 Sample 9) were used for protein and enzyme studies. 

3. Protein extraction and protein assay  

Samples were frozen in liquid nitrogen, crushed and homogenized with an extraction buffer 

containing 50 mMTris, 10 mM EDTA, 2 mM MgSO4 and 20 mM DTT or Cysteine [27] 
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Glycerol (10 % v/v) was added to increase the viscosity. Extraction buffer (1.5 ml) was 

poured on 1 g of the tissue. The samples were centrifuged twice for 30 min at 4 °C. The 

supernatants were collected and stored at –70 °C until use. Samples for enzyme analysis 

were prepared from the same samples as for the protein analysis. Protein contents were 

determined according to the Bradford method [28]. Eleven micro gram of extracts 

weremixed with equal volume of sample buffer containing 2.5 ml of 0.5 mMTris-HCl buffer 

(pH 6.8), 4 ml of 10% SDS solution, 2 ml glycerol, 0.5 ml 2-mercaptoethanol and 1 ml 

distilled water and heated at 100 °C for 3 min then loadedin each lane of SDS-PAGE 

gels.SDS-PAGEs were run using single percentage (12%) gels. After electrophoresis the gels 

were stained by coomassie Brilliant Blue R250.  

4. Enzyme activity 

Superoxide dismutase (SOD) activity was measured as described previously [29]. The 3 ml 

reaction mixture consisted of 75 μM riboflavin, 75 μM Nitro Blue Tetrazolium (NBT), 13 mM 

methionine and 50 mM phosphate buffer (pH: 7). SOD activity was expressed as unit per 

min per gram of fresh weight of tissues. 

Peroxidase activity was determined according to [30]. The reaction buffer contained 0.2 M 

acetate buffer (pH: 4.8), 0.3% H2O2 and 0.02 M benzidine in 50% methanol. The reaction 

started by addition of the protein extract to the reaction buffer. The activity was calculated 

from change in absorbance at 530 nm. 

Polyphenoloxidase (PPO) activity was determined spectrophotometrically by increasing the 

absorption at 430 nm. The reaction was performed in 200 mM Phosphate buffer (pH 7.6), 

containing 20 mM pyrogallol and 90 μl extract at the final volume of 1 ml. 

Catalase activity was measured according to the [31]. The reaction buffer solution consisted 

of 0.05 M phosphate buffer (pH: 7) and 3% H2O2. The reaction initiated by the addition of 30 

μl of the protein extract to the reaction buffer solution. The absorbance was measured at 240 

nm and the activity was expressed in unit. mg protein–1min–1. The unit of activity was 

defined as 1 μmol of H2O2 decomposed per min. The esterase activity was determined 

spectrophotometrically at room temperature (23±1 °C) by measuring the increase in 

absorbance at 322 nm (for 1-naphthyl-acetate) and 313 nm (for 2-naphthylacetate). The 

reaction solution contained 750 μl of 0.1 M Tris-HCl buffer (pH: 7.4) and 15 μl of 100 mM  

1-naphtylacetate or 30 μl of 2-naphtylacetate, dissolved in absolute methanol. Crude extract 

(100μl) was used throughout the experiment [29]. 

4.1. Enzyme electrophoresis 

Enzyme samples were loaded onto vertical PAGE gels: 12% resolvinggel and 4% stacking 

gels. Constant voltages of 200 V, for the stacking gel, and 220 V, for the resolvinggel, were 

applied. 
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4.2. Enzyme activity staining 

For superoxide dismutase the incubation was performed for 30 min in a dark place in a 

mixture containing 20 mg NBT, 4 mg Na-EDTA, and 4 mg riboflavin in 100 ml of a 0.2 M 

Tris-HCl at pH 8.0 Wendel and Weeden (1990). To discriminate between several isoforms of 

SOD, the gels were incubated prior to staining with a 5 mM solution of H2O2 to inhibit both 

Cu/Zn-SOD and Fe-SOD, or with a 3 mM solution of KCN for selective inhibition of Cu/Zn-

SOD [24].For peroxidase, the gel was incubated in 80 ml of a 0.2 M sodium acetate buffer 

