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1. Introduction

A hybrid dynamical system is a system containing on the same time continuous state variables

and event variables in interaction. We find hybrid systems in different fields. We cite robotic

systems, chemical systems controlled by vans and pumps, biological systems (growth and

division) and nonlinear electronics systems.

Because of interaction between continuous and discrete aspects, the behavior of hybrid

systems can be seen as extremely complex. However, this behavior becomes relatively simple

for piece-wise affine hybrid dynamical systems that can, in contrast, generate bifurcation and

chaos. There are many examples such as power electronics DC-DC converters.

The common power electronics DC-DC converters are the buck converter and the boost

converter. They are switching systems with time variant structure [9].

DC-DC converters are widely used in industrial, commercial, residential and aerospace

environments. These circuits are typically controlled by PWM (Piece Wise Modulation) or

other similar techniques to regulate the tension and the current given to the charges. The

controller decides to pass from one configuration to another by considering that transitions

occur cyclically or in discrete time. In order to make the analysis possible, most of

mathematical treatments use some techniques that are based on averaging or discretization.

Averaging can mean to wrong conclusions on operation of a system. Discrete models do not

give any information on the state of the system between the sampled instants. In addition,

they are difficult to obtain. In fact, in most cases, a pure analytic study is not possible.

Another possible approach to analyze these converters can be done via some models of

hybrid dynamical systems. DC-DC converters are particularly good candidates for this type

of analysis because of their natural hybrid structure. The nature of commutations of these

systems makes them strongly nonlinear. They present specific complex phenomena such as

fractals structures of bifurcation and chaos.

©2012 El Guezar and Bouzahir, licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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The study of nonlinear dynamics of DC-DC converters started in 1984 by works of Brockett
and Wood [4]. Since then, chaos and nonlinear dynamics in power electronics circuits have
attracted different research groups around the world. Different nonlinear phenomena have
been observed such as routes to chaos following the period doubling cascade [16], [5], [19],
[20] and [23] or quasi-periodic phenomena [6], [7] and [8], besides border collision bifurcations
[23] and [2].

Switched circuits behavior is mostly simulated by pure numerical methods where precision
step is increased when the system is near a switching condition. Those numerical tools are
widely used mainly because of their ease-of-use and their ability to simulate a wide range of
circuits including nonlinear, time–variant, and non–autonomous systems.

Even if those simulators can reach the desired relative precision for a continuous trajectory,
they can miss a switching condition and then diverge drastically from the trajectory as in
figure 1. This could be annoying when one is interested by border collision bifurcations, or
when local behavior is needed with a good accuracy. In those applications, an alternative is
to write down analytical, or semi–analytical, trajectories and switching conditions to obtain
a recurrence which is very accurate and fast to run. Building and adapting such ad’hoc
simulators represent a lot of efforts and a risk of mistakes.

Generic and accurate simulators can be proposed if we are restricted to a certain class of
systems. A simulation tool with no loss of events is proposed in [14] and [15] for PWAHSs
defined on polytopes (finite regions that are bounded by hyperplanes). This class of PWA
differential systems has been widely studied as a standard technique to approximate a range
of nonlinear systems.

But closed polytopic partition of the state space does not allow simulation of most switching
circuits where switching frontiers are mostly single affine constraints or time–dependent
periodical events.

This chapter follows our previous study in [13], [12] and [11].

We focus on planar PWAHSs with such simple switching conditions which can model a family
of switched planar circuits: bang–bang regulators, the Boost converter, the Charge-Pump
Phase Locked Loop (CP-PLL), . . .

This class of systems has analytical trajectories that help to build fast algorithms with no loss
of events. We propose a semi-analytical solver for hybrid systems which provides:

• A pure numerical method when the system is nonlinear or non-planar;

• A pure analytic method when all continuous parts of the system and switching conditions
can be solved symbolically. This can be the case for the boost converter [3], [21], the second
order charge-pump phase locked loop [17], [22].

• A mixed method using analytical trajectories and numerical computation of the switching
instant when those solutions are transcendent. This has been used for the third order
CP-PLL [17]. It can also be the case for the Buck converter [10], [21], . . .

