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1. Introduction 

In this chapter, the optimization analysis based on the new thermo-ecological criterion 

(ECOP) first performed by Ust et al. [1] for the heat engines is extended to an irreversible 

three-heat-source absorption refrigerator. The thermo-ecological objective function ECOP 

is optimized with respect to the temperatures of the working fluid. The maximum ECOP 

and the corresponding optimal temperatures of the working fluid, coefficient of 

performance, specific cooling load, specific entropy generation rate and heat-transfer 

surface areas in the exchangers are then derived analytically. Comparative analysis with 

the COP criterion is carried out to prove the utility of the ecological coefficient of 

performance criterion. 

2. Thermodynamics analysis  

The main components of an absorption refrigeration system are a generator, an absorber, 

a condenser and an evaporator as shown schematically in Fig. 1 [2]. In the shown model, 
.

HQ  is the rate of absorbed heat from the heat source at temperature HT  to generator, 
.

CQ

and 
.

AQ  are, respectively, the heat rejection rates from the condenser and absorber to the 

heat sinks at temperatures CT  and AT  and 
.

LQ  is the heat input rate from the cooling 

space at temperature LT  to the evaporator. In absorption refrigeration systems, usually 

NH3/H2O and LiBr/H2O are used as the working substances, and these substances abide 

by ozone depletion regulations, since they do not consist of chlorofluorocarbons. In Fig. 1, 

the liquid rich solution at state 1 is pressurized to state 1’ with a pump. In the generator, 

the working fluid is concentrated to state 3 by evaporating the working medium by means 

of 
.

HQ  heat rate input. The weak solution at state 2 passes through the expansion valve 

into the absorber with a pressure reduction (2–2’). In the condenser, the working fluid at 
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state 3 is condensed to state 4 by removing 
.

CQ  heat rate. The condensed working fluid at 

state 4 is then throttled by a valve and enters the evaporator at state 4’. The liquid 

working fluid is evaporated due to heat transfer rate 
.

LQ  from the cooling space to the 

working fluid (4’–5). Finally, the vaporized working fluid is absorbed by the weak 

solution in the absorber, and by means of 
.

AQ  heat rate release in the absorber, state 1 is 

reached. 

 Work input required by the solution pump in the system is negligible relative to the energy 

input to the generator and is often neglected for the purpose of analysis. Under such 

assumption, the equation for the first law of thermodynamics is written as: 

 

. . . .

0H L C AQ Q Q Q+ - - =    (1)  

Absorption refrigeration systems operate between three temperature levels, if A CT T= , or 

four temperature levels when A CT T¹ . In this chapter, by taking A CT T= , the cycle of the 

working fluid consists of three irreversible isothermal and three irreversible adiabatic 

processes. The temperatures of the working fluid in the three isothermal processes are 

different from those of the external heat reservoirs so that heat is transferred under a finite 

temperature difference, as shown in Fig. 2 where 

  

. . .

O C AQ Q Q= +   (2)  

1T  and 2T  are, respectively, the temperatures of the working fluid in the generator and 

evaporator. It is assumed that the working fluid in the condenser and absorber has the same 

temperature 3T  [2]. 
.

LCQ  is the heat leak from the heat sink to the cooled space. 

The heat exchanges between the working fluid and heat reservoirs obey a linear heat 

transfer law, so that the heat-transfer equations in the generator, evaporator, condenser and 

absorber are, respectively, expressed as follows: 

  ( )
.

1 H H H HQ U A T T= -   (3)  

  ( )
.

2L L L LQ U A T T= -   (4)  

  ( )( )
.

3O O A C OQ U A A T T= + -   (5)  

where HA , LA , CA  and AA  are, respectively, the heat-transfer areas of the generator, 

evaporator, condenser and absorber, HU  and LU  are, respectively, the overall heat-transfer 

coefficients of the generator and evaporator, and it is assumed that the condenser and 

absorber have the same overall heat-transfer coefficient OU  [2]. 
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Figure 1. Schematic diagram of absorption refrigeration system [2] 

 

Figure 2. Considered irreversible absorption refrigeration model and its T–S diagram. 
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The absorption refrigeration system does not exchange heat with other external reservoirs 

except for the three heat reservoirs at temperatures HT , LT  and OT , so the total heat-transfer 

area between the cycle system and the external heat reservoirs is given by the relationships: 

  H L OA A A A= + +   (6)  

where  

  .O C AA A A= +  (7) 

The rate of heat leakage 
.

