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1. Introduction 

Polyester has been more and more widely applied to the field of electrical insulation because 

of their excellent electrical and mechanical properties. One of the commonest concerns in 

industry is the reliability of materials. Therefore, the study of breakdown of solid dielectrics 

is extremely important in industrial applications. The increasing demanding for polyester 

films requires that the dielectric strength of polyester with various film thicknesses should 

be measured accurately. Lack of accurate data on dielectric strength could lead to design 

shortcomings: excessive insulation could lead to more expensive equipments, while 

inadequate insulation could lead to premature failure. The data of breakdown strength for 

polyester from several hundred microns to several millimeters can be directly obtained from 

the handbook of dielectric materials. However, there are few data of breakdown strength in 

micro-meter regime.  

The dielectric strength of solid dielectrics is affected by many factors, such as ambient 

temperature, humidity, duration of test, impurities or structural defects, whether a.c., d.c. or 

impulse voltages are being used, pressure applied to these electrodes etc. The mechanism of 

breakdown is complex in the case of solids, and varies depending on the time of application 

of voltage as shown Fig. 1 (Naidu & Kamaraju, 1995; Pai & Zhang, 1995). The various 

mechanisms are intrinsic breakdown (Callen, 1949; Hippel & Alger, 1949; O'Dwyer, 1964; 

Seeger & Teller, 1939; Seitz, 1948; Whitehead, 1951), electromechanical breakdown (Laghari 

& Sarjeant, 1992; Stark & Garton, 1955), breakdown due to treeing and tracking, thermal 

breakdown, electrochemical breakdown (Sawa, 1986). 

1. Intrinsic Breakdown -- it is generally considered to be due to electrons in the insulator 

gain sufficient energy from the applied field to cross the forbidden energy gap from 

valence to the conduction band. Intrinsic breakdown is usually accomplished in the 

order of 10-8s (Seeger & Teller, 1939). 
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Figure 1. Variation of breakdown strength with time after application of voltage 

2. Streamer Breakdown -- the mechanism is conceptually similar to the streamer 

mechanism in gases, namely when the avalanche exceeds certain critical size 

breakdown will occur. Transit time is usually short. 

3. Thermal breakdown -- when an insulator is stressed electrically, because of currents 

and dielectric losses due to polarization, heart is continuously generated within the 

insulator. If the rate of heat generation exceeds the rate of heat losses, then the insulator 

will undergo thermal breakdown. Such breakdown takes place usually in a much 

slower time scale. 

4. Erosion Breakdown -- insulators of contain voids or cavities within the material. These 

cavities are usually filled with gas or liquid medium of lower breakdown strength than 

the solid insulator. Accordingly, under normal working stress of the insulator the 

voltage across the cavities may exceed the breakdown value hence initiating breakdown 

in the cavities. 

5. Breakdown due to tracking and other causes -- Tracking is the formation of some 

permanent conducting paths, usually carbon, along the insulator surface due to 

degradation of the insulator or other causes.  

6. Electromechanical breakdown – Electromechanical breakdown occurs in dielectric foils 

of low Young’s modulus and easy deforming and it is because of the force of attraction 

between the surface charges. 

7. Treeing breakdown -- treeing occurs due to the erosion of material at the tips of the 

spark. Erosion results in the roughening of the surfaces, and hence becomes a source of 

dirt and contamination. This causes increased conductivity resulting either in the 

formation of conducting path bridging the electrodes or in a mechanical failure of the 

dielectric.  

Electrical breakdown testing of polymers for insulator applications has long been a subject 

of interest. In order to improve insulator performance, it is essential to understand the 

mechanisms of electrical breakdown in solid dielectrics. However, unlike the case for gases, 

electrical breakdown and conduction mechanisms in polymeric solids are less understood. 