This chapter is organized as follows. Section 2 contains our main results. We describe
the problem to be deal with, we introduce a general algorithm to solve planar HSs, we
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present the algorithm that detects events’ occurrence and devote a subsection to our approach
efficiency. Section 3 Illustrates the current-mode controlled Boost converter example. Finally,
a conclusion is stated in Section 4.
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Figure 1. Numerical simulation versus semi–analytical simulation.

2. Main results

2.1. A HS (X, E, t): general definition

A general definition of HSs is presented here. This type of dynamical systems is characterized
by the coexistence of two kinds of state vectors: continuous state vector X(t) of real values,
and discrete state vector E(t) belonging to a countable discrete set M.

Definition 1. A continuous-time, autonomous HS is a system of the form:

Ẋ(t) = F (X(t), E(t)) , F : H → Rn

E+(t) = φ (X(t), E(t)) , φ : H → M
(1)

H = Rn ×M is called the hybrid state space. X(t) ∈ Rn is the continuous state vector of the HS at
time instant t and E(t) ∈ M := {1, . . . , N} is its discrete state. E+(t) denotes the updated discrete
state right after time instant t. φ : H → M describes the discrete dynamic, it is usually modeled by
Petri Nets. A transition from E(t) = i to E+(t) = j is valid when the state X reaches a switching set
called SEi ,Ej

. Such transitions are called state dependent events. A HS is called piece-wise affine if for

each E ∈ M, F(X, E) can be defined by F(X, E) = AEX + BE, ∀ X.

5Simulation of Piecewise Hybrid Dynamical Systems in Matlab
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Remark — For non–autonomous HSs, the function φ can also depend on time φ (X, E, t) :
Rn ×M× R → M. Then time dependent events can occur and validate a transition, such as
periodic events.

2.2. HSs class of interest

We consider a two dimensional PWAHS (X(t) ∈ R2). F has then the affine piece-wise form,
F(., .) is defined for each E ∈ M and X ∈ R2 by F(X(t), E(t)) = AE(t)X + BE(t), where

AE(t) ∈ R2× 2 and BE(t) ∈ R2 are two matrices that depend on the discrete state E(t). Hence,
a two dimensional PWAHS is a HS that take the form:

Ẋ(t) = AE(t)X + BE(t),

E(t) ∈ M = {1, 2, . . . , N}
(2)

We consider two kinds of events: state dependent events and periodic events.

The state dependent event transition SEi Ej
is defined by an affine state border of the form

N′
ij.X < lij. In this case an event can occur when the continuous state reaches the border of

the set SEi Ej
=

{

X(t) ∈ R2 : N′
ij.X ≤ lij

}

.

Note that the set SEi Ej
is not polytopic in the sense that the domain is not the interior of a

closed bounded polytope.

Remark — We consider, without loss of generality, the case where a transition occurs at
time dSEi Ej

if and only if the state X(dSEi Ej
) reaches a border of the set SEi Ej

from outside.

Figure 2 defines a transition with the complimentary set S̄ , which allows to detect the
event in both directions. Both transitions can be met with the set B = S ∪ S̄ . Periodic

X(t,Xk,E(tk+))

Xk

Xk+1

N
1.

X
<=l1

N2.X<=l2

Figure 2. Oriented polytopic state dependent transitions.

events are simply defined by time instants t = dPEi Ej
, where dPEi Ej

belongs to the set
PEi Ej

= {t : t = kT + ϕ, k ∈ N} . T is the period and ϕ is the phase of such periodic events.
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2.3. Event–driven simulation of PWAHSs

The simulation will compute the hybrid state from event to event. Knowing the states X(tk)

and E(t+k ), one can compute the trajectory X(t > tk) =
∫ t

tk
f
(

X(tk), E(t+k )
)

dt + X(tk),

assuming that the discrete state is constant E(t > t+k ) = E(t+k ). Then the following algorithm
runs the simulation determining the date at the next event as the smallest:

Data: tk, Xk, Ek.
while t < t f in do

Compute all events’ dates dSEi Ej
and dPEi Ej

;

tk+1 = min(dSEi Ej
, dPEi Ej

);

Xk+1 = f (Xk, Ek, tk+1);
Ek+1 = φ (Xk, Ek, tk+1);

end

Algorithm 1: Algorithm computing the hybrid state at tk+1.