LCQ  from the heat sink at temperature OT  to the cold reservoir at 

temperature LT  was first provided by Bejan [3] and it is given as: 

  ( )
.

LC LC O LQ K T T= -   (8)  

where LCK  is the heat leak coefficient.  

Real absorption refrigerators are complex devices and suffer from a series of irreversibilities. 

Besides the irreversibility of finite rate heat transfer which is considered in the 

endoreversible cycle models and the heat leak from the heat sink to the cooled space, there 

also exist other sources of irreversibility. The internal irreversibilities that result from 

friction, mass transfer and other working fluid dissipations are an another main source of 

irreversibility, which can decrease the coefficient of performance and the cooling load of 

absorption refrigerators. The total effect of the internal irreversibilities on the working fluid 

can be characterized in terms of entropy production. An irreversibility factor is introduced 

to describe these internal irreversibilities:  

  3

1 2

S
I

S S

D
=

D +D
  (9) 

On the basis of the second law of thermodynamics, 3 1 2S S SD >D +D  for an internally 

irreversible cycle, so that 1I > . If the internal irreversibility is neglected, the cycle is 

endoreversible and so 1I = . The second law of thermodynamics for an irreversible three-

heat-source cycle requires that: 

  

.. ..

1 2 3

0OH L QQ QQ

T T T T

d
= + - £ò   (10)  

From Eq. (9), the inequality in Eq. (10) is written as: 

  

.. .

1 2 3

0OH L QQ Q

T T IT
+ - =   (11)  
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The coefficient of performance of the irreversible three-heat-source absorption refrigerator is:  

  

. . ..

. . .
1L LC LCL

H H L

Q Q QQ
COP

Q Q Q

æ ö÷ç ÷ç- ÷ç ÷= = -ç ÷ç ÷ç ÷÷ç ÷çè ø

  (12) 

 From Eq. (6), it is expressed as:  

  

1
L

OH

L L

A
A

AA

A A

=
+ +

  (13) 

Using Eqs. (3)-(5), Eq. (13) is rewritten as: 

  

( )
( )

( )
( )

..

2 2

. .
1 3

1

L

L L L LOH

H H O O
L L

A
A

U T T U T TQQ

U T T U T T
Q Q

=
- -

+ +
- -

  (14) 

Combining Eqs. (1) and (11), the following ratios are derived: 

  
( )
( )

.

2 1 3

.
1 3 2

L

H

T T ITQ

T IT T
Q

-
=

-
  (15) 

  
( )

( )

.

3 1 2

.
1 3 2

O

L

IT T TQ

T IT T
Q

-
=

-
  (16) 

The first is the coefficient of performance of the irreversible three-heat-source absorption 

refrigeration cycle without heat leak losses.  

Substituting Eqs. (15) and (16) into Eq. (14), the heat-transfer area of the evaporator is 

expressed as a function of 
1

T , 
2

T  and 
3

T  for a given total heat-transfer areas : 

  
( )( )

( )( )
( )( )

( )( )
1 3 2 2 3 1 2 2

1 1 3 2 3 1 3 2

1

L
L L L L

H H O O

A
A

U T IT T T T U IT T T T T

U T T T IT T U T T T IT T

=
- - - -

+ +
- - - -

  (17) 

By investigating similar reasoning, the heat-transfer areas of the generator and of condenser 

and absorber are given respectively by:  

  
( )( )
( )( )

( )( )
( )( )

2 1 3 1 3 1 2 1

1 3 2 2 1 3 2 3

1

H
H H H H

L L O O

A
A

U T T IT T T U IT T T T T

U T IT T T T U T IT T T T

=
- - - -

+ +
- - - -

  (18) 
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and 

  
( )( )
( )( )

( )( )
( )( )

1 3 2 3 2 1 3 3

3 1 2 1 3 1 2 2

1

O
O O O O

H H L L

A
A

U T IT T T T U T T IT T T

U IT T T T T U IT T T T T

=
- - - -

+ +
- - - -

  (19) 

Substituting Eq. (17) into Eq. (4): 

  

( )
( )

( )( )
( )

( )( )

.

