
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 0

MATLAB as a Design and Verification Tool

for the Hardware Prototyping of Wireless

Communication Systems

Oriol Font-Bach, Antonio Pascual-Iserte, Nikolaos Bartzoudis
and David López Bueno

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48706

1. Introduction

The ability to verify the capacity gains of novel signal processing techniques or the
performance of new communication standards is one of the main research and development
drivers of both academic and industrial entities. In this context, the signal processing
community has adopted MATLAB as a flexible modelling, simulating and testing software
development environment. MATLAB includes numerous toolboxes, open-source code and
pre-compiled libraries, which facilitate the design of complex systems using high-level
models and provides the means for rapid verification of signal processing algorithms and
systems in a user-controlled environment. The growing number of its add-on features allows
MATLAB to fill the gap between these high-level models and the physical implementation of
systems; e.g., a real-time Field Programmable Array (FPGA)-based prototype. Moreover, the
functionality of MATLAB is significantly extended with the use of Simulink [1], which serves
as a schematic-entry design and programming environment. The integration of the System
Generator blockset of Xilinx [2] to Simulink and the direct linking of the latter with the Xilinx
FPGA-design toolchain enriches the target use-cases of the software. This approach allows
the creation of FPGA binary executables from high-level models. MATLAB is also one of the
most popular software-modelling environments, whose functionality is commonly interfaced
nowadays with instruments to provide connectivity, control and programming solutions for
rapid prototyping and testing. In fact, MATLAB scripts are increasingly used to program a
wide variety of testing, signal generation and signal analysis hardware instruments. Thus,
the programming versatility of MATLAB allows it to be used as a key software component
in complex testbeds, which comprise a multitude of software programming interfaces and
heterogeneous hardware instruments. The role of such testbeds is crucial because they enable
the prototyping and validation of advanced research concepts under realistic conditions,
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cited.

Chapter 9



2 Will-be-set-by-IN-TECH

providing at the same time a detailed account of hardware requirements and implementation
feasibility.

The present chapter aims at describing how MATLAB can be used as a design and verification
tool in the different phases of migrating a high-level model to a real-time hardware prototype,
using as a case study the implementation of a real-life wireless communication system. The
chapter proposes a generic design methodology and, finally, provides a practical case study
related to the implementation of a real-time Multiple Input Multiple Output (MIMO) mobile
WiMAX (i.e., IEEE 802.16e) system [3, 4].

1.1. Considered development scenarios

Real-time system-prototyping using FPGA devices is a painstaking and time-consuming
process that goes beyond a controlled computer simulation. In this context, MATLAB is
having a manifold contribution as a design and validation tool. In order to successfully
leverage the advices, techniques and design methodology, it is required to define the specific
development scenarios that have to be considered by digital design developers.

It is important to note that this chapter will not cover model-based, MATLAB-to-Register
Transfer Level (RTL) design flows (e.g., by using the Simulink and System Generator tools).
Adversely, a custom-code programming strategy will be followed, where the user carefully
designs each component of the system and takes into account the constraints of real-world
hardware and signals. Our focus is to unveil the key role that MATLAB plays when the
design objective is the creation of custom Hardware Description Language (HDL) code (e.g.,
Very High Speed Integrated Circuit - VHSIC - HDL, VHDL) that targets high-performance
wireless communication prototypes. In fact, converting a MATLAB model into a working
VHDL code for such FPGA-based prototypes requires a considerable effort. Although the
automatic MATLAB-to-HDL conversion is becoming increasingly popular, its efficiency is
still under scrutiny by the FPGA designer community [5]. The main concern raised is that
the MATLAB-to-HDL automatic conversion is not yet mature enough to cover the needs of
processing demanding FPGA-based systems, where performance and constraints imposed by
the size and the embedded resources of the target device, may occasionally render this option
unsuitable. The direct MATLAB-to-HDL translation accepts only very limited constructs
that can be automatically translated into hardware [6]. Other approaches, involving an
intermediate stage of Matlab-to-C code generation, can be used as an alternative. The
produced C code is consequently processed by C-to-HDL synthesis tools subject to certain
modifications (i.e., the generated C code contains unsupported constructs that prevent a
seamless translation to HDL code).

As already mentioned, the automatically-produced HDL code is usually not as efficient as
the custom hand-written HDL one. This difference is becoming a significant factor to be
considered when stringent FPGA area utilization conditions apply or when performance and
achievable clock frequencies do matter [7]. The modern FPGA devices and the corresponding
synthesis tools seem to address the issues mentioned before. This is due to the extraordinary
capacities of the new devices in terms of embedded resources (logic, memories dedicated
Digital Signal Processing - DSP - logic) and the significant improvement of the FPGA design
and implementation tools. However, it is anticipated that the FPGA-based prototyping
and the respective FPGA design tools are due to be challenged soon by the constantly
aggregated performance requirements and algorithmic complexity of next generation wireless
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communication systems. Therefore, an incremental design approach based on custom-HDL
coding is once again expected to be the most reliable solution to sort out well-established
digital design problems (i.e., dense FPGA designs with compute intensive requirements and
hard to achieve timing constraints [8]). The only difference is that the complexity of such
problems is scaled because of the massive amount of FPGA logic, memories and embedded
components that need to be addressed. Custom HDL coding provides the means to control
every important aspect of the design, which requires an in-depth knowledge of the low-level
RTL architecture.

The design and validation principles presented herein could be applied in many digital-design
cases. Nonetheless, the application-domain will be narrowed down to well-characterized
case studies, in order to help the reader to assimilate the described concepts, methodology
and examples. Thus, this chapter explores the uses of MATLAB when the custom-HDL
design flow is employed for the prototyping of systems with design and implementation
requirements similar to the ones described next:

I Real-time system prototyping

• Advanced wireless communication system: Algorithms and hardware technologies
able to offer data rates higher than current systems are needed to cope with the
requirements of emerging wireless communication systems. The MIMO technology,
using multiple antennas both at the transmitter and receiver sides, combined with
Orthogonal Frequency Division Multiplexing (OFDM) constitute a suitable technique
for the implementation of advanced wireless communication systems. Additionally,
the Orthogonal Frequency Division Multiple Access (OFDMA) is used to target
Multi-User (MU) scenarios in high mobility conditions. A prominent MIMO
configuration scheme proposed in OFDMA systems is the closed-loop one, where
the receiver is providing information to the transmitter related to the current channel
conditions by means of a dedicated feedback link. This improves the performance
and usage of resources in scenarios with multiple competing users and fast channel
fading (e.g., it is applied adaptive carrier allocation, Adaptive Modulation and
Coding - AMC). The scenario can be augmented by contemplating an adaptive
power-aware PHY-layer that takes into account the interaction with higher layers of
the communication stack and user requirements (e.g., in terms of quality of service,
monetary cost or battery constraints). The compliance with a modern wireless
communication standard (e.g., mobile WiMAX, Long Term Evolution - LTE) also adds
strict design requirements.