2.4. Event detection occurrence: description and algorithm

We consider the affine Cauchy problem in R2:

{

Ẋ(t) = AX(t) + B, t > t0

X(t0) = X0

(3)

where X0 is the initial value. We compute the smallest strictly positive time t∗i so that the
trajectory of X(t) intersects the fixed border Bi arriving from the part of the plan where N′

i .X <

li. The function fi(t) = N′
i .X(t) − li defines the guard condition for a border Bi. Thus, the

problem can be formulated as follows:

Find the smallest t∗i such that

{

fi(t
∗
i ) = 0

∃ δ > 0, ∀t ∈
]

t∗i − δ, t∗i
[

, fi(t) < 0
(4)

If fi does not have any strictly positive root or the last condition is not satisfied, t∗i is given the
infinite value.

2.4.1. Analytical trajectories

Definition 2. For any square matrix A of order n and t in R, the exponential matrix etA is defined by

etA =
∞

∑
k=0

tk Ak

k!
= I + tA +

t2 A2

2!
+

t3 A3

3!
+ ... (5)

where I is the identity matrix.

It is well known that the analytical trajectory X(t) of the initial value matrix differential
equation (3) is given in terms of the exponential matrix and the variation of constants formula

7Simulation of Piecewise Hybrid Dynamical Systems in Matlab
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by the general integral form:

X(t) = e(t−t0)AX0 +
∫ t

t0

e(t−s)ABds. (6)

When A is invertible, the above expression becomes linear:

X(t) + A−1B = e(t−t0)A(X0 + A−1B) (7)

The analytical expression of the exponential matrix eAt takes two forms depending on
whether the eigenvalues p1 and p2 of the matrix A are equal or not:

If p1 
= p2, then

etA =
(p1I − A◦)

p1 − p2
ep1t −

(p2I − A◦)

p1 − p2
ep2t (8)

If p1 = p2 = p, then

etA = (I + (p I − A◦) t) ept (9)

where A =

(

a11 a12

a21 a22

)

, A◦ =

(

a22 −a12

−a21 a11

)

and I =

(

1 0
0 1

)

.

Using these expressions, we can determine the function f (t) of the problem (4) as follows:

f (t) = a1 + a2 t + a3 t2 + (a4 + a5 t) ep1 t + a6 ep2 t

where ai are real scalars.

Depending on the eigenvalues p1 and p2, there are five cases that determine the values of the
coefficients ai as shown in Table 1. Remark — Coefficients ai are real scalars that depend on

f (t) = a1+. . . p1 ∈ R∗ p1 = 0

p2 ∈ R
∗ a4 e p1t + a6 e p2t a2 t + a6 ep2t

p2 = 0 a2 t + a4 ep1t a2 t + a3 t2

p1 = p2 ∈ C∗ a4ep1t + a5ep2t, with a5 = a4 ∈ C∗

p1 = p2 ∈ R∗ (a4 + a5 t)ep1t

Table 1. Expressions of f (t) depending on the eigenvalues p1 and p2.

the eigenvalues p1 and p2, the initial point Xk and the border parameters are Ni and li.

In some cases, (p1 = p2 = 0, gray cell in Table 1) roots of f (t) can be found analytically and
the problem is solved with machine precision.