1 3 2 3 1 2

2 1 1 3 2 3 1 3 2

1
L

L L H H O O

A
Q

T IT T IT T T

U T T U T T T IT T U T T T IT T

=
- -

+ +
- - - - -

  (20) 

Combining Eqs. (8), (12), (15) and (20), the coefficient of performance of the irreversible 

three-heat-source refrigerator as a function of the temperatures 1T , 2T  and 3T  of the 

working fluid in the generator, evaporator, condenser and absorber is obtained:  

 

( )
( ) ( ) ( )

( )
( )( )

( )
( )( )

2 1 3 1 3 2 3 1 2

1 3 2 2 1 1 3 2 3 1 3 2

1
1 O L

L L H H O O

T T IT T IT T IT T T
COP T T

T IT T U T T U T T T IT T U T T T IT T
x

ì üé ùï ï- - -ï ïê úï ï= - - + +í ýê úï ï- - - - - -ê úï ïë ûï ïî þ
   (21) 

where the parameter  

  
LCK

A
x =   (22) 

represents the heat leakage coefficient and its dimension is w/(Km2) 

The specific cooling load of the irreversible three-heat-source refrigerator is deduced as:   

 

( )
( )

( )( )
( )

( )( ) ( )
. . 1

1 3 2 3 1 2

2 1 1 3 2 3 1 3 2

1L LC
O L

L L H H O O

T IT T IT T TQ Q
r T T

A U T T U T T T IT T U T T T IT T
x

-é ù- -- ê ú= = + + - -ê ú
- - - - -ê úë û

   (23) 

The specific entropy production rate of the irreversible three-heat-source absorption 

refrigerator is: 

  

. . . ..

. O LC L LCH

O H L

Q Q Q QQ

T T T
s

A A

s
- -

- -
= =   (24) 

Using Eq. (1) s  is rewritten as: 
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. . . .

.

1 1 1 1 1 1LC H L L

L O O H O L
L

Q Q Q Q
s

T T A T T A T T A
Q

æ ö æ ö æ ö÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç= - + - + -÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷è ø è ø è ø
  (25) 

or 

  

. ..

1 1 1 1 L LCH

O H O L

Q QQ
s

T T A T T A

æ ö æ ö -÷ ÷ç ç÷ ÷ç ç= - + -÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è ø
  (26) 

Substituting Eqs.(8), (15) and (20) into Eq. (25), the specific entropy production rate as a 

function of 1T , 2T  and 3T  is given by : 

( ) ( )
( ) ( )

( )
( )( )

( )
( )( )

1

1 3 2 1 3 2 3 1 2

2 1 3 2 1 1 3 2 3 1 3 2

1 1 1
1

r
O L

L O L L H H O O

T IT T T IT T IT T T
s T T

T T T T IT U T T U T T T IT T U T T T IT T

e
x

- üïì é ù é ùï ïæ ö - - -ï ï÷ç ê ú ê úï ï÷ç= - - - - + +í ý÷ ê ú ê úç ÷ï ïç ÷ - - - - - -ê ú ê úè øï ïë û ë ûï ïî ïþ

   (27) 

where  

  

1

1

O

H
r

O

L

T

T

T

T

e

æ ö÷ç ÷ç - ÷ç ÷÷çè ø
=

æ ö÷ç ÷ç - ÷ç ÷÷çè ø

  (28) 

is the coefficient of performance for reversible three-heat-source refrigerator. 

According to the definition of the general thermo-ecological criterion function for different 

heat engine models [4-9], a two-heat-source refrigerator [10, 11] and three-heat-source 

absorption refrigerator [2], the new thermo-ecological objective function called ecological 

coefficient of performance (ECOP) of an absorption refrigerator is defined as: 

  

. . . .