(pH 4.8) in the presence of 4 ml benzidine (0.04 M at 50% methanol) for visualization and 8 

ml of 8% H2O2 solution as a substrate[29]. For polyphenoloxidase, incubation was 

performed in 50 ml of 0.2 M sodium phosphate buffer (pH 6.8), 20 ml of 0.5% L-DOPA, 0.7 

ml of 3.5% (w/v) CaCl2 solution. For catalase the gel was incubated in 0.01% H2O2 for 10 min, 

followed by incubation in the mixture of 1% FeCl3 and K3Fe (CN)6 for 15 min[32] . For 

visualization of isoesterases, 50 mg 1-naphthylacetate, 50 mg of 2-naphthylacetate and 100 

mg of Fast Blue RR were dissolved in a 0.1 M phosphate buffer (pH:7.6)[33]. 

5. Results 

5.1. Tissue culture 

According to our previous experiments (data not shown), TDZ was more active during 

shoot induction than BA. MS medium containing 4.54 μMTDZ, and B5 medium with NAA 

and BA (2.22 μM and 2.68 μM, respectively) were optimum for shoot induction as well as 

the proliferation and development of nodular calli. All the stages of shoot formation except 

the last stage which is a complete seedling were used for biochemical studies. 

5.2. Total protein content 

Total protein content has a tendency to decrease with the developmental stage of shoot. The 

highest protein content was observed in the primary explant before culture (sample1), while 

the lowest rate was found at sample3, i.e. nodular callus, from MS in the presence of 4.54 

μM TDZ. In the late stages of shoot formation, the protein content increased again (Table 1). 

5.3. Enzyme activities 

As shown in Table 1, the SOD activity in both B5 and MS media increased at theearly stages. 

Based on the Duncan Multiple Range Test (DMRT) there is a significant difference between 

the proliferated nodular callus grown on the MS medium, containing NAA and BA (2.22 

μM and 2.68 μM, respectively), and the proliferated nodular calli on the MS medium 

containing NAA and BAP (4.44 μM and 5.37 μM, respectively) and MS with (8.88 μM NAA 

and 10.74 μM BA). This significant difference shows the effect of different treatments.An 

obvious correlation was observed between the developmental stages and changes in 

peroxidase activity. In both treatments, the peroxidase activity increased and then decreased 

during shoot formation. There were no significant differences between proliferated nodular 



 
Plant Antioxidative Enzymes – Case Study: In Vitro Organogenesis of Saffron (Crocus sativus L.) 375 

calli in the stages 5, 6 and 7 with different combinations of NAA and BA in the MS medium 

(Table 1).Polyphenoloxidase (PPO) activity showed two different patterns during shoot 

formation. In the B5 medium, the activity decreased and then increased during 

developmental stages, while in the case of MS medium, the activity increased and then 

decreased during this period (Table1). As shown in table1, there are significant differences 

in the activity of polyphenoloxidase in the stages 5, 6 and 7, which are different 

combinations of BA and NAA in MS medium for callus proliferation and shoot growth.The 

activity of catalase increased significantly in the first stages and then decreased. There are 

significant differences between stages 5, 6 and 7, which are different combinationsof NAA 

and BA in the MS medium for callus proliferation and shoot growth (Table 1). 

 

Sample 

Mean 

Concentration 

of protein 

(mg/g FW)±SE 

Polyphenoloxida

se (unit. mg 

protein-1.min-1) 

Peroxidase 

(unit. mg 

protein-

1.min-1) 

Catalase(unit. 

mg protein-

1.min-1) 

Superoxide 

dismutase( unit. 

mg protein-

1.min-1) 

1 2.39±0.053d 0.26±0.022b,c 0.14±0.009a 2.17±0.014a 1.21±0.005b,c 

2 1.36±0.144b,c 0.16±0.020a,b 9.19±0.427d 8.98±0.767c 1.57±0.003c 

3 0.88±0.107a 0.48±0.057d 1.11±0.173a 4.92±1.044e 1.39±0.018b,c 

4 1.17±0.027a,b 0.48±0.052d 7.55±1.012c 12.33±0.669d 1.46±0.332b,c 

5 1.55±0.028c 0.06±0.004a 4.86±0.167b 3.97±0.391b 1.10±0.025b 

6 0.99±0.151a 0.40±0.032c,d 6.07±0.430b 8.30±0.135c 0.45±0.003a 

7 1.44±0.138b,c 0.18±0.025a,b 4.85±0.075b 2.25±0.314a 0.52±0.003a 

8 2.26±0.031d 0.45±0.164d 5.00±0.560b 4.48±0.124b 0.52±0.003a 

9 1.47±0.120b,c 0.03±0.009a 1.03±0.196a 1.248±0.47a 0.74±0.035a 

Table 1. Protein content and antioxidative enzymes activities during different stages of shoot formation 

and between different treatments. 