In other cases, the solution can not be found with classical functions and then a numeric
algorithm should be used. Using classical methods like Newton does not guaranty existence
or convergence of the smallest positive root. To meet these conditions, let us use analytical
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roots of the derivative function f ′(t) expressed in Table 2. We can then compute analytically

f ′(t) = . . . p1 ∈ R∗ p1 = 0

p2 ∈ R∗ a4 p1 e p1t + a6 p2 e p2t a2 + a6 p2 ep2t

p2 = 0 a2 + a4 p1 ep1t a2 + 2 a3 t

p1 = p2 ∈ C∗ a4 p1 ep1t + a4 p1ep1t, with a4 ∈ C∗

p1 = p2 ∈ R
∗ (a4 p1 + a5 + a5 p1 t) ep1t

Table 2. Expressions of f ′(t) depending on the eigenvalues p1 and p2

the set L of ordered roots of f ′(t), those roots determines monotone intervals of f (t). The
following algorithm is used to return the solution t∗ when it exists or the value ∞ if not.

Remark — When (p1, p2) ∈ C
∗ × C

∗ the set L is infinite: when the real part of pi is positive,
the algorithm

Data: Ni, li, A, B, Xk

Result: construct the set L, compute t∗

T ← {0, L, ∞};
t∗ ← ∞;
for i ← 1 to (card(T)− 1) do

if f (T(i)) < 0 & f (T(i + 1)) > 0 then
t∗ ← solve [T(i), T(i + 1)];
Break;

end

end

Algorithm 2: Algorithm computing t∗ when a solution is transcendent.

will end by finding a root. In the other case, the set L should be reduced to its three first
elements, to find a crossing point when it exists.

3. Matlab modelling

Our semi-analytical solver is composed of different main programs that define the studied
affine system. First, we create the affine system given with a specifically chosen name. Then,
we define the matrices Ai and Bi. After that, we give the switching borders with the sign of
transitions and all necessary elements or we give the period if it is about a periodic event.
Finally, we execute the simulation by specifying the initial state and the time of simulation.

3.1. Application: Current-mode controlled Boost converter

A current-mode controlled Boost converter in open loop consists of two parts: a converter and
a switching controller. The basic circuit is given in figure 3.

This converter is a second-order circuit comprising an inductor, a capacitor, a diode, a switch
and a load resistance connected in parallel with the capacitor.

9Simulation of Piecewise Hybrid Dynamical Systems in Matlab
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The general circuit operation is driven by the switching controller. It compares the inductor
current iL with the reference current Ire f and generates the on/off driving signal for the switch
S. When S is on, the current builds up in the inductor.

When the inductor current iL reaches a reference value, the switch opens and the inductor
current flows through the load and the diode. The switch is again closed at the arrival of the
next clock pulse from a free running clock of period T.

The Boost converter controlled in current mode is modeled by an affine piece-wise hybrid
system defined by the same sub-systems given in equation as follows:

S1 : Ẋ(t) =

[

−1
RC 0
0 0

]

X(t) +

[

0
Vin
L

]

S2 : Ẋ(t) =

[ −1
RC

1
C

−1
L 0

]

X(t) +

[

0
Vin
L

]

,

(10)

vC

iL L

S

D

R C

iL

+
Vin

S
T

Horloge

Iref

Q’

QR+

−

Figure 3. Boost converter controlled in current mode.

In the case of the Boost converter controlled in current mode, there are two types of events:

A state event defined by a fixed border of the set SE1 E2
:

SE1 E2
=

{

X ∈ R
2 : [0 1] X < Ire f

}

(11)

and another periodic event defined by the dates t = dPEi Ej
, where dPEi Ej

belongs to the set:

PE2 E1
= {t ∈ R : t = nT, n ∈ N} (12)
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where T is the period of this periodic event. The different simulations are obtained using our
planar PWA solver.

Before performing any study of the observed bifurcations in this circuit, a numerical
simulation in the parametric plane is needed.

The following program calcule_balayage_mod.m is used to obtain the parametric plane:

%%%%----------------------------calcule_balayage_mod.m----------------

%

%

clear all;

close all;

%

%% File calculating points to display a figure of parametric plane

% Example of boost

% Save data in...