In solid dielectrics, the electrical transport phenomena include currents due to orientation 

and interfacial polarization in addition to electronic and ionic charge carriers (Barber et al., 

2009). On account of the time of dielectric breakdown, this chapter mainly presents intrinsic 

breakdown and electromechanical breakdown.  
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2. Intrinsic breakdown 

When an electric field is applied to an insulator, electrons gain sufficient energy from the 

applied field to cross the forbidden energy gap from the valence band to conduction band. 

When this process is repeated, more and more electrons become available in the conduction 

band, eventually leading to breakdown. Intrinsic breakdown usually occurs in the order of 

10-8s. The initial density of free electrons is assumed to be large, and electron-electron 

collisions occur. The critical criterion of intrinsic breakdown is initial electrons formed by 

impact ionization. It consists of Hippel’s low-energy criterion and Frohlich’s high-energy 

criterion (Callen, 1949; Frohlich, 1939; Hippel & Alger, 1949; O'Dwyer, 1964; Seeger & Teller, 

1939; Seitz, 1948; Whitehead, 1951).  

2.1. Hippel low-energy criterion 

Hippel low-energy criterion assumed that the energy E breakdown occurs when the applied 

field is high enough to accelerate electrons of any given energy in the conduction band to 

sufficient energy to further ionize the ions of the crystal by collision, thus leading to an 

exponential increase in the number of electrons in the conduction band. It may be easily 

seen that the applied field necessary to accelerate (on the average) an electron of given 

energy has a maximum when considered as a function of electron energy. In order to 

accelerate an electron, the applied field must compensate the energy lost by this electron to 

the lattice; but slow electrons have insufficient energy to excite the vibrational modes of the 

lattice, whereas very fast electrons interact for too short a time with the ions which they pass 

to transfer energy to them with appreciable probability. The breakdown strength, according 

to von Hippel's "low energy" criterion, therefore corresponds to the maximum, and an 

electron brought into the conduction band with low energy is immediately accelerated to 

the ionization energy and produces an additional conduction electron, the process thus 

building up in the form of an avalanche. 

2.2. Frohlich high-energy criterion 

Frohlich high-energy criterion is based on that an applied field sufficient only to accelerate 

electrons already having the ionization energy may lead to an instability and to electric 

breakdown (Callen, 1949; Cooper, 1966).  

Eq. (1) shows the critical breakdown strength of intrinsic electron breakdown (Callen, 1949). For 

low energy breakdown theory 4cu u    , and for high-energy breakdown theory, Iu u . 

 B 2
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Eq. (1) may be written as 
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Where 
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B is the average rate of energy loss for a given electronic energy, and is expressed by Eq. (4), 

where u  is the average effect of collisions on the electrons of energy. C is expressed by Eq. 

(5).   is the relaxation time, e  is charge of electron, e  is the effective charge per ion, m  is 

the effective mass of the electron, M is the reduced mass of the ions, a  is the interionic 

distance,   is the natural angular frequency and t  is the natural angular frequency of the 

transverse mode.  
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n  is the average probability of scattering of an electron and is given by  
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Where k is Boltamann’s constant =8.622×10-5 eV/°C. 
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Where e  is expressed in terms of   by Eq. (7) and   is expressed in terms of t  by Eq. 

(8). We obtain  
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Where εr and εop are the relative and optical values of the dielectric constant, T is the 

temperature of the lattice in K.  

 

Material r  op  a/ 

10-10m 

M/ 

10-20g 

EBH / 

 (kV�mm-1)

EBF / 

 (kV�mm-1)

EE / 

 (kV�mm-1) 

PE 2.4 2.28 2.52 2.8 79 17 20 

polycarbonate 3 2.5 20.8 40 255 54 90 

polyester 3.2 10.7 3 301 65 65 180 

Table 1. Breakdown strength for polymer  

In Table 1 the pertinent breakdown strength data for polymer are shown according to Eq. 

(10) and Eq. (11). The electron energy is 0.1～0.2 eV for Hippel’s criterion and 5 eV for 

Frohlich’s criterion. The theoretical values are compared with the experimental breakdown 

strengths in mm regime. The experimental breakdown strength EE which is given by Ref. 