.
L LC L LC

env
env

Q Q Q Q
ECOP

AT s
T s

- -
= =   (29) 

Putting Eq.(26) into Eq. (29): 

  
1

1 1 1 1 1
env

O H O L

ECOP

T
T T T T COP

=
é ùæ ö÷çê ú÷ç- + - ÷ê úç ÷÷çè øê úë û

  (30) 

When Eq. (21) is put in Eq. (30), the ecological coefficient of performance of the irreversible 

three-heat-source absorption refrigerator as a function of 1T , 2T  and 3T  is derived as : 
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( )
( )
( ) ( ) ( )

( )
( )( )

( )
( )( )

1 1

1

1 3 2 1 3 2 3 1 2

2 1 3 2 1 1 3 2 3 1 3 2

1

1
1 1

env O L

r
O L

L L H H O O

T T T
ECOP

T IT T T IT T IT T T
T T

T T IT U T T U T T T IT T U T T T IT T

e
x

- -

-

-
=

ì üé ùï ï- - -ï ïê úï ï- - - + +í ýê úï ï- - - - - -ê úï ïë ûï ïî þ

 

   (31)  

where envT  is the temperature in the environment conditions. 

3. Performance optimization for a three-heat-source irreversible 

absorption refrigerator based on ECOP criterion 

The ECOP function given in Eq. (31) is plotted with respect to the working fluid temperatures  

( 1T , 2T  and 3T ) for different internal irreversibility parameters as shown in Fig. 3(a), (b) and 

(c). As it can be seen from the figure, there exists a specific 1T , 2T  and 3T  that maximize the 

ECOP function for given I  and x  values. Therefore, Eq. (31) can be maximized (or optimized) 

with respect to 1T , 2T  and 3T . The optimization is carried out analytically. 

 

Figure 3. Variation of the ECOP objective function with respect to 1T  (a), 2T (b) and 3T  (c) for 

different I  values ( 403GT K= , 273LT K= , 303OT K= , 290envT K= , 1163GU = 2/W m K , 

2326EU = 2/W m K , 4650OU = 2/W m K , 1082LK = /W K , 1100A = 2m ) 
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For the sake of convenience, let 

  
3

1

IT
x

T
=   (32) 

  
3

2

IT
y

T
=   (33) 

  3z IT=   (34) 

Then Eq. (31) is rewritten as: 

( )
( ) ( ) ( )

( )
( )( ) ( )( )

1 1

1

1

1 1
1 1

1 1 1

env O L

r
O E

L L H H

T T T
ECOP

y x yy y x
T T

x U T y z U T x z x U z T x

e
x

- -

-

-
=

ì üé ùï ï- -ï ï-ê úï ï- - - + +í ýê úï ï- - - - - -ê úï ïë ûï ïî þ

 

  (35)  

where  

  OT IT=   (36) 

and  

  .OU
U

I
=   (37) 

Starting from Eq. (35), the extremal conditions:  

  0
ECOP

x

¶
=

¶
 (38) 

  0
ECOP

y

¶
=

¶
  (39) 

  0
ECOP

z

¶
=

¶
  (40) 

give respectively: 

  
( ) ( ) ( )

( )
( )2

11 1
0

O E L L H H

z yy

T T U T y z U z T U T x zx

-
- - - =

- - - -
  (41) 
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( ) ( ) ( )

( )
( )2

11 1
0

O E L L L L

z yy

T T U T y z U z T U T y zx

-
- - - =

- - - -
  (42) 

 

  
( )
( )

( )
( ) ( )2 2 2

1 1
0

L L H H

y x x y y x

U T y z U T x z U z T

- - -
+ - =

- - -
  (43) 

 

Combining Eqs (41)-(43), the following general relation is found: 

  ( ) ( ) ( )H H L LU T x z U T y z U z T- = - = -   (44) 

From Eqs (44), it is derived as: 

  
( )1 1
1

H H

b z b T
x

T T

+
= -   (45) 

 