%

monfich=(’data_balais’);

% You should specify the path of hybrid_solver_matlab

%

addpath(’.\hybrid_solver_matlab’);

%

eps=1E-6;

ordre_max=15;

x_eps = 1e-5;

Xmax=100;

nb_trans=500;

nb_inits=1;

ta= 0.5:1.1/200:1.6;

tb= 5:15/200:20;

a=ta(1);

b=tb(1);

%% Definition of BOOST

%Iref changes and noted a

%Vin changes and noted b

%

L=1.5e-3;

T=100e-6;

R=40;

Vin=b;

C=5e-6;

Iref=a;

AE1=[

-1/R/C 0 ;

0 0

];

11Simulation of Piecewise Hybrid Dynamical Systems in Matlab
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AE2=[

-1/R/C 1/C ;

-1/L 0

];

B1=[0;

b/L];

B2=B1;

N1 = [0 1];

S1 = ’<’;

[p1,p2]=racines(AE1);

H=create_hybrid_system(’affine’);

H=add_state(H,1,’On’,AE1,B1);

H=add_state(H,2,’Off’,AE2,B2);

H=add_event(H,1,’Iref’,N1,a,S1);

H=add_periodic_event(H,1,’Clock’,T,0);

H=add_transition(H,1,2,1);

H=add_periodic_transition(H,2,1,1);

%

%% initial state

Xi.t=T/1000;

Xi.E=1;

Xi.Xc=[16.5;0.47];

mape=colormap(ma_color);

na=length(ta)

tic

for ia = 1 : na

a=ta(ia);

for ib= 1 : length(tb)

b=tb(ib);

%% update of the equation with a new a

% here only Iref that changes and modifies a border

B1=[0;

b/L];

H=add_state(H,1,’On’,AE1,B1);

H=add_state(H,2,’Off’,AE2,B2);

H=add_event(H,1,’Iref’,N1,a,S1);

H=update_transition(H,1,2,1);

ordres(ib,ia)=-2;

for init = 1:nb_inits

X=Xi;

or = ordre_max;

for i = 1 : nb_trans

[X]=recu(H,X); %1->2;

[X]=recu(H,X); %2->1;

if (X.t==Inf)

or=-1;
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break;

end

if (max(abs(X.Xc))>Xmax)

or=0;

break;

end

end

if (or==ordre_max)

%% check if we have periodic event state E=1

if (X.E ~= 1)

[X]=recu(H,X);

end

it=1;

X0 = X;

tt0=X.t;

while (it<ordre_max) & (or == ordre_max)

[X]=recu(H,X); %1->2;

tt=X.t-tt0;

ii=1;

while (ii*T<tt)

it=it+1;

ii=ii+1;

end

[X]=recu(H,X);

tt0=X.t;

if (max(abs(X.Xc-X0.Xc))<x_eps)

or=it;

break;

else

it = it + 1;

end

end

end

or;

ordres(ib,ia)=max(or,ordres(ib,ia));

end

end

fprintf(’About %2.1f %% done, still about %5.0f secondes to be...

%3.0f minutes\n’,ia/na*100,toc/ia*(na-ia),toc/ia*(na-ia)/60)

end

temps=toc

save(monfich)

affiche_balayage

After calculating the necessary points of the parametric plane saved in the file named
dat_balais, the next program affiche_balayage.m plots the figure given in Fig.4

13Simulation of Piecewise Hybrid Dynamical Systems in Matlab
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%%%%----------------------------affiche_balayage_mod.m-------------

% Used in general after calcule_balayage

%% Charge the saved 2-D bifurcation scan

%if the file was not executed

if (exist(’ordres’)==1)

disp(’use the points matrix of the workspace’);

elseif (exist(’data_balais.mat’)==2)

disp(’charge the points that are in data_balais.mat’);

load data_balais.mat

else

disp(’There are no points or files of points: try ordres.mat...

insha ALLAH! It may be long...’)

load ordres.mat

end

%

%% Display the bifurcation scan diagram

da=(ta(2)-ta(1))/2;

db=(tb(2)-tb(1))/2;

colormap(mape)

for ia = 1 : length(ta)

a=ta(ia);

for ib= 1 : length(tb)

b=tb(ib);

if (ordres(ib,ia)<0)

%plot(a,b,’.w’);

fill([a-da a-da a+da a+da],[b-db b+db b+db b-db],...