(Wang et al. 1992) in mm regime is less than the breakdown strength of Hippel’s criterion 

EBH and greater than the breakdown strength of Forhlich’s criterion EBF. The critical 

breakdown strength of intrinsic breakdown model is calculated on the basis of Hippel’s low-

energy criterion and Frohlich’s high-energy criterion (Wang et al., 2008). 

3. Electromechanical breakdown 

3.1. Electromechanical breakdown 

Electromechanical breakdown is likely to happen in dielectric foils of low Young’s modulus 

and easy deforming. When a dielectric foil is subjected to a high voltage, an electrostatic 

compressive force which will cause deformation of the dielectric foil is produced. If the 

electric stress exceeds the mechanical compressive strength of the dielectric foil, breakdown 

of the dielectric foil takes place. The electromechanical breakdown model is shown in Fig. 2. 

If the thickness of the specimen is 0d and is compressed to d under an applied voltage U , 

then the electrically developed compressive stress is in equilibrium  

 
2

0
0 r 2

ln
2

dU
Y

dd
 

 
  

 
 (13) 

Where Y is the Young’s modulus. 

A plot of thickness as a function of voltage on normalized scales is given in Fig. 3. It is 

obviously seen that there is a critical voltage above which the thickness goes to zero. This 

occurs when [ ( )] /d d U dU   or ( ) / [ ( )] 0d U d d U  . Therefore, the critical breakdown 

strength of electromechanical breakdown is (Laghari & Sarjeant, 1992; Stark & Garton, 1955)  
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Figure 2. Electromechanical breakdown model  
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Figure 3. Thickness as function of voltage for electromechanical breakdown  

The electromechanical breakdown model is rather unrealistic as it assumed that the 

dielectric material somehow disappeared to an infinitesimal thickness at emU U . 

Therefore, it may ignore several factors, such as possible earlier instability at microscopic 

areas of stress concentration, the dependence of Y on time and stress and plastic flow. Stack 

and Garton pointed out that the stress concentration at microscopic areas is instable, which 

may result in a localized thinning and breakdown. Blok and LeGrand considered that local 

d

d0

 f＋

f-
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regions subjected to higher-than-average electric fields and experienced a shear stress which 

tended to form an indentation. The indentation gives rise to an even more inhomogeneous 

field, produces a sharp depression and eventually causes the material to flow radially away 

(Blok & LeGrand, 1969). 

3.2. Electrofracture breakdown 

Zeller et al (Zeller et al., 1984; Zeller & Schneider, 1984) proposed electrofracture as an aging 

mechanism in which the growth of a filamentary crack through a dielectric was caused by 

electrostatic forces. The model is based on the concepts of fracture mechanics in which the 

change in electrostatic energy at growth is equal to the mechanical energy required for 

partial discharge channel formation. 

In the electrofracture mechanism the local field at the crack tip is considered to be 

insufficiently high for the strain energy density emW contribution to be insignificant, i.e. 

electrostatic energy density es emW W . So that the criterion for electrofracture is: 

 es pW W  (15) 

The electrofracture breakdown strength at the end of the crack tip is given by  

 

1/2

EF
0

2

r

Y
E

 
 

  
  

 (16) 

EFE is the local field at the tip of the crack whereas the electromechanical breakdown field is 

the applied field.  

3.3. Filamentary electromechanical breakdown 

Fothergill proposed the filamentary electromechanical breakdown in which a filamentary-

shaped crack propagates through a dielectric releasing both electrostatic energy and 

electromechanical strain energy stored in the material due to the applied electric field 

(Fothergill, 1991, 1992). It operates at higher local fields.  