  
( )2 2
1

L L

b z b T
y

T T

+
= -   (46) 

 

where  

  1
H

U
b

U
=   (47) 

 

  2
L

U
b

U
=   (48) 

When Eqs. (45) and (46) are substituted into Eq. (43): 

  
2

21

D b
z T

b

+
=

+
  (49) 

where  

  

( )1
1

1

1
1 1

1

LT d
d

T
D

d

é ù-ê ú+ -ê ú
ê úë û=
-

  (50) 
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( )2

2
1

1
1O

L

b T
d

U T
x

æ ö+ ÷ç ÷ç= - ÷ç ÷÷çè ø
  (51) 

Therefore Eqs. (45) and (46) are rewritten as: 

  ( )1
H

T
x B D B

T
= +   (52) 

 

  
L

T
y D

T
=   (53) 

 

where 

  
2 1

11

b b
B

b

-
=

+
  (54) 

 

  
1

1
2

1

1

b
B

b

+
=

+
  (55) 

 

Using Eqs. (49), (52) and (53) with Eqs.(32)-(34), the corresponding optimal temperatures of 

the working fluid in the three isothermal processes when the ecological coefficient of 

performance is a maximum, are, respectively, determined by:  

  
( )( )

* 2
1

11
H

D b
T T

b D B

+
=

+ +
  (56) 

  
( )

* 2
2

21
L

D b
T T

D b

+
=

+
  (57) 

  * 2
3

21O

D b
T T

b

+
=

+
  (58) 

Substituting Eqs. (56)-(58) into Eqs. (21), (23), (27) and (31) the maximum ECOP function and 

the corresponding optimal coefficient of performance, optimal specific cooling load and 

optimal specific entropy generation rate are derived, respectively, as: 

( )max 1 1

1

env O L

ECOP
T T T- -

=
-
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( )
( )

( ) ( )( )
( ) ( )

1
2

1

* 2
1 1 1

1

1 1
1

r H L H L
O L

H L H L

T TD T T D B D B T BDT
T T

T B D B T T U B D T B D B T T

e
x

-
´

ì üï ï- - + +ï ïï ï- - -í ýé ù é ùï ï- + - - +ï ïê ú ê úï ïë û ë ûî þ

  (59) 

 

  
( )

( ) ( ) ( )( )
( ) ( )

2
1 1*

* 2
1 1

1
1

H L H L
O L

H L H L

T B D B T T T D B D B T BDT
COP T T

T TD T U B D T B D B T T
x

ì üé ù ï ï- + - + +ï ïê ú ï ïë û= - -í ýé ùï ï- - - +ï ïê úï ïë ûî þ

  (60) 

  
( ) ( )

( )( )
( )

* 2
1 1*

2
1

1 H H

O L

H L

U B D T B D B T T
r T T

T D B D B T BDT
x

é ù- - +ê úë û= - -
- + +

  (61) 

( ) ( )
( )

( ) ( )
( )( )

* 2
1 1*

2
11

11 1
1

H Lr H L
O L

L O H LH L

U B D T B D B T TT TD T
s T T

T T T D B D B T BDTT B D B T T

e
x

ì üé ù é ùï ïé ùæ ö - - +ï ï-ê ú ê úê ú÷ï ïç ï ë û ï÷ç= - - - -ê ú ê úí ý÷ç ÷ é ùï ïê ú ê úç ÷ - + +- +è øï ïê úê ú ê úï ïë ûë û ë ûï ïî þ

 (62)  

where  

  
( )

*

2

11

U
U

b
=

+
  (63) 

From Eqs. (17)-(19) and (56)-(58), it is found that , when the three-heat-source absorption 

refrigerator is operated in the state of maximum ecological coefficient of performance, the 

relations between the heat-transfer areas of the heat exchangers and the total heat-transfer 

area are determined by: 

  
( )( )

( )( )

2
1* 1

2
1 1

1

L
H

H L

B D B TD Tb
A A

b T D B D B T BDT

+ -
=

+ - + +
  (64) 

  
( )

( )( )
1 1* 2

2
1 1

1

H

L

H L

DB T B T D Bb
A A

b T D B D B T BDT

é ù- +ê úë û=
+ - + +

  (65) 

  
( )

( )( )
1 1*

2
1 1

1

1

H L

O

H L

B T D B T D B
A A

b T D B D B T BDT

é ù- +ê úë û=
+ - + +

  (66) 

From Equations (64)-(66), a concise optimum relation for the distribution of the heat-transfer 

areas is obtained as: 

  
* * *

H H L L OU A U A U A+ =   (67) 
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Obviously, this relation is independent of the heat leak and the temperatures of the external 

heat reservoirs. 