• Real-time operation: The real-time operation implies transmission and reception of an
uninterrupted data flow. To tackle the challenges of real-time operation, especially
when accounting for wide bandwidth at baseband, a low-latency pipelined processing
structure has to be designed. The latter requires a large amount of memory resources
for the intermediate data storage and implies a complex control plane, which usually
features multiple clock domains. Moreover, the operation of high performance
wireless communication systems results in a growth of the design, implementation
and validation complexity. Notwithstanding, the real-time operation gives the
opportunity to realize closed-loop strategies requiring dynamic adaptation of the
system in response to the actual channel conditions.
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• FPGA-based prototyping: The inherent parallelism of FPGA devices is providing the
means to prototype bit-intensive systems following an RTL-design approach. In
this context, the designer has to evaluate the computational, storage and timing
requirements of the target FPGA-based platform, in order to ensure that the
implementation is feasible. Additionally, the FPGA-based prototyping of baseband
DSP algorithms using a custom HDL design flow, typically implies the use of
fixed-point logic. Therefore, an optimum trade-off between the implementation
complexity and the precision of the internal calculations has to be defined (i.e.,
maximizing the dynamic range at baseband). The effort of interfacing the user design
with the on-board buses, peripherals and components residing outside the FPGA
device (e.g., Analog-to-Digital - ADC - and Digital-to-Analog - DAC - circuitry) is a
critical part of the on-board validation, because it can be proved quite costly in terms
of time. Finally, the losses introduced by the ADCs, DACs and baseband digital logic
can be calculated to quantify the precision of the FPGA-based prototype.

• Heterogeneous hardware setup: The validation of high performance FPGA-based
prototypes requires close to real-world testing conditions, which provide the
means to properly tune the operating behaviour according to the defined
deployment-scenarios. This in turn implies the use of a testbed which features
a heterogeneous hardware setup. A real-time testbed typically comprises
Radio-Frequency (RF) front-ends, signal generation and signal acquisition hardware
boards, FPGA-DSP based baseband boards and other specialized equipment (e.g.,
radio channel emulator, digital oscilloscope). Moreover, testbeds have data-capturing
interfaces that enable the performance characterization of the system (i.e., off-line data
post-processing and metric calculation in MATLAB-space).

II Offline system prototyping

• Advanced wireless communication system: The goal in this case is the rapid
prototyping of advanced techniques able to satisfy the requirements of future wireless
communication systems. As it will be detailed in the following lines, the prototypes
that principally operate offline make a series of assumptions to simplify the testing and
deployment conditions and remove or ignore real-life implementation constraints.
This inevitably results in a partial validation of the systems under test, especially
for those cases where exhaustive offline data processing is practically impossible.
Nonetheless, their contribution is also significant because they enable the design and
preliminary experimental evaluation of algorithms beyond the state-of-the-art.

• Off-line operation: One of the main drivers of rapid prototyping is based on hybrid
experimental testbeds that combine real-time processing and offline software-based
post-processing. Such platforms, make use of commercial Vector Signal Generator
(VSG) instruments equipped with arbitrary waveform generators. These are
configured with user-generated MATLAB vectors, which represent the output of a
baseband transmitter and eventually produce a real-time RF signal that is transmitted
using either antennas or a direct cable connection. Offline testbeds may also use a RF
channel emulator or other instruments that combine signal generation and channel
fading. On the receiver side the data is stored in large buffers (e.g., FPGA) and
retrieved in order to be post-processed offline. The captured signals are used as
test vectors that facilitate the modelling of the baseband signal processing algorithms
of the receiver (i.e., MATLAB high-level model of the system). This prototyping
methodology allows the rapid verification of the functionality and performance of
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algorithms. However, certain data capturing and post-processing limitations apply,
especially when the testing requires reception of long data frames under high mobility
conditions. In fact, although offline prototyping accelerates the design and testing of
algorithms, it is important to understand its foundations and design particularities
e.g., unconstrained computational and storage resources, unlimited precision using
floating-point implementation, no need to account for real-life implementation
constraints or the complexity of the control plane, perfectly synchronized signals
or ideal channels are typically assumed. Thus it is clear that in order to achieve
a thorough analysis of the implementation cost and feasibility of the target system
(especially in scenarios requiring dynamic responsiveness or high mobility), real-time
prototyping has to be employed.

• Hardware/software partitioning: the flexibility of non real-time prototyping in terms of
resource requirements allows the designer to select an optimum hardware/software
partitioning accounting for the implementation cost. It is a common practice to
maintain the algorithms in MATLAB space, while only the RF section and the data
capturing operates in real-time. Alternatively, a subset of the signal processing
algorithms can be mapped to a DSP or a FPGA implementation, following a
co-simulation or hardware-in-the-loop testing approach.

• Hybrid prototyping: the granularity of the prototyping strategy can be adjusted to
fit the specific design and budget requirements. For instance a reduction in the
prototyping complexity can be achieved by implementing/emulating more features
in MATLAB-space or by making assumptions and system-wide simplifications. In
hybrid prototypes a portion of the design resides in a computer simulation, while
at the same time dedicated memory interfaces facilitate the communication with the
bit-intensive portion of the design that runs on a FPGA device. This prototyping
method downscales the real-time processing requirements in order to cope with the
data-exchange constraints between the software and hardware processing domain.

1.2. The role of MATLAB in the design and validation process

As it has been described in the previous section, system-prototyping involving FPGAs
and other specialized hardware equipment is subject to non idealities and certain signal
impairments, which are not usually considered in a computer-based simulation (i.e.,
high-level models). Moreover, the heterogeneous hardware boards used for the prototyping
of high performance real-time systems impose a series of hardware constraints in terms of
processing capacity, available memory, maximum achievable clock frequency, I/O interfacing,
DAC/ADC resolution and power consumption.

In the following sections, it will be shown how the previously described operating conditions
and constraints can be either modelled or considered in MATLAB throughout the design and
implementation process. The goal is to demonstrate the plural contribution of MATLAB
in the FPGA-based rapid prototyping, beyond its well-established function as a high-level
modelling tool:

I Definition of system requirements: Apart from its traditional operating perception, MATLAB
can be used as a key companion throughout the analysis of system requirements in
terms of computational resources and cost (e.g., implementation complexity, optimal
hardware platform selection). Once the deployment scenario and specifications are
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strictly defined (e.g., operating frequencies, channel bandwidth, channel specifications,
sampling frequencies, DAC-ADC resolution) the high-level MATLAB model of the
system can be modified to satisfy real-life system characteristics, according to the
following key points:

• Account for system-wide signal impairments introduced by the complete hardware
processing chain (baseband, RF and channel).

• Identify the most critical signal-processing blocks that play a definitive role in system’s
performance and computational load.

• Select the optimum algorithms satisfying a trade-off between resulting
precision, hardware specifications and implementation complexity (e.g., required
FPGA-re-sources).

• Adjust the data quantization at the different baseband processing stages.

• Account for the specifications, operation and functionality of the memory and control
planes.

II Co-simulation: A very useful practice during the early stages of prototype development
is to implement and simulate different parts of the target system using different design
approaches and tools; i.e., one part of the system remains modelled and simulated
in MATLAB, while the rest is designed using lower-level HDL simulation tools. The
co-simulation of the differently modelled parts requires the communication of MATLAB
with third party simulation environments. This can be realised by utilizing the data
importing and exporting capabilities of MATLAB, or as it will be discussed later, by
exploiting the interfaces of MATLAB with certain third-party tools. For instance, the
prototyping of systems or algorithms using offline testbeds typically implies that the
complex signal processing algorithms, and other emulated functionalities that serve the
testing scenario, remain modelled in MATLAB. Using standard I/O functions, binary
data can be read, written and quantized in MATLAB-space, providing a direct way to
communicate with the remaining portion of the system which resides in an HDL-based
simulation (i.e., using equivalent I/O connectivity options). The same co-simulation
methodology can be used to test an algorithm, an independent processing block or a
complete system designed in MATLAB against its HDL-based counterpart (designed in
third party RTL simulation tools). This type of co-simulations have a critical contribution
in the prototyping of real-life FPGA-based systems, because they provide the means to
assess the fixed-point precision of the independent processing blocks comprising a digital
baseband system and also because they produce reliable test vectors, which enable the
performance validation of the RTL-algorithms.