The filamentary electromechanical breakdown model assumed electric field at the filament 

tip that are sufficiently high for em esW W , so that the appropriate criterion is: 

 em s pW W W   (17) 

The filamentary electromechanical breakdown strength is defined as  
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FEM 2 2
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In general, 2 fG Yr , so that eq. (18) is written as (Hikita et al., 1987)  
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A modified relationship between applied voltage and electric field at the tip of a filament is 

given by Eichhorn (Eichhorn, 1977) as: 
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Where d is the distance from the filament to the counter electrode, and is assumed to be the 

full thickness of the specimen in the worst-case estimate. fr is the tubular crack of radius and 

depends on what initiates the filament. If it is assumed of / fE U r , the radius of the filament 

can be predicted from eq. (20). Solving eq. (20) give 0.29fr m which is quite reasonable. 

Both the electrofracture and filamentary electromechanical breakdown mechanisms assume 

a crack propagation process. The limiting speed of a crack is equal to that of a longitudinal 

elastic wave in the material. 

According to the Young’s modulus of different materials and Eq. (14), Eq. (16) and Eq. (19), 

the critical strengths of polyester, polyimide, polycarbonate, PE and polypropylene are 

obtained. The results are shown in Table 2, from which it is apparent that the critical 

strength of electric-mechanical breakdown is higher than the strength given by Ref. (Wang 

et al. 1992) in the mm regime. Therefore, the above results support the electric-mechanical 

breakdown mechanism for relatively thinner dielectric foils.  
 

Material 
Y/ 

 (MN�m-2) 

G/ 

 (J�m-2) r  EME / 

 (kV�mm-1) 

EFE / 

 (kV�mm-1) 

FEME / 

 (kV�mm-1) 

polyester 35 3600 3.2 667 1554 633 

polyimide 28 6000 3.5 571 1330 542 

polycarbonate 30 3000 9.2 638 1486 606 

PE 9.2 3800 2.3 410 955 389 

polypropylene 16 7900 2.2 544 1267 516 

Table 2. Critical strength of materials 

4. Recent development in polymer breakdown theory 

Many studies have been published on high-field electrical conduction and breakdown of 

insulating polymers and there are also many good reviews and books which deal with this 

subject (Bartnikas & Eichhorn, 1983; Ieda, 1980, 1984; O'Dwyer, 1973). However, the 

dielectric breakdown processes of polymers are complicated due to their highly complex 

structures. Therefore, much work has been devoted to clarify the correlation between the 

breakdown characteristics and the properties inherent to polymers. Theories on the 

breakdown mechanisms are usually divided into three categories: electronic, thermal (Hap 

& Raju, 2006) and mechanical processes. 
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The different degrees of ordering of macromolecules and the presence of regions of varying 

densities gives rise to different conductivities under an applied field. A non-uniform voltage 

drop occurs within the polymer when a current begins to flow, leading to variable distribution 

of electric field. A detailed analysis of breakdown processes in polymers has been discussed by 

Ieda et al (Ieda, 1980). Artbauer proposed the basic idea of Free Volume Theory (Artbauer, 

1996), which was taken in explaining the breakdown phenomena of polymer around the glass 

transition temperature. The amorphous phase in polymers with unoccupied volume consisting 

of holes of molecular order presents a free path for the electrons to accelerate under an external 

field and gain energy. Job et al. improved dielectric strength of polymers by chemical 

modifications. They have increased the breakdown strength of polyethylene terephthalate 

(PET) films by insitu polymerization of a layer of polyaniline (PANI). A 30% increase in 

dielectric strength was observed when the non-conductive PANI filled the voids of PET. And 

they proposed the breakdown was the electron avalanche process (Job et al., 2003). Breakdown 

in polymers with saturated bonds, such as polyethylene and polypropylene, can not be 

explained by the electron avalanche mechanism as they have a short free path length. As a 

result, the electrons cannot gain sufficient energy by acceleration to cause avalanche. In these 

polymers, electrical breakdown is the last step in a process of polymer degradation that results 

in the formation of conducting channels. The formation of these conducting channels depends 

on the intensity and time of the applied external field. The lifetime of these polymers decreases 

exponentially with applied electric field (Zakrevski et al., 2003). Overall, a general consensus 

has emerged that the reduction in dielectric breakdown strength of polymers is closely related 

to the dissociation (bond scission) of polymer molecules under an applied external field. The 

dissociation process is considered to be the initiation of polymeric breakdown. However, the 

exact mechanism of dissociation is unclear. One approach to explain this phenomenon is the 

non-uniform distribution of electric field intensity within a polymer due to electrode defects 

and inherent differences within the structure of polymer (Zakrevski et al., 2003).  