6. Isozyme banding patterns 

Superoxide dismutase: The isozymes 1 to 5 are present in all of the stages. We find in Fig. 1a 

these isozymes correspond to Mn-SOD. Isozymes 6 and 7 (Fe-SOD) and 11 (Cu-Zn SOD) are 

present in the first four stages and disappeared in the next five stages. Isozymes 8, 9 and 10 

are present in all of the stages except for stage 7. Seven isozymes for peroxidase were found 

during this study. Isozyme 1 was only present at stage 4 while isozyme 2 could be seen 

during all of the developmental stages. POD was present in all of the stages except for 1 and 

4 while POD 4 was seen at the stages 1, 2 and 4. POD 5 was observed at the stages 2, 4, 7, 8 

and 9. POD 6 was observed at the stages 1, 2, 4, 7, 8 and 9. POD 7 was observed in all stages 

except for stage 3. The band intensities were low at first stage then increased at stages 2, 3, 4, 

5 and 6, but decreased during the later steps of stage 3 (Fig. 1b).Polyphenoloxidase showed 

only 1 isozyme and the intensity of this band was different among different developmental 

stages. This band is very faint in stage 1 and during the next stages; it increased significantly 

but disappeared in the last stage (Fig. 1c). 
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Figure 1. Antioxidative enzyme banding pattern during different developmental stages of shoot 

formation (samples1–9) 1. Corm explant after sterilization and before exposure to the culture medium; 

2.Nodular callus from B5 medium containing TDZ 4.54 μM; 3.Nodular callus from MS medium 

containing TDZ 4.54μM; 4.Nodular callus with primary shoots from MS medium containing TDZ 4.54 



 
Plant Antioxidative Enzymes – Case Study: In Vitro Organogenesis of Saffron (Crocus sativus L.) 377 

μM; 5.Proliferated nodular callus from MS medium containing NAA 2.22 BA 2.68 μM; 6.Proliferated 

nodular callus from MS medium containing NAA 8.88 BA 10.74 μM; 7.Proliferated nodular callus from 

MS medium containingNAA 4.44 BAP 5.37 μM; 8.Proliferated nodular callus from B5 medium 

containing NAA 2.22BA 2.68 μM; 9. Developed shoots from MS medium containing NAA 4.44 μM BAP 

5.37 μM. Includes 5 different developmental stages (Stage1: sample1; Stage2: samples 2 and 3; Stage3: 

Sample4; Stage4: samples 5, 6, 7 and 8; Stage 5 sample9). Similarly, activity of antioxidant enzyme 

during in vitro organogenesis in Crocus sativus L. was studied elsewhere[34]. 

In recent years, there have been several reports of antioxidative enzymes roles in various plant 

species in different stages of morphogenesis in vitro. For example in Gladiolus 

hybridus,Acanthophylum sordidum For more details see[35, 36].Another type of research on 

plant antioxidative enzymes is the study of subcellular compartments for the activity of these 

enzymes. For example, it was shown in tomato that the ascorbate-gluthatione cycle enzymes 

ascorbate peroxidase (APX), monodehydroascorbate reductase (DHAR), gluthatione reductase 

(GR) and superoxide dismutase (SOD) are present in chloroplast/plastids, mitochondria and 

peroxisomes of leaf and root cells of both tomato species [37]. 

7. Conclusion 

As a whole, capacity and activity of the antioxidative defense systems are important in 

limiting photooxidative damage and in destroying active oxygen species that are produced 

in excess of those normally required for signal transduction or metabolism [38]. In addition 

this system plays crucial role in regulation of organogenesis, somatic embryogenesis and 

rhizogenesis in plant which is easier for study in vitro. 
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