III Verification of the hardware-produced results: MATLAB supports data importing and
exporting in various formats and includes a series of pre-compiled libraries and
mathematical functions. The latter facilitate the post-processing of data captured by
baseband processing boards and assist the verification of the results produced by a
FPGA-based prototype. The only requirement as far as the baseband signal processing
platform is concerned is its ability to capture large amount of data in files that could be
imported in MATLAB.

IV Rapid-prototyping: the previously described features and design-capacities of MATLAB
are making it a prime candidate for the off-line prototyping and validation of wireless
communication systems. Indeed, MATLAB plays a key role in off-line testbeds that are
used to prototype state-of-the-art MIMO-OFDM systems [9–13].
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The process of mapping a high-level MATLAB model to HDL logic and consequently
to FPGA-based hardware is a complex and costly process, where many crucial decisions
need to be taken. These include among others the environment where the system will
be deployed, the expected operating conditions and the target implementation technology.
MATLAB can be easily interfaced with third-party EDA tools and hardware equipment [14],
a fact that facilitates this decision-making process. Additionally, the use of MATLAB in all
prototyping-stages makes easier the interaction between different design-teams by providing
a common working framework.

2. Design methodology

The design, implementation and on-board testing of high performance wireless
communication systems under realistic conditions implies an undertaking with high
stakes. Thus, the adoption of a well-structured design, implementation and validation
methodology is a paramount requirement. The aim of this section is to offer an insight
to a robust, yet generic, methodology, which demonstrates the contribution of MATLAB
during the FPGA prototyping stages using a custom HDL design entry. The effectiveness
of the proposed methodology is analysed using a practical case study, which involves the
prototyping of a real-time MIMO mobile WiMAX system.

A fundamental guideline that applies throughout the design, implementation and
on-board validation phases is a multi-stage testing strategy (Fig. 1). This starts from a
baseband-to-baseband system testing under ideal conditions. The latter is performed both
in simulation-time (MATLAB and consequently HDL-based) and at real-time in the target
hardware platform using a direct connection of the transmitter and receiver. The scenario
can then be augmented by adding the conversion stages (i.e., ADC and DAC). This implies
re-simulating the MATLAB and HDL code and finally validate the FPGA implementation
in real-time (i.e., connecting via a cable the output of the DAC device with the input
of the ADC device). The final testing stage can be divided in two sub-stages; the first
includes a direct cable connection of the RF front-ends and the second the inclusion of
channel either by using antennas or a real-time channel emulator (both sub-stages can be
priorly simulated in MATLAB and in HDL). This incremental testing approach allows the
step-by-step characterization of the system.

2.1. Starting point

The development of a processing demanding real-time wireless communication system
requires a wide range of skills, resources and time. A commonly accepted commencing point
is the design of a baseline version of the target system, which complies with the following
design requirements:

• Modularity: This feature facilitates the substitution, modification, extension and/or reuse
of specific parts of the design.

• Downscaled specifications: The initial design-efforts should focus on the core signal
processing algorithms and on the most critical aspects of the overall system architecture
(e.g., high-throughput pipeline structures combined with efficient memory and control
planes).
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Figure 1. Multi-stage testing strategy

Once the baseline system-model is designed and validated, the proposed methodology can
adjust the granularity of the system by accommodating more advanced features.

2.2. Proposed methodology

This section gives the details of the proposed design methodology, which is depicted in Fig.
2.

I Basic transmitter modelling: The first vital requirement for the design of any wireless
communication system is the definition of the transmitted signal. The modelling
of the transmitted signal is in most cases bound to the specifications of a wireless
communication standard, which indicatively includes the OFDM parameters, the
duplexing mode, the format and length of the frame, the number, value and location
of the pilot tones, the guard-band size, the inter-carrier spacing, the available bandwidth
sizes and the RF operating bands. At this initial stage the model of the transmitted signal
is based on certain ideal conditions i.e., using floating-point logic, assuming unlimited
processing resources during design-time and not accounting for signal-impairments (e.g.,
channel effects, noise).

II Hardware-validation of the baseband transmitter model: The output of the MATLAB model
has two vectorial components, namely the in-phase and quadrature (I/Q). By writing
the I and Q outputs in a MATLAB file (i.e., with file extension .mat), it is possible
to make a direct hardware validation of the baseband transmitter model. As it
was previously described, this is made feasible considering that numerous modern
VSG instruments1, provide the necessary API to download such files to an internal
memory of the instruments. The latter with the help of an arbitrary waveform
generator provides the real-time baseband digital I/Q signals, which then pass from
the required DACs and RF conversion stages to produce the desired signal at the
selected RF band. This is an indicative test and verification flow where MATLAB

1 The described functionality is available, for instance, on the VSGs provided by Agilent (http://www.agilent.com) or
Rode & Schwarz (http://www.rohde-schwarz.com). Further information on other hardware manufacturers supporting
MATLAB communication may be found in http://www.mathworks.com/products/instrument/hardware.
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Figure 2. Proposed design, implementation and validation methodology

is directly interfaced with advanced instrumentation to produce a real-time signal.
This signal can be then processed by specific testing hardware (e.g., signal analysers,
digital oscilloscopes), which communicate with proprietary third-party software in order
to perform standard-compliance tests. Additionally, the transmitted signal can be
introduced via a cable connection to the receiver’s RF down-converters (i.e., no channel
should be used at this initial design stage) and after passing from the ADC stage
at the receiver’s acquisition boards, it can be retrieved using the FPGA devices and
dedicated external memories of the baseband signal processing boards. The captured
data constitute realistic test vectors that can be used for the development of the MATLAB
model of the receiver, whereas the whole testing procedure permits a refinement of the
initial transmitter model (see points IV and V). The testing setup described before could
also include specialized equipment that add realistic signal impairments (e.g., real-time
emulation of a selected channel, addition of noise or of Carrier Frequency Offset - CFO).
However, such operating conditions make unreliable the capturing of test-vectors until
the digital front-end of the receiver is developed and tested at the target FPGA board.

III Basic receiver modelling: The next step is the modelling of the signal processing algorithms
at the receiver side. As in the case of the transmitter, the ideal MATLAB model of the
receiver uses floating-point logic and does not have any design limitations in terms of
processing and memory resources. The functional testing of the complete system is
conducted by running a MATLAB simulation of the transmitter and receiver models
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(i.e., ideal baseband-to-baseband signal). This could be extended by using the test
vectors captured in the previous step (i.e., hardware-validated MATLAB model of the
transmitter). Although the design is still not constrained by the limitations of the entire
hardware processing platform, the performance of different algorithms could be studied,
including those whose computational complexity makes their real-time prototyping
challenging. The designer has therefore the opportunity to estimate the ideal performance
of the overall system.

IV Signal impairment modelling: After finishing the ideal MATLAB model of the entire system,
it is time to start adding real-world impairments. The latter are inherent features of
hardware components and effects applied to analogue signals when propagating in
physical mediums. This implies modifications of the originally designed MATLAB model
to meet new operating conditions. The most indicative impairments that need to be
modelled in MATLAB is the transmission over a defined channel, the addition of noise
and CFO, the coupling of the baseband signal with the Local Oscillator (LO) and the
introduction of a Direct Current (DC) level by the hardware platform. As a result, it
is obtained a model of the transmitted signal that is significantly closer to real-world
conditions. The signal processing algorithms at the receiver have to be modified and
upgraded to account for these signal impairments.