The dielectric breakdown field of polyimide (PI) thin films has been studied across the 

temperature range from 25 to 400 °C under dc conditions by Diaham et al. it appeared that 

both the breakdown field value and β–scale parameters decrease with increasing electrode 

area following the area extrapolation law. It was found that the β–parameter has presented 

an unexpected increase with increasing the thickness thanks to percolation theories  

(Diaham et al., 2010).  

Peruani et al described the dielectric breakdown model in conductor-loaded composites. 

Conducting particles are distributed at random in the insulating matrix, and the dielectric 

breakdown propagates according to new rules to take into account electrical properties and 

particle size. Dielectric breakdown patterns are characterized by their fractal dimension and 

the parameters of the Weibull distribution. Studies are carried out as a function of the 

fraction of conducting in homogeneities. The fractal dimension of electrical trees approaches 

the fractal dimension of a percolation cluster when the fraction of conducting particles 

approximates the percolation limit (Peruani et al., 2003). DammigQuiña et al developed a 

capacitive dielectric breakdown model (CDBM) of electrical tree growth to simulate 

dielectric breakdown in polymer materials. Dependence of the fractal dimension on the 

applied voltage, the breakdown process has its thermodynamic origin in the interplay 
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between energy injection and space charge formation processes. The model is capable of 

predicting electrical trees with fractal dimensions and qualitatively reproducing the 

temporal evolution of the breakdown process (DammigQuiña et al., 2008). 

Kim and Shi investigated the dielectric strength of an interlevel low relative permittivity 

dielectric for various film thicknesses and temperatures by using I-V measurements with metal-

insulator-semiconductor (MIS) structures. It is found that the dielectric breakdown mechanism 

is electromechanical in origin for relatively thick films (thickness >500 nm). The dielectric 

strength is proportional to the square root of Young’s modulus of the films (Kim & Shi, 2001). 

5. Experimental 

5.1. Polyester foil 

The polyester foil studied here is compound of biaxially-oriented polyethylene 

terephthalate, as shown in Fig. 4. Biaxially-oriented Polyethylene terephthalate, commonly 

abbreviated BOPET, is made from stretched polyethylene terephthalate (PET) and used for 

its high tensile strength, chemical and dimensional stability, transparency, gas and aroma 

barrier properties and electrical insulation ( Sarker et al., 2001).  

The end properties of the BOPET are direct consequence of their super molecular structure. 

The final structure of the BOPET depends mainly by the melt spinning conditions and by 

the subsequent heat-mechanical modifications, too. The desirable super molecular structure 

and the needed final morphologies and properties of the PET can be obtained by controlling 

of the forming process parameters as well as the subsequent treatment. For example, BOPET 

can be metallized by vapor deposition of a thin film of evaporated aluminum, gold, or other 

metal onto it. Metallized BOPET film, along with other plastic films, is used as a dielectric in 

foil capacitor. Four film thicknesses of 9µm, 12µm, 15µm and 18 µm were selected to study 

the breakdown strength.  

 

Figure 4. Chemical structure of the Polyethylene terephthalate 

5.2. Experimental setup 

Dielectric breakdown field measurements have been performed using a dc voltage supplied 

by a 15 kV voltage source connected to the sample. The electrical schematic diagram is 

shown in Fig. 5. In Fig. 5, 1, 2 and 6 are transmission lines. 3 is the polymer-foil switch. 4, 5 

are the charging resistance. The breakdown field was identified when the polymer-foil 

switch is self-breakdown, and output a rectangular pulse. The maximum voltage supplied 

was also recorded using a divider connected to the generator and was considered as the 

breakdown voltage (Wang et al., 2004, 2006).  
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1,2,6 transmission line; 3 polymer-foil switch; 4,5 charging resistance 

Figure 5. Electrical schematic diagram of experiment  

Fig. 6 is the experimental arrangement of polyester-foil switch. The high voltage electrode 

(HE) and ground electrode (GE) are planes made of copper, and between HE and GE is the 

polyester foil, whose thickness varies among 9µm, 12µm, 5µm and 18µm. The self-

breakdown voltage is attained by a resistive divider. The measurement is accomplished by a 

500MHz digital storage oscilloscope. 