4. Comparison with COP criterion 

In Fig.4, the variation of the normalized ECOP (
max

ECOP
ECOP

ECOP
 ), normalized COP (

max

COP
COP

COP
 ) and the specific cooling load (r) with respect to the specific entropy 

generation rate (s) are demonstrated. One interesting observation from this figure is that 

maximum of the ECOP and COP coincides although their functional forms are different: 

the coefficient of performance gives information about the necessary heat rate input in 

order to produce certain amount of cooling load and the ecological coefficient of 

performance gives information about the entropy generation rate or loss rate of 

availability in order to produce certain amount of cooling load. The maximum ECOP and 

COP conditions give the same amount of cooling load and entropy generation rate. It is 

also seen analytically that the performance parameters *
1T , *

2T , *
3T , *

1A , *
2A , *

3A , *r , 

*s  and *
maxCOP COP=  at the maximum ECOP and maximum COP are same. Getting the 

same performance at maximum ECOP and COP conditions is an expected and logical 

result. Since, for a certain cooling load the maximum COP  results from minimum heat 

consumption so that minimum environmental pollution. The minimum environmental 

pollution is also achieved by maximizing the ECOP . Although the optimal performance 

conditions ECOP  and COP  criteria are same, their impact on the system design 

performance is different. The coefficient of performance is used to evaluate the 

performance and the efficiency of systems. This method only takes into account the first 

law of thermodynamics which is concerned only with the conversion of energy, and 

therefore, can not show how or where irreversibilities in a system or process occur. Also, 

when different sources and forms of energy are involved within a system, the COP  

criterion of a system doesn’t describe its performance from the view point of the energy 

quality involved. This factor is taken into account by the second law of thermodynamics 

characterized by the entropy production which appears in the ecological coefficient of 

performance criterion ( ECOP ). This aspect is of major importance today since that with 

the requirement of a rigorous management of our energy resources, one should have 

brought to be interested more and more in the second principle of thermodynamics, 

because degradations of energy, in other words the entropy productions, are equivalent to 

consumption of energy resources. For this important reason, the ECOP  criterion can 

enhance the system performance of the absorption refrigerators by reducing the 

irreversible losses in the system. A better understanding of the second law of 

thermodynamics reveals that the ecological coefficient of performance optimization is an 

important technique in achieving better operating conditions. 
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Figure 4. Variation of the normalized ECOP , normalized COP  and the specific cooling load with respect 

to the specific entropy generation rate ( 403GT K= , 273LT K= , 303OT K= , 290envT K= , 

1163GU = 2/W m K , 2326EU = 2/W m K , 4650OU = 2/W m K , 1082LK = /W K , 1100A =
2m ) 

5. Conclusion 

This chapter presented an analytical method developed to achieve the performance 

optimization of irreversible three-heat-source absorption refrigeration models having finite-

rate of heat transfer, heat leakage and internal irreversibility based on an objective function 

named ecological coefficient of performance (ECOP). The optimization procedure consists in 

defining the objective function ECOP in term of the temperatures of the working fluid in the 

generator, evaporator, condenser and absorber and using extremal conditions to determine 

analytically the maximum ECOP and the corresponding optimal design parameters. It also 

established comparative analyses with the COP criterion and shown that the performance 

parameters at the maximum ECOP and maximum COP are same. The three-heat-source 

absorption refrigerator cycles are the simplified models of the absorption refrigerators, but 

the four-heat-source absorption refrigerators cycles are closer to the real absorption 

refrigerators.  
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