V System model refinement: Additional modifications are required to the MATLAB baseband
model of the system, before starting the challenging stage of mapping it to RTL
code. The MATLAB models of the transmitter and receiver have to account for the
the hardware platform specifications (i.e., ADC/DAC features, internal buses, I/Os,
available FPGA-resources - including embedded memory and specialized digital signal
processing - DSP - blocks, etc.). Thus, the signal processing algorithms must be refined as
follows:

• RTL-implementation awareness: it is widely known that not all MATLAB structures
or functions are implementable in an FPGA. Even if equivalent HDL constructs
exist, they are used during simulation time but do not serve for logic synthesis
(e.g., a for-loop construct with undefined number of iterations). Moreover, MATLAB
includes several pre-compiled DSP functions (e.g., Fast Fourier Transform - FFT)
and provides abstract arithmetic operators (i.e., the user calls the same operator
independently of the type of the operands). For instance, the ‘∗’ operator provides the
multiplication for integer, real or complex numbers, arrays and matrices. Although
these MATLAB features provide a powerful workbench for users, it is common
quite a mistake to underestimate the computational complexity and the internal
arithmetic calculations of such operations, especially when they are meant to be
mapped on a real-time RTL-based implementation (see example 2.1). It is therefore
a key design requirement to evaluate the implementability and arithmetic complexity
of the algorithms comprising the target system, in relation to the maximum processing
and memory capacity of the target FPGA device. This usually gives a first idea
of which design partitioning strategy can be followed (e.g., using various FPGA
devices or a combination of FPGA devices and DSP microprocessors). The importance
of this evaluation stage for the mapping of the MATLAB model to RTL code is
crucial and may result in selecting different algorithms and lightweight versions of
pre-compiled arithmetic functions. Another important task is to estimate the storage
and intercommunication needs. This is made feasible by including in the MATLAB
model a high-level representation of the memory and control planes.
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• Translation to fixed-point arithmetic: the FPGA-based prototyping of wireless
communication systems implies the use of fixed-point logic at baseband. This is
a significant design constraint that has to be evaluated considering that MATLAB
modelling is based by default on floating point arithmetic. In general terms the
floating-point operations dramatically increase the FPGA logic utilization and result
in lower clock speeds and longer pipelined structures when compared to fixed-point
logic2. The designers are responsible for mapping the MATLAB algorithms to an
HDL-based fixed-point logic, which in fact is a demanding and non-trivial task. The
latter implies that all internal processing stages of the transmitter and receiver (both
in MATLAB-space and HDL-design space) have to be appropriately simulated to
tune them at an optimum fixed-point dynamic range, applying numerous truncation
and scaling steps to achieve the best arithmetic precision. Additionally, each of
the implemented HDL blocks has to be co-tested with the equivalent portion of
the floating point Matlab model to ensure that the system performance is not
compromised (see point VI). A very handy modification of the MATLAB model that
assists the comparison with the equivalent RTL code is to apply quantization at the
outputs of selected processing blocks that represent functional partitions of the design.
This quantization process emulates the fixed-point logic.

• Hardware constraints and specifications awareness: the functionality of the MATLAB
model of the transmitter and receiver can be further adapted to account for
hardware-introduced constraints, brining it more close to real-life testing conditions.
For instance, the MATLAB model can be adjusted to the Dynamic Range (DR) of the
DAC/ADC circuitry of the target boards. The system DR depends on the modulation
scheme, the modelled signal-impairments and the DAC/ADC specifications (i.e.,
number of bits of the produced samples and applicable amplifier gains). Additionally,
a number of pre-compiled HDL IP cores used in the prototyping stage of FPGA-based
DSP algorithms (e.g., FFT, Digital Down Converter - DDC, pipelined divider) are
offering a limited range of input/output data-width options. This results in further
quantization analysis, assuming that the reception of samples is scaled within a certain
dynamic range. The on-board FPGA implementation entails a series of other design
limitation, which are hard to be emulated at MATLAB space. Indicative examples of
such hardware implementation features include the interfacing of the FPGA design
with high-speed buses and the latencies introduced by several FPGA IP cores; the
latter increase the intermediate storage requirements and add more complexity to the
control plane.

• Satisfy a trade-off between numerical complexity and system performance: The system
designer has to discover the optimal achieved performance of the designed system
(i.e., baseband, RF and channel propagation stages) through a recursive process,
taking into account the processing and memory resources of the target FPGA device,
the additional inherent constraints of the hardware platform and the minimum
required yield of the system. The latter is subject to specific prerequisites related to
numeric precision, throughput and compliance with certain performance metrics (e.g.,
Bit Error Rate - BER, average data rate). This means that the MATLAB model will be
adjusted until the designer achieves the desired performance, which eventually will
allow him to pass to the next design stage of RTL coding.

2 It is useful to mention that specific floating-point arithmetic libraries, Intellectual Property (IP) cores, embedded
microprocessors and other dedicated processing components can be used in FPGA devices to serve the needs of
particular applications that require this type of arithmetic operations [15, 16]
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Example 2.1: let’s consider the simple multiplication of two complex numbers, a = 2.5 +
3.2i and b = 1.7 − 4.5i. In MATLAB a user would simply type ‘c = a * b’ abstracting
away the underlying calculation. However, when considering a RTL design many other
aspects must be considered.
First, let us assume a dynamic range of input samples that satisfy the (−8, 8) margin.
Also let us consider a binary representation of samples with 16 bits, where 4 bits are used
to represent the sign and the integer part and the remaining bits are used to represent the
fractional part. The I and Q components of the complex numbers have to be represented
separately. This can be modelled in MATLAB using the quantizer, num2bin and
bin2num functions of the fixed-point toolbox:
q = quantizer([16 12]);

I_a = num2bin(q,real(a)); Q_a = num2bin(q,imag(a));

I_b = num2bin(q,real(b)); Q_b = num2bin(q,imag(b));

Furthermore, the complex multiplication has to be broken down to basic operations. In
MATLAB this can be done as follows:
I_c = bin2num(q,I_a)*bin2num(q,I_b) - bin2num(q,Q_a)*
bin2num(q,Q_b);

Q_c = bin2num(q,Q_a)*bin2num(q,I_b) + bin2num(q,I_a)*
bin2num(q,Q_b);

A first approximation of the error introduced by quantization can be measured with
a simple subtraction: quant_loss_I = real(c) - I_c; quant_loss_Q =

imag(c) - Q_c;