’w’,’EdgeColor’,’none’)

elseif (ordres(ib,ia)==0)

%plot(a,b,’+w’);

fill([a-da a-da a+da a+da],[b-db b+db b+db b-db],...

’w’,’EdgeColor’,’none’)

else

%plot(a,b,’s’,’color’,mape(ordres(ib,ia),:),...

’MarkerFaceColor’,mape(ordres(ib,ia),:),’MarkerSize’);

fill([a-da a-da a+da a+da],[b-db b+db b+db b-db],...

mape(ordres(ib,ia),:),’EdgeColor’,’none’)

end

hold on

end

end

colormap(mape)

colorbar %(mape)

colorbar(’YTickLabel’,...

{’O1’,’O2’,’O3’,’O4’,’O5’,’O6’,’O7’,...

’O8’,’O9’,’10’,’11’,’12’,’13’,’14’,’O+’})

14 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3
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The figure 4 of the parametric plane allows to emphasize the parameters values for which
there exists at least one attractor (fixed point, cycle of order k, strange attractor).

Figure 5 shows a bifurcation diagram (Feigenbaum type) in the plane (Ire f , iL). However,
figure 6 shows the bifurcation diagram in the space plane (I, iL, vC).

To draw these two figures we use programs: calcule_figuier.m and affiche_figuier.m

%%%%----------------------------calcule_figuier.m----------------

%

clear all;

close all;

%

%% Code that calculates then displays the points of a bifurcation

tree

% Boost converter example

% Save the data in ...

monfich=(’data_points’);

%

addpath(’../hybrid_solver_matlab’);

%

eps=1E-6; % precision of the solver

nb_trans=400;%400 %Number of iterations to pass the transient phase

ordre_max=100; %100% nombre de points affichés après le transitoire

ta= 0.5:0.0025:1.6; % values of the parameter a to be calculated

%ta= 1.22:0.001:1.4;%0.5:0.001:1.6;

points=zeros(2,length(ta),ordre_max);

% points (x or y, index a, the ordre_max of the last trajectory

points)

a=ta(1);

%

%% Definition of the Boost converter

%Iref is a variable denoted a

L=1.5e-3;

T=100e-6;

R=40;

Vin=10;

C=5e-6;

Iref=a;

AE1=[

-1/R/C 0 ;

0 0

];

AE2=[

-1/R/C 1/C ;

-1/L 0

];
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B1=[0;

Vin/L];

B2=B1;

N1 = [0 1];

S1 = ’<’;

[p1,p2]=racines(AE1)

H=create_hybrid_system(’affine’);

H=add_state(H,1,’On’,AE1,B1);

H=add_state(H,2,’Off’,AE2,B2);

H=add_event(H,1,’Iref’,N1,a,S1);

H=add_periodic_event(H,2,’Clock’,T,0);

H=add_transition(H,1,2,1);

H=add_periodic_transition(H,2,1,2);

%

%% Initial condition

X0.t=T/1000;

X0.E=1;

X0.Xc=[16.4549;0.4648];

%

%% Vary a and memorize the points for the bifurcation tree

na=length(ta);

tic;

for ia = 1 : na

a=ta(ia);

if a==1.3

end

%% Update of the equation with a new a

vi=X.Xc;

cc=ia;

% Here only Iref varies and the corresponding border is then

modified

H=add_event(H,1,’Iref’,N1,a,S1);

H=update_transition(H,1,2,1);

X=X0;

%

%% transient zone

for i = 1: nb_trans

[X]=recu(H,X);

[X]=recu(H,X);

end

%% Assure that we are on a periodic event, state E=1

%

if (X.E ~= 1)

[X]=recu(H,X);

end

%
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Xin=X.Xc;

tt0=X.t;

it=1;

%% memorize ordremax points issued from the periodic transition

2-> 1

%

while (it<(ordre_max+1))

[X]=recu(H,X);%1->2

tt=X.t-tt0;

ii=1;

while (ii*T<tt)

points(:,ia,it)=traj_ni(AE1,B1,p1,p2,Xin,ii*T);