 

Figure 6. Experimental setup  

6. Statistical analysis 

Although a number of samples of the same material may be tested, each sample might 

exhibit breakdown at a different voltage due to random structural and measurement 

differences. The breakdown voltage can be considered as a random variable, which 

necessitates a statistical analysis of the breakdown data. Electrical breakdown can be 

considered as a system failure under the condition where a weak link in the system fails. 

The Weibull distribution, which is a type of extreme value distribution, is the most common 

for such applications (Weibull, 1951; Wu & Vollertsen, 2002).  

 
( )

( ) 1

x

F x e






   (21) 

Where ( )F x  is the cumulative probability of failure,   is the scale parameter (V/cm) 

corresponding to a probability of failure ( )F  =63.2%,   is the shape parameter. A high  -

value is related to a low scattering of the data. The location (or threshold) parameter  has 

been set to zero.  
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The experimental data have been ranking using the median rank approximation given by 

(Chauvet & Laurent, 1993; Fothergill, 1990): 

 
0.3

( , )
0.4

i
F i n

n





 (22) 

Where, i and n are the rank of a failed sample and the total number of tested samples, 

respectively. For plotting the Weibull distribution law, the transformation of equ. (21) into 

equ. (23) has been realized: 

 10 10 10

1
log log log ( ) log ( )

1 ( )e x
F x

 
  

        
 (23) 

The Weibull parameters have been extracted considering a confidence interval of 90 %. Both 

the maximum likelihood and least square fit methods have been also applied leading to 

similar α– and β–parameter values (Diaham et al., 2010; Laihonen et al., 2007a, 2007b). 

7. Results and discussion 

Experiments were performed to measure the self-breakdown voltage of 10µm level foil. Fig. 

7 and Fig. 8 show self-breakdown voltage and deviation thickness-varied polyester foils 

under positive voltage, respectively. The dashed lines through the data points represent the 

average self-breakdown voltage of the foils. From Fig. 7, it is clearly seen that the average 

self-breakdown voltage under positive voltage for 9µm, 12µm, 15µm, 18µm foils are 4.2, 5.7, 

7.2 and 9.3 kV respectively, and the corresponding standard deviations are 0.6, 0.5, 0.8 and 

0.9 kV. As shown in Fig. 8, the breakdown strength for 9, 12, 15, 18µm foils under positive 

voltage are 467, 475, 480 and 517kV/mm, and the corresponding standard deviations are 67, 

42, 51 and 50 kV/mm, respectively. 

Compared to the dielectric strength of thickness in mm regime, it can obviously that the 

breakdown strength for 10µm level foil is far greater than that breakdown strength in mm 

regime. That is named ‘film strengthenization effect’. Nevertheless, as far as the breakdown 

strength for those four kinds of thickness foils are concerned, it exhibits a slight increase 

with increasing thickness for our results. It seems to be contrary to the film 

strengthenization effect. The reasons for this phenomenon are surface roughness conditions 

of electrodes, thickness deviation, defects and treatment processing, and so on. This 

‘curious’ behavior also can be interpreted with the percolation theory. It based on a priori 

supposed that when the probability to find defects into the bulk increases, an increase in the 

scattering of the breakdown and a decrease in the shape parameter value ought to be 

observed (Diaham et al., 2010; Essam, 1980; Helgee&Bjellheim, 1991). 