Moreover, each arithmetic operation in RTL coding results in a bit-width grow: e.g., the
multiplication of two N-bit operands results in 2N bits and the addition of two N-bit
operands results in N+1 bits. Therefore, RTL coding implies that each of the previously
described intermediate operations has to be considered separately:
intermediate_op1 = I_a * I_b, results in 32 bits
intermediate_op2 = Q_a * Q_b, results in 32 bits
intermediate_op3 = intermediate_op1 - intermediate_op2, results in 33
bits
To sum up, a quantization adjustment (i.e., bit-alignment in case the bit-width of
the different operands grows differently) and/or a data-truncation will be required
between the different intermediate calculations to limit the overall computational
complexity. Additionally, in order to achieve a better timing performance of the FPGA
design, the intermediate calculations of complex operations are placed in different
clocked-processes: i.e., the calculation of ‘intermediate_op3’ ‘intermediate_op1’
and ‘intermediate_op2’ would be placed in a different clocked process. Therefore, a
latency of one clock cycle would be introduced at each intermediate calculation. Although
the bit-width growth and the introduced latencies are not modelled in MATLAB, it is
highly recommended to analyse such aspects in order to assess the system’s complexity.
A complex calculation may result in a change of the quantization, which in turn will
require further modifications of the MATLAB model.
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VI MATLAB/HDL co-simulation: Each portion of the implemented HDL code that forms a
functional component of the system has to be co-simulated with the equivalent partition
of the MATLAB model. This allows to assess both the functional correctness and the
achieved performance. As already mentioned before, there are several ways to use the
co-simulation methodology. An indicative example is when part of the system simulation
resides in MATLAB space, whereas another portion is hosted in a third party HDL design
tool; the output of the MATLAB model can be quantized and saved to a file, which can be
inserted to the HDL-based simulation. The results produced by the HDL simulation can
also be quantized and written to a file, which is fed back to MATLAB. This is a very useful
way to verify the functionality and inter-working of the system that is implemented in
different simulation domains. In addition, it also enables the evaluation of the precision
achieved by the HDL model by comparing its performance with the non-quantized
results produced by the MATLAB model. It is important to highlight the vital role of
co-simulations for selecting an optimum quantization that satisfies a trade-off between
precision and computational complexity. Finally, the MATLAB/HDL co-simulations
provide the best means to evaluate and test HDL IP cores and common signal processing
operations (e.g., optimizing the trade-off between implementation complexity and result
precision requires the calculation and truncation of the produced outputs).

VII Data post-processing: Data can be captured at different baseband processing stages once
the system (or parts of it) is implemented in a target FPGA board. This data can be
inserted in MATLAB after using the proper quantization to enable the off-line calculation
of the required performance metrics (e.g., BER, Signal-to-Noise Ratio - SNR, Error Vector
Magnitude - EVM). MATLAB can also be used to automate the post-processing of the
captured data-frames, and provide a reliable calculation of the desired performance
metrics (i.e., mean value over thousands of data samples).

The end of a major design cycle is reached when the performance of the RTL prototype is
finally validated on real-time hardware and does not require any further modifications. This
gives the opportunity to the system designer to introduce additional features by iterating over
the previously described methodology. The proposed incremental design approach implies a
relative low effort to augment the features of a working prototype. This is mainly due to the
fact that a modular and reusable code is already available, while at the same time the critical
parts of the design and the system bottlenecks are well defined. The same applies to the
hardware platform which is already thoroughly studied and characterized.

3. A practical case study

This final section presents a practical case study of the manifold contribution of MATLAB
throughout the entire design, development and prototyping stages of a real-time mobile
WiMAX system [3, 4]. The use-cases focus on the Single Input Single Output (SISO)
configuration of the system [17] that features one antenna at the transmitter and receiver sides
respectively. Taking as an exemplar basis the development of the SISO system, the presented
incremental design methodology can be reused to develop the MIMO system, which however
is not covered in this chapter. The main specifications of the target system are summarized in
table 1.

The GEDOMIS® testbed (see Fig. 3), was used to prototype and validate the system described
in this chapter. GEDOMIS® features multiple APIs, dedicated signal analysis software tools
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Parameter Value
Wireless telecommunication standard IEEE 802.16e-2005

Antenna schemes: SISO, SIMO, MIMO 1x1, 1x2, 2x2
RF band (GHz) 2.595

IF (MHz) 156.8
Channel bandwidth (MHz) 20

Baseband sampling frequency (MHz) 22.4
ADC sampling frequency (MHz) 89.6

Cyclic prefix (samples) 512 (1/4 of the symbol)
Modulation type QPSK

Duplex mode TDD
FFT size 2048

OFDM symbols per frame 48
Supported permutation schemes PUSC and AMC (DL)

Diversity scheme (2x2 MIMO) Matrix-A (Alamouti)

Table 1. Basic OFDM and PHY-layer specifications of the described system.

and a heterogeneous hardware setup. The latter comprises signal generation equipment,
multi-channel signal conversion boards, a real-time radio channel emulator and FPGA-based
baseband signal processing boards [18]. The examples detailed in the remaining of the chapter
do follow the previously proposed multi-stage testing strategy (see Fig. 1) and do not always
require the use of the full set-up of this testbed.

Figure 3. The GEDOMIS® testbed setup.
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Figure 4. Basic architecture of the SISO transmitter and receiver systems.

3.1. PHY-layer prototype of a single antenna mobile WiMAX transceiver

Fig. 4 shows a simplified functional block diagram of the SISO mobile WiMAX system. Taking
as a reference the design methodology presented before, this section gives an example of the
MATLAB usage in each prototyping stage.

I Basic transmitter modelling: The first task is the accurate definition of the OFDM-based
frame structure. Thus, it has to be identified the basic function of the different frequency
subcarriers within each OFDM symbol. In our case, the frame is structured according to
the Partial Used Subcarrier (PUSC) and the AMC subcarrier permutation schemes, which
are defined in the mobile WiMAX standard [19]. The main characteristics of both OFDM
symbol structures are summarized in table 2. Example 3.1 shows the MATLAB-modelling
of the processing block responsible for inserting the pilot subcarriers, the DC and the
guard bands, according to the mobile WiMAX specifications. The additional subcarrier
organization and permutation operations required by the WiMAX standard can be easily
designed in MATLAB-space. Finally, the use of a standard inverse FFT function provides
the ideal I/Q baseband outputs of the transmitter (i.e., floating-point values).

Scheme Parameter (per OFDM symbol) Value

PUSC Data subcarriers 1440
Pilot subcarriers 240
Null subcarriers 368

Clusters 120
Subcarriers per cluster 14

Subchannels 60
Data subcarriers per subchannel 24

AMC Data subcarriers 1536
Pilot subcarriers 192
Null subcarriers 320

Bands 48
Bins per band 4

Subcarriers per bin 9
Subchannels 32

Data subcarriers per subchannel 48

Table 2. Principal parameters of the PUSC and AMC permutation schemes.
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Example 3.1: Fig. 5 shows the pilot distribution in the PUSC permutation scheme,
described in the mobile WiMAX standard.

Figure 5. Location of the pilot symbols in the PUSC permutation scheme.

Taking into account this pilot distribution, the following MATLAB code represents the
insertion of the pilot tones in a PUSC-structured OFDM frame:
%The PUSC-formatted OFDM symbols (i.e., outputs of the block in

charge of the IEEE 802.16e-related operations) are loaded in the

variable ’mWiMAX_PUSC_data’.

load(’mWiMAX_PUSC_data’)

PUSC_zone_length=30;

%There will be 240 pilots per OFDM symbol.

pilot=4/3+j*0; %Pilot value defined by the WiMAX standard.