Xin=traj_ni(AE1,B1,p1,p2,Xin,ii*T);

it=it+1;

ii=ii+1;

end

%

[X]=recu(H,X);%2->1

points(:,ia,it)=X.Xc;

Xin=X.Xc;

tt0=X.t;

it=it+1;

end

%

fprintf(’Approximately %2.1f %% are done, yet approximately %5.0f

seconds...

that is %3.0f minutes\n’,ia/na*100,toc/ia*(na-ia),toc/ia*

(na-ia)/60)

end

%scan the values of ’a’

temps_ecoule=toc

save(monfich)

%%

cc

vi

affiche_figuier

%%%%----------------------------affiche_figuier.m----------------

%% Charges the file containing the saved points

% if the file "figuier" is not executed

if (exist(’points’)==1)

disp(’use the points matrix of the workspace’);

elseif (exist(’data_points.mat’)==2)

disp(’charge the points that are in data_points.mat’);

load data_points
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else

disp(’There are no points or files of points: try points.mat insh

ALLAH!’)

load points

end

%% bifurcation tree depending on the dimensions x then y

% % for dim=1:2

% %

% % plot(points(dim,1,1));

% % hold on;

% % for ia=1:length(ta)

% % for io=2:ordre_max

% % plot(ta(ia),points(dim,ia,io));

% % end

% % end

% % xlabel(’a’);

% % figure

% % end

% figure

%

% plot(points(1,1,1));

% hold on;

% for ia=1:length(ta)

% for io=2:ordre_max

% plot(ta(ia),points(1,ia,io));

% end

% end

% xlabel(’Vin(V)’);

% ylabel(’vC(V)’);

plot(points(2,1,1));

hold on;

for ia=1:length(ta)

for io=2:ordre_max

plot(ta(ia),points(2,ia,io));

end

end

xlabel(’Iref(A)’);

ylabel(’iL(A)’);

%% bifurcation tree in 3D

% z = variable parameter denoted a

% x the dimension x

% y the dimension y of the point

plot3(points(1,1,1),points(2,1,1),ta(1));

plot3(ta(1),points(2,1,1),points(1,1,1));

hold on;
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for ia=1:length(ta)

for io=1:ordre_max

plot3(ta(ia),points(2,ia,io),points(1,ia,io));

end

end

xlabel(’Iref(A)’);

ylabel(’iL(A)’);

zlabel(’vC(V)’);

In these two figures, the voltage Vin is fixed to 10V and the current Ire f varies in the interval
[0.5, 1.6]. We observe a period cascade doubling leading to a chaotic regime, interrupted by a
border collision bifurcation at Ire f = 1.23A (see figure 7). In this figure, a distinction is given
between the attractors of attractive cycle type of the order 1 to 14. Each cycle of order k is
associated with one color.

For example, the blue area O1 represents the parameters’ values for which there exists an
attractive fixed point (fundamental periodic regime). The red area O2 represents the existence
of an attractive cycle of order 2. The yellow area O4 represents the existence of an attractive
cycle of order 4 and so on until getting the cycles O14 of order k = 14. The black area O+
corresponds to parameters values (Ire f , Vin) for which there exist cycles of order k ≥ 15 or
other types of attractors. In this last area, a chaotic phenomenon could be observed. This
bi-dimensional diagram shows some bifurcation curves. In fact, for the rectangle defined by
the interval of parameter Vin ∈ [7, 15] and the parameter Ire f ∈ [0.5, 1.6], we observe an area
of blue color (existence of attractive fixed point) followed by an area of red color (existence
of cycle of order 2), an area of yellow color (existence of cycle of order 4) and another area of
black color (existence of cycle of order k ≥ 15 or another attractor type); this succession of
zones corresponds to the existence of period doubling cascade.

This representation of the parametric plane is not enough to establish a bifurcation structure
of the hybrid model of the Boost converter, but it is useful for the initialization of programs to
draw bifurcation curves.