Fig. 9 and Fig. 10 show self-breakdown voltage and breakdown strength for thickness-

varied polyester foils under negative voltage, respectively. The average self-breakdown 

voltage under negative voltage for 9, 12, 15, 18µm foils are 3.8, 5.4, 7.4, and 9.0kV 

respectively, and the corresponding standard deviations are 0.5, 0.7, 0.4 and 0.9 kV. The 
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breakdown strength for 9, 12, 15, 18µm foils are 444, 450, 490 and 500kV/mm, and the 

corresponding standard deviations are 53, 58, 28 and 49 kV/mm. It is also found that the 

breakdown voltage and dielectric strength of polyester film under negative voltage is 

smaller than that one under positive voltage. In other words, the dielectric strength of 

polyester film is evidently dependent of the voltage polarity. It can be interpreted by the 

space charge effect in relation to polyester solid structure (Ieda, 1987). 

 

 

Figure 7. Self-breakdown voltage of thickness-varied polyester-foils under positive voltage  

 

Figure 8. Breakdown strength for thickness-varied polyester-foil under positive voltage  

(a) 9µm (b) 12µm

(c) 15µm  (d) 18µm
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Figure 9. Self-breakdown voltage of thickness-varied polyester-foils under negative voltage  

 

 

Figure 10. Breakdown strength for thickness-varied polyester-foil under negative voltage  

The influence of the thickness on the Weibull parameters was also investigated. Fig. 11 

shows the α–parameter values in a plot versus the polyester film thickness. The solid line 

and dash line represent the linear fits. This result is not in good agreement with typical 

value found in the literature for polymers and for such a litter variation of the thickness 

(Diaham et al., 2010; Helgee&Bjellheim, 1991). 

In comparison with the theoretical results, the experimental results show that the critical 

breakdown strength of the polyester film in the intrinsic breakdown model is far lower than 

(a) 9µm (b) 12µm

(c) 15µm  (d) 18µm
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the experimental results and the critical breakdown strength of the polyester film in the 

electromechanical breakdown model and filamentary electromechanical breakdown model 

almost agrees with the experimental data of the polyester film. Therefore, it is concluded 

that the dielectric breakdown mechanism for thickness in micro-meter range is dominantly 

controlled by the electromechanical breakdown mechanism. 

 

Figure 11. Changes in the scale parameter versus the polyester-foil thickness  

8. Conclusion 

The theoretical and experimental results of dielectric strength of polyester films in micro-

meter regime are presented. Theoretical analysis was carried out based on the intrinsic 

breakdown model and the electromechanical breakdown model. The critical breakdown 

strength of intrinsic breakdown model is estimated on the basis of Hippel’s low-energy 

criterion and Frohlich’s high-energy criterion. The electromechanical breakdown model, 

electrofracture and filamentary electromechanical breakdown model are also introduced. 

The thickness dependence of dielectric strength of the polyester films was also investigated 

in a plane-plane electrode arrangement with different polar DC voltage. The thickness of the 

polyester films varied among 9µm, 12µm, 15µm and 18µm. Experimental results show that 

there is greatly increasing on the dielectric strength in micro-meter regime, compared to the 

dielectric strength of thickness in mm regime. Nevertheless, it exhibits a slight decrease with 

increasing thickness for our results. This ‘curious’ behavior is discussed on the basis of the 

percolation theory. It is also found that the dielectric strength of polyester film under 

negative voltage is smaller than that one under positive voltage. In other words, the 

dielectric strength of polyester film is evidently dependent of the voltage polarity. It can be 

interpreted by the space charge effect in relation to polyester solid structure. The 

comparison between the theoretical analysis and the experimental results is also presented. 

The results show that the critical breakdown strength of the polyester film in the intrinsic 

breakdown model is far lower than the experimental results, and the critical breakdown 

strength of the polyester film in the electromechanical breakdown model almost agrees with 

the experimental data of the polyester film. Therefore, it is concluded that the dielectric 

breakdown mechanism for thickness in micro-meter range is dominantly controlled by the 

electromechanical breakdown mechanism.  
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