%Each PUSC OFDM symbol contains 120 clusters of 12 contiguous

data subcarriers, where 2 pilots will be added.

evenSymb=1;

data_and_pilots=[];

for symb_index=0:PUSC_zone_length-1

symb_offset=symb_index*120*12;

ofdm_symbol=mWiMAX_PUSC_data(symb_offset+1:symb_offset+120*12);

cluster=[];

pilotCluster=[];

for cluster_index=0:119

subc_offset=cluster_index*12+1;

cluster=ofdm_symbol(subc_offset:subc_offset+11);

if evenSymb

pilotClus=[cluster(1:4) pilot cluster(5:7) pilot cluster(8:12)];

else

pilotClus=[pilot cluster(1:11) pilot cluster(12)];

end

ofdm_symbol=[ofdm_symbol pilotClus];

end

data_and_pilots=[data_and_pilots ofdm_symbol];

evenSymb=mod(evenSymb+1,2);

end

%A total of 368 null subcarriers are inserted.

ofdm_symbol=[zeros(1,184) ofdm_symbol(1:840) 0

ofdm_symbol(841:1680) zeros(1,183)];
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II Hardware-validation of the baseband transmitter model: As already described before, the I/Q
output vectors of the MATLAB model of the ideal transmitter can be stored (separately)
in a MATLAB file. The latter can be downloaded to an internal memory of a VSG
instrument (as described in Example 3.2). The VSG can be programmed to use these
vectors in order to produce a real-time RF signal. This is made feasible by exploiting its
embedded arbitrary waveform generator, DAC devices and RF upconversion circuitry.
The validation of this signal using third party software tools and hardware instruments
is very important, considering that several signal impairments and hardware constraints
can be identified during early design stages.

Example 3.2: The first step for the prototyping and testing of the ideal transmitter
MATLAB model using off-line testbed principles, requires the storage of the output I/Q
components in two files.

%The frequency-domain data produced by the baseband transmitter

(i.e., before the IFFT) is loaded in the variable ’BB_data’.

load(’BB_data’)

%A short silence period precedes each frame.

silence_length=2560*5;

transmitted_signal=zeros(silence_period_length,1);

%The frame is composed by a preamble and 48 OFDM symbols.

for symb_index = 1:49

BB_ofdm_symbol=BB_data(2048*(symb_index-1)+1:(2048*symb_index));

%Conversion from frequency to time domain.

time_ofdm_symbol=zeros(512+2048,1);

time_ofdm_symbol(513:end)=ifft(BB_ofdm_symbol);

%Inclusion of the CP (i.e, the CP is a copy of the last 512

symbols of the OFDMA symbol).

preamble_length=512;

time_ofdm_symbol(1:preamble_length)=time_ofdm_symbol(1537:end);

transmitted_signal=[transmitted_signal; time_ofdm_symbol];

end

%I/Q component extraction.

custom_Tx_I=real(transmitted_signal);

custom_Tx_Q=imag(transmitted_signal);

%Creation of the ’custom_Tx_frame.mat’ file to stimulate the VSG.

save(’custom_Tx_frame.mat’, ’custom_Tx_I’, ’custom_Tx_Q’);

Fig. 6, 7 and 8 show the configuration of the Agilent Signal Studio Toolkit. The latter is
the software programming interface used to configure an Agilent E4438C VSG with the
’custom_Tx_frame.mat’ file.
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Figure 6. Agilent Signal Studio Toolkit configuration: ADC sampling frequency.

The principal parameters that need to be defined by the user to properly conduct the
hardware-validation of the ideal transmitter, are the DAC sampling frequency, the desired
RF band and the names of the variables of the MATLAB-generated file containing the
I/Q components. The VSG is then able to apply the required IF-to-RF upconversion and
provide a realistic RF signal.

Figure 7. Agilent Signal Studio Toolkit configuration: RF band.

Figure 8. Agilent Signal Studio Toolkit configuration: loading of the I/Q components of the
MATLAB model of the ideal transmitter.
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Figure 9. As it can be observed, the deviation between the ideal and the estimated channel is notable
when using a linear interpolation, which accounts only for the two closest pilots for each subcarrier. On
the contrary, the obtained results are better when applying a quadratic interpolation approach which
uses three neighbouring pilots in the calculations.

Using a RF-to-RF cable connection data can be captured at the receiver baseband boards.
This provides realistic test vectors that will be later used to design and debug the
MATLAB model of the receiver.

III Basic receiver modelling: The first step is to model the ideal received signal. In this sense, it
is assumed that the received signal is identical with the transmitted one, without making
use of quantizations or accounting for signal-impairments. In other words, an ideal
baseband-to-baseband communication is modelled as follows:

c(t) = x̃(t), (1)

where x(t) represents the equivalent transmitted baseband signal.

The modelling of the receiver is based on WiMAX-defined processing functions (e.g.,
permutation of the subcarriers) and common signal processing operations (e.g., FFT).
MATLAB provides the ideal modelling environment to compare the performance
tradeoffs of different signal processing algorithms. As an example, Fig. 9 shows the
comparison of a linear and a quadratic interpolation for a pilot-based channel estimation
algorithm. This type of algorithm design and benchmarking allows the designer to
make early decisions tailored for the specifications of the target hardware platform.
Nonetheless, the validation of the critical parts of the receiver, such as the synchronization
or the channel estimation requires a signal model that is closer to real-world conditions
(i.e., accounting for impairments and hardware constraints). Once this modified version
of the received signal is available, the designer is able to make a precise selection of
algorithms that are suitable for the anticipated channel conditions and the characteristics
of the target hardware platform.

IV Signal impairment modelling: Having already modelled the ideal system, the next step is
to modify the signal model to include the expected signal impairments. This requires
the analysis of the main specifications and performance of the target hardware. In
the test-case described herein, certain signal impairments such as the I/Q gain and
phase imbalances or LO drifts are ignored because of the performance indicators and

specifications of the equipment comprising the GEDOMIS® testbed. It is important
however that each designer exhaustively examines the complete set of potential signal
impairments and ignore only those that have negligible effects to the received signal.
This procedure is subject to generic signal processing and propagation principles, but
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also requires a hardware-specific analysis of potential impairments (i.e., different for each
testbed). In our case, the resulting refined received signal model at the output of the RF
down-converters can be expressed as follows:

c(t) = �{x(t) · ej2Π( f IF+∆ f )t}+ A · cos(2Π( f IF + ∆ f )t + ϕ) + w(t), (2)

where x(t) represents the useful part of the received baseband signal, f IF is the
Intermediate Frequency (IF), ∆ f is the Carrier Frequency Offset (CFO), A · cos(2Π( f IF +
∆ f )t + ϕ) represents the unwanted residual carrier located at the center of the useful
signal-spectrum (i.e., introduced by the LO coupling at the transmitter) and, finally, w(t)
is the Gaussian noise. The useful part of the received baseband signal can be expressed
as:

x(t) = x̃(t) ⋆ H(t), (3)

where x̃(t) is the equivalent transmitted baseband signal and H(t) is the equivalent
baseband of the time impulse response of the channel between the transmit and receive
antennas. Example 3.3 shows the MATLAB model of the refined signal shown in
equation (2). Additionally, other aspects related to the RF transmission, reception and
downconversion of the signal are also contemplated (e.g., oversampling).

Example 3.3: MATLAB code for the signal impairment modelling.

%A custom IFFT function, providing an oversampled output is

required (i.e., the ADCs are oversampling by 4).

function samples = ifft_x4oversamp(BB_ofdm_symbol)

temp_symbols = zeros(8192,1);

temp_symbols(1:1024) = BB_ofdm_symbol(1:1024);

temp_symbols((8192-1024+1):8192) = BB_ofdm_symbol(1025:2048);

samples = ifft(temp_symbols,8192);

%----- function end -----

%To simulate the channel a coefficients file will be used. The

channel will be loaded in the variable ’channel’.

load(’channel_coefficients’)

%The frequency-domain data produced by the baseband transmitter

(i.e., before the IFFT) is loaded in the variable ’BB_data’.

load(’BB_data’)

%A short silence period precedes each frame: now we have to

account for the over-sampling of the ADCs.

silence_length=2560*5*4;

transmitted_signal=zeros(silence_period_length,1);

%The frame is composed by a preamble and 48 OFDM symbols.

for symb_index = 1:49

BB_ofdm_symbol=BB_data(2048*(symb_index-1)+1:(2048*symb_index));

%Introduction of the LO coupling (i.e., DC carrier is not 0).