The simulation results (temporal domain and voltage-current plane (vC, iL)) are obtained
using the planar PWH solver in the case of the Boost converter controlled in current mode
for periods: 1T (figure 8) for Ire f = 0.7A , 2T (figure 9) for Ire f = 1A, 4T (figure 10) for
Ire f = 1.3A and the chaotic regime (figure 11) for Ire f = 1.5A. For these plots we used the
code below by choosing the bifurcation parameter Ire f corresponding to each period case.

%%

% Define an affine system ii at random and simulate it

% by use of our Matlab toolbox solver

%

%detection of errors manually

%

% Warning

% In the affine case ’=’ is not supported yet !

addpath(’.\hybrid_solver’);

%
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L=1.5E-3;

T=100E-6;

R=40;

E=10;

C=5E-6;

%Bifurcation parameter

Iref=0.7; %1;%1.3;%1.5;

% X = [vc ; iL]

%

%System 1 On

A1=[ -1/R/C, 0 ;

0 0 ];

B1=[0 ; E/L];

N1 = [0 1];

Lim1= Iref;

% System 2 Off

A2=[ -1/R/C, 1/C ;

-1/L 0 ];

B2=[0 ; E/L];

%

%% Initial condition

X0.t=0;

X0.E=1;

X0.Xc=[16.4549;0.4648];%[13.6097 ;0.3435];

%

%% Boost converter

clear H;

H=create_hybrid_system(’Boost Converter’);

H=add_state(H,1,’On’,A1,B1);

H=add_state(H,2,’Off’,A2,B2);

%

H=add_event(H,1,’Iref’,N1,Lim1,’<’);

H=add_transition(H,1,2,1);

H=add_periodic_event(H,2,’Clock’,T,0);

H=add_periodic_transition(H,2,1,2);

Han=H;

%

Xan = hsim(Han,X0,4*T);

%

[XcAn,EAn,tAn]=split_state(Xan);

%

trajplane(Xan,Han)

figure;

subplot(211);

trajplot(Xan,Han,1);

subplot(212);

trajplot(Xan,Han,2);
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Figure 4. Parametric diagram of the Boost converter in the plane (Ire f , Vin) for Ire f ∈ [0.5, 1.6]A and
Vin ∈ [5, 20]V.
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Figure 5. Bifurcation diagram of the Boost in the plane (Ire f , iL) for Ire f ∈ [0.5, 1.6]A and Vin = 10V fixed.
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Figure 6. Bifurcation diagram of the Boost in the space (Ire f , iL, vc) for Ire f ∈ [0.5, 1.6]A and Vin = 10V
fixed.
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Figure 7. Zoom of figure 5: Border collision for Ire f = 1.23A.
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Figure 8. Fundamental periodic regime for Ire f = 0.7A: (a) (up) temporal waveform of the voltage vC,
(down) temporal waveform of the current iL; (b) phase plane (vC, iL).
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Figure 9. Cycle of order 2 for Ire f = 1A:(a) (up) temporal waveform of the voltage vC, (down) temporal
waveform of the current iL ; (b) phase plane (vC, iL).
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Figure 10. Cycle of order 4 for Ire f = 1.3A: (a) (up) temporal waveform of the voltage vC, (down)
temporal waveform of the current iL; (b) phase plane (vC, iL).
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Figure 11. Chaotic regime for Ire f = 1.5A: (a) (up) temporal waveform of the voltage vC, (down)
temporal waveform of the current iL; (b) phase plane (vC, iL).

26 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3



Simulation of Piecewise Hybrid Dynamical Systems in Matlab 25

4. Conclusion

In this chapter, we have showed an accurate and fast method to determine events’ occurrence
for planar piece-wise affine hybrid systems. As a result, we have implemented our algorithm
in Matlab toolbox version (free downloadable on http://felguezar.000space.com/).

This toolbox has also been completed by analysis tools such as displaying the bifurcation and
parametric diagrams. The algorithm takes the advantage of the analytical form that appears in
the planar case. Our approach can not be extended to a higher dimension. DC-DC converters
like Boost converter are known to be simple switched circuits but very rich in nonlinear
dynamics. As application, we have chosen the example of Boost converter controlled in
current mode.
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