BB_ofdm_symbol(1)=2;
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%Conversion from frequency to time domain.

time_ofdm_symbol=zeros(2048+8192,1);

time_ofdm_symbol(2049:end)=ifft_x4oversamp(BB_ofdm_symbol);

%Inclusion of the CP (i.e, the CP is a copy of the last 512

symbols of the OFDMA symbol - oversampled by 4).

preamble_length=512*4;

time_ofdm_symbol(1:preamble_length)=time_ofdm_symbol(8193:end);

transmitted_signal=[transmitted_signal; time_ofdm_symbol];

end

%The modelled CFO will be equivalent to a third of the

intercarrier separation.

eps_freq=-1/3;

%Convolution of the frequency domain signal with the channel and

inclusion of the CFO and the noise.

SNR=25;

first_sample=silence_length+preamble_length+1;

mean_power = mean(abs(transmitted_signal(first_sample:end)).ˆ2);

noise_power = mean_power/(10ˆ(SNR/10));

received_signal = conv(transmitted_signal,channel);

rand_I=randn(size(received_signal));

rand_Q=randn(size(received_signal));

received_signal = received_signal+sqrt(noise_power/2)*(rand_I +

j*rand_Q);

received_signal = real(received_signal.*exp(j*2*pi*((156.8 +

(eps_freq*22.4/2048))*(1:length(received_signal))’/89.6)));

V System model refinement: In order to have a MATLAB model that provides a close
match to the prerequisites of RTL coding, further modifications and refinements have
to be conducted. This principally involves the emulation of fixed-point arithmetic in
specific outputs of the MATLAB model. The trade-off between resulting precision and
computational complexity has to be investigated. The more bits used to represent the
fixed-point data, the more precision is achieved in the arithmetic operations. Considering
that the prototyping target is a high performance real-time wireless communication
system, it is required to use additional bits for the representation of signals, which
consequently increases the FPGA processing and memory requirements. Different
quantizations can be tested to analyse their effect both on independent processing stages,
as well as on the overall system performance. An indicative example is when 16-bit
words are used for the intermediate calculations of a custom MATLAB FFT function,
featuring a radix-2 butterfly structure. This results in an aggregate quantization loss of
87 · 10−2. The equivalent loss when using 32-bit words is reduced down to 13 · 10−7.
By inserting the quantized results to each of the remaining processing stages of the
signal processing chain, it can be evaluated the performance-loss of the overall system.
Hence, retaking the example mentioned before, the 16-bit quantized outputs of the FFT
result in a performance degradation of the channel estimation (i.e., the precision-loss of
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the estimated coefficients for the pilot tones increases the error during the interpolation
stage). Example 3.4 presents the modified version of the MATLAB signal, which accounts
for hardware constraints and applies the desired quantization. It is assumed a 14-bit
ADC, a QPSK modulation and a value of the pilot signals of ±4/3 (defined in the WiMAX
standard). For this testing scenario the DR is set to [−1.9, 1.9]: i.e., 2 bits represent the sign
and the integer part and the remaining bits represent the fractional part.

VI MATLAB/HDL co-simulation: this section gives representative examples of the MATLAB
versus HDL co-simulations, which is a vital procedure that has to be applied in all FPGA
prototyping cases. Continuing from the previous example, the digitized IF signal at the
receiver (i.e., ADC outputs) will be processed by the DDC component, which comprises a
programmable digital synthesizer and a complex Finite Impulse Response (FIR) lowpass
filter that eliminates out-of-band components. The input signal at the DDC is multiplied
with a sine and a cosine (produced by the digital synthesizer). This multiplication results
in the I and Q vector components, which are finally filtered and decimated in order to
produced the desired baseband signal. This procedure is considered a key functionality
of the Software Defined Radio (SDR). The digital synthesizer can be tuned on-the-fly by
accessing a digitally-controlled register. This fact allows designers to correct the CFO, an
inherent impairment of real-life RF front-end systems.

Example 3.4: MATLAB code that models the constraints introduced by the utilization of
a particular ADC.

ADC_quantization=quantizer([14 12]);

gain=1.9/max(abs(received_signal));

ADC_samples = (received_signal.*gain)’;

ADC_samples_binary = num2bin(ADC_quantization, ADC_samples);

ADC_samples_quantized = bin2num(ADC_quantization,

ADC_samples_binary);

Example 3.5 describes how the Xilinx DDC IP core was configured using MATLAB. In
more details, we have used the Filter Design and Analysis Tool (fdatool), to design
the required low-pass filter and produce the filter coefficients required for configuring
the DDC core. Considering the importance of the DDC for the correct operation of the
receiver, the MATLAB versus HDL co-simulation provided a crucial contribution for
the evaluation of the fixed-point precision and guided the tuning of the configurable
parameters featured in the DDC IP core.

Example 3.5: the SISO mobile WiMAX receiver requires the design of a low-pass filter
with a decimation stage (denoted as polyphase decimator filter in the DDC IP). The
configuration parameters of the fdatool are shown in Fig. 10.

The resulting filter has 103 coefficients, which can be quantized and exported to a file
(i.e., with file extension .coe). The latter can be used to configure the Xilinx DDC IP
core, as depicted in Fig. 11.
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Figure 10. Utilization of the fdatool to design a FIR low-pass filter.

Figure 11. Exporting the FIR low-pass filter coefficients.

The code of the equivalent MATLAB model of the DDC, using the coefficients generated
by fdatool is the following:

%The ’eps_freq’ parameter represents the estimated CFO, as

returned by the synchronization block.

function baseband_signal = DDC(ADC_samples, eps_freq)

%The FIR-coefficients generated with ’fdatool’ are loaded onto

the ’hfilter’ variable.

load(’hfilter’)

%Modelling of the DDC functions (including CFO-correction).

cos_samples = ADC_samples.*cos(2*pi*(22.4-eps_freq*22.4/2048)*
(1:length(ADC_samples))/89.6);
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sin_samples = -ADC_samples.*sin(2*pi*(22.4-eps_freq*22.4/2048)*
(1:length(ADC_samples))/89.6);

filter_cos = conv(cos_samples,hfilter);

filter_sin = conv(sin_samples,hfilter);

baseband_signal = filter_cos(1:4:end)+j*filter_sin(1:4:end);

%----- function end -----

Fig. 12 shows how the digital filtering stage of the Xilinx DDC IP can be configured using
the coefficients file produced in MATLAB.

Figure 12. Configuration of the digital filtering stage of the DDC IP core using the
MATLAB-generated coefficients.

Example 3.6 covers the main steps required to verify the behaviour and performance
of an independent processing block (built using HDL code), by interfacing it with the
MATLAB model of the remaining components of the system. The one-to-one comparison
of the HDL model with its MATLAB counterpart provides a reliable analysis of the
implementation losses (i.e., fixed-point versus floating point) and facilitates the selection
of an optimum quantization (i.e., trade-off between precision and computational
complexity, optimization of the bit-alignment and truncation operations).

Example 3.6: The MATLAB and VHDL code of the DDC processing stage that is required
to run the co-simulation is quoted next. The output of the MATLAB model is written to a
file, which is later used as a test vector of the RTL-simulation:

%The quantized outputs of the ADC are written to a file, which

will be used to stimulate the DDC IP core.

fileOut=fopen(’DDC_core.in’,’w’);
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for k = 1:length(ADC_samples_quantized)

DIN = num2bin(ADC_quantization,(ADC_samples_quantized(k)));

fprintf(fileOut,’%s\n’,DIN);

end

fclose(fileOut);

In the following simplified version of the VHDL code of the DDC block, the
MATLAB-generated signal will be used as input to the RTL code. Additionally, the
results produced by the HDL simulation are written to a file. This is used in recursive
manner for the MATLAB simulation of the remaining processing blocks of the receiver:

-The quantized outputs of the ADC are read from a file and used

as inputs to the DDC IP core.

FILE inputFile : TEXT OPEN READ_MODE IS "DDC_core.in";

-The RTL-generated outputs are written to a file, which will be

used to stimulate the MATLAB model.

FILE outputFile : TEXT OPEN WRITE_MODE IS "DDC_RTL.out";

-Instantiation of the Xilinx DDC IP core.

DDC_core_ins : DDC_core PORT MAP (

-Input ports

CLK => clock_adc,

SEL => reset,

DIN => data_in,

ND => data_valid_in,

LD_DIN => prog_DDS_value,

ADDR => prog_DDS_addr,

WE => prog_DDS_write_enable,

-Output ports

RFD => ready_for_data,

RDY => output_ready,

DOUT_I => BB_I_comp,

DOUT_Q => BB_Q_comp);

-Read MATLAB-generated data from a file to stimulate the DDC.

PROCESS

VARIABLE L_IN : LINE;

VARIABLE DATA : STD_LOGIC_VECTOR(13 DOWNTO 0);

BEGIN

reset <= ’1’;

data_in <= (others => ’0’);

data_valid_in <= ’0’;

prog_DDS_addr <= cnt_DDCreg;

WAIT FOR 44.64 ns;

reset <= ’0’;

data_valid_in <= ’1’;
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FOR k IN 0 TO cnt_lengthDDC LOOP

READLINE(inputFile,L_IN);

READ(L_IN, DATA); data_in <= <= DATA;

WAIT FOR 11.16 ns;

END LOOP;

WAIT;

END PROCESS;

- Write the RTL-results to a file to stimulate the MATLAB model.

PROCESS(clock_adc)

VARIABLE L_OUT : LINE;

BEGIN

IF RISING_EDGE(clock_adc) THEN

IF output_ready = ’1’ THEN

WRITE(L_OUT, BB_I_comp);

WRITELINE(outputFile, L_OUT);

WRITE(L_OUT, BB_Q_comp);

WRITELINE(outputFile, L_OUT);

END IF;

END IF;

END PROCESS;

When comparing the 32-bit words at the output of the HDL-based DDC processing
block with the equivalent stage of the MATLAB model, we realize that we may truncate
this word to 16 bits with negligible precision losses. The required quantization is also
obtained during this stage. Finally, in order to use the HDL-generated outputs in the
MATLAB-simulation of the remaining blocks of the receiver, the following MATLAB
code is required:

-The RTL-outputs of the DDC are read from a file and used as

inputs to the MATLAB receiver.

fileIn=fopen(’DDC_RTL.out’,’r’);

VHDLResult=fscanf(fileIn,’fclose(fileIn);

DDC_quantization=quantizer([32 26]);

BB_I_comp=[];

BB_Q_comp=[];

k=1;

for l=1:(cnt_lengthDDC+1)/2

binTmp=VHDLResult(k:k+31);

BB_I_comp(l)=bin2num(DDC_quantization,binTmp);

k=k+32;

binTmp=VHDLResult(k:k+31);

BB_Q_comp(l)=bin2num(DDC_quantization,binTmp);

k=k+32;

end

212 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2



MATLAB as a Design and Verification Tool for the Hardware Prototyping of Wireless Communication Systems 27

-The simulations show that a truncation to 16 bits can be applied

(i.e., q([16 14]) -> (27 DOWNTO 12) in RTL).

BB_I_trunc=[];

BB_Q_trunc=[];

for l=1:(cnt_lengthDDC+1)/2

BB_I_trunc(l)=BB_I_comp(5:20);

BB_Q_trunc(l)=BB_Q_comp(5:20);

end

VII Data post-processing: Once the FPGA-based prototype presents a stable operation, data
can be captured in different parts of the system to evaluate its performance. This data
could then be processed in MATLAB to calculate the desired metrics. When the goal
is to characterize the performance of a system under mobility conditions, hundreds of
data captures (e.g., generated with different channel seeds) containing several complete
frames have to be captured and processed under different operating conditions (e.g.,
modify the SNR). MATLAB can be used to automate the calculation of the performance
metrics, as shown in example 3.7.

Example 3.7: A simplified version of a MATLAB function, which automates the
calculation of the EVM. The function relies on a predefined name-structure for reading
the files:
%Function to automate the calculation of the EVM from real-time

post-equalization data captures.

function automatic_EVM_calculation(channel_spec, initial_rep,

final_rep, SNR_steps)

EVM_experiment=[];

for repetition = initial_rep:final_rep

for scenario = 1:SNR_steps

%Generation of a predefined ’file_name’

file_name=[’postequal_’ channel_spec ’_’ SNR_step ’_’

num2str(repetition)];

%Call to the function calculating the EVM

EVM_array=EVM_calculation_HW_capture(file_name);

%Calculation of the mean value, conversion to dB and storage

EVM_experiment(index,scenario)=10*log10(mean(EVM_array));

end

index=index+1;

end

save([’postequal_’ channel_spec ’_’ SNR_step ’_’

num2str(initial_rep) ’_to_’ num2str(final_rep)

’.mat’],’EVM_experiment’);

%----- function end -----
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The EVM calculation of the FPGA-based prototype is made possible by comparing the
files captured in the equalization block with the equivalent ones of the ideal MATLAB
receiver. To achieve this we have to feed the MATLAB model with all the different test
vectors captured in the post AGC stage of the FPGA prototype and produce the same
amount of files at the output of the equalization stage. For each OFDM symbol in each
captured frame, we would apply the following MATLAB operations (a mean value for
each captured-file has to be calculated in the end):

deviation=[];

for index=1:cnt_data_carriers_per_symbol

deviation(index)=equal_out_RTL(index)-ideal_equal(index);

end

EVM_symbol=mean(abs(deviation).ˆ2)/1;

4. Conclusion

The message that this chapter intended to convey is that MATLAB is having nowadays
a diverse usage that goes beyond its initial conception as a generic mathematic modeling
environment. Its functionality is valuable because it can be directly interfaced with various
third party software/hardware design tools and instruments. Moreover, MATLAB has a
multi-level contribution in the conceptual high-level modeling of a system, and it is an
ideal candidate for rapid prototyping, since it can emulate the baseband signal processing
when used in instrumentation-based offline testbeds. MATLAB is also used to emulate
real-life hardware constraints and it can be adapted to serve HDL co-simulations. Its role
is particularly important for the prototyping of bit-intensive systems such as the PHY-layer
of modern wireless communication systems. This chapter proposed a comprehensive design
methodology and quoted indicative examples, in order to highlight the previously mentioned
benefits of MATLAB. In concrete, this chapter provided a guideline for the use of MATLAB
during the prototyping of a FPGA-based real-time transceiver based on the mobile WiMAX
standard. Finally, its critical contribution was contemplated by quoting extracts of the source
code of the previously mentioned system prototyping phases.
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