
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 0

Two Novel Implementations of the Remez Multiple

Exchange Algorithm for Optimum FIR Filter Design

Muhammad Ahsan and Tapio Saramäki

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/46477

1. Introduction

One of the main advantages of the linear-phase FIR filters over their IIR counterparts is the
fact that there exist efficient algorithms for optimizing the arbitrary-magnitude FIR filters in
the minimax sense. In case of IIR filters, the design of arbitrary-magnitude filters is usually
time-consuming and the convergence to the optimum solution is not always guaranteed.
The most efficient method for designing optimum magnitude linear-phase FIR filters with
arbitrary-magnitude specifications is the Remez algorithm and the most frequent method to
implement this algorithm is the one originally proposed by Parks and McClellan. Initially,
they came up with the design of conventional low-pass linear phase FIR filters, whose impulse
response is symmetric and the order is even [5]. Later on, along with Rabiner they extended
the original design technique in [7] such that the generalized algorithm is applicable to the
design of all the four linear-phase FIR filter types with arbitrary specifications. Due to the
initial work of Parks and McClellan for the extended algorithm, this algorithm is famously
known as the Parks-McClellan (PM) algorithm.

The PM algorithm was generated in the beginning of 1970 by using FORTRAN. During
that era, the computer resources were quite limited. When people applied this algorithm in
practice for high-order filters, they failed to achieve the optimum results. This gave rise to two
main doubts about the PM algorithm. The first doubt was that the algorithm is not properly
constructed and is valid for only low-order filters design. However, after noticing that the
maximum number of iterations in the algorithm implementation is set to only 25 which is
quite low to achieve the optimum solutions for high order filters, it became clear that the first
doubt is superfluous.

The second doubt was concerned with the implementation of the PM algorithm’s search
strategy for the “real” extremal points of the weighted error function, which is formed
based on the “trial” extremal points. While mimicking the search technique included in
the PM algorithm in various Remez-type algorithms for designing recursive digital filters
[15, 16, 18, 19], it was observed that some of the them are quite sensitive to the selection of

©2012 Ahsan and Saramäki, licensee InTech. This is an open access chapter distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Chapter 3

2 Will-be-set-by-IN-TECH

the initial set of the “trial” extremal points. Moreover, they suffered from certain issues which
prevented them to converge at the optimum solution in some cases. For algorithms described
in [15], and [18], the convergence issue was solved by increasing the maximum number of
iterations in the above-mentioned manner. However, the algorithms described in [16] and
[19] have still remained sensitive to the selection of the initial set of the “trial” extremal points.
This sensitivity motivated the authors of this contribution to figure out how the search for the
“true” extremal points is really carried out in the core discrete Remez algorithm part in the
FORTRAN implementation of the PM algorithm. After a thorough study of the FORTRAN
code, it was observed that this code utilizes almost twenty interlaced “go to” statements which
are quite redundant for locating the “real” extremal points. Meticulous investigation of the
code revealed that it is possible to decompose the one large chunk of the search technique
into two compact search techniques referred to as Vicinity Search and Endpoint Search in such
a manner that the same optimum solution can be achieved in an efficient manner as follows.

In Vicinity Search, the candidate “real” extremal point is located in the vicinity of each “trial”
extremal point, which is bounded by the preceding and the following “trial” extremal points
with the exception of the first (last) point for which the lower (upper) bound is the first (last)
grid point in use. Endpoint Search, in turn, checks whether before the first (after the last) local
extremum found by Vicinity Search there is an additional first (last) local extremum of opposite
sign. If one or both of such extrema exist, then their locations are considered as candidate
“real” extremal points of the overall search consisting of Vicinity Search and Endpoint Search. In
this case, there are one or two more candidate “real” extremal points as Vicinity Search already
provides the desired number of “real” extremal points. In the PM algorithm, the desired final
“real” extremal points are determined according to the following three options:

Option 1: The additional last extremum exists such that its absolute value is larger than
or equal to those of the first extremum of Vicinity Search and the possible additional first
extremum.

Option 2: The additional first extremum exists such that its absolute value is larger than or
equal to that of the first extremum of the Vicinity Search and larger than that of the possible
additional last extremum.

Option 3: The conditions in Options 1 and 2 are not valid.

For Option 3, the final “real” extremal points are the ones obtained directly from the Vicinity
Search, whereas for Option 1 (Option 2), these points are obtained by omitting the first
(last) point based on Option 3 and by replacing the last (first) point with the one found by
Endpoint Search. Based on the above-mentioned facts, an extremely compact translation of the
original FORTRAN implementation into a corresponding MATLAB implementation has been
reporeted in [2].

The above study on how the PM algorithm performs the search for the “real” extremal points
indicates that mimicking this search principle in the Remez-type algorithms proposed in [16],
[19] does not give the flexibility to transfer two extremal points between the two consecutive
bands, for example, from a passband to a stopband or vice versa, which is a necessary
prerequisite for convergence to the optimum solution in certain cases. Most significantly,
the search technique included in the PM algorithm does not follow the fundamental idea of
the Remez multiple exchange (RME) algorithm when the approximation interval is a union

38 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 3

of three or more disjoint intervals [8, 11, 20]. That is, if there are more candidate “real”
extremal points than required, then the desired points should be selected in such a way
that the ones corresponding to the largest absolute values of the weighted error functions
are retained subject to the condition that the sign of the weighted error function alternates
at the consecutive points. An efficient MATLAB based implementation following the above
mentioned fundamental notion of the RME algorithm has been reported in [3] and provides
significant improvements in designing the multiband FIR filters.

In the beginning, the main purpose of the authors of this contribution was to modify the core
discrete Remez part of the PM algorithm in FORTRAN such that it follows the fundamental
principle of the RME algorithm and can ultimately be incorporated in the algorithms proposed
in [16] and [19]. However, during the course of modifications, it was observed that a
modified MATLAB implementation mimicking the original FORTRAN implementation is
quite effective and superior to already available MATLAB implementation of the algorithm
in the function firpm [21]. Based on the above discussion, this chapter describes two
novel MATLAB based implementations of the Remez algorithm within the PM algorithm.
Implementation I is an extremely fast and compact translation of the Remez algorithm part
of the original FORTRAN code to the corresponding MATLAB code and is valid for general
purpose linear-phase FIR filters design [2]. It is worth noting that Implementation I imitates
the implementation idea of the Remez algorithm presented in PM algorithm. Implementation
II is based on the fundamental notion of the Remez algorithm as described in [20] and provides
significant improvements in designing the multiband FIR filters [3]. It is important to note that
this chapter emphasizes on the practical MATLAB based implementation aspects of the Remez
algorithm. In order to get an overview of the theoretical aspects of the Remez algorithm,
please refer to [10, 17]. The organization of this chapter is as follows. Section (2) formally
states the problem under consideration, Section (3) describes the Implementation I in detail,
Section (4) discusses the Implementation II in detail, and finally, the concluding remarks are
presented in Section (5).

2. Problem statement

After specifying the filter type, the filter order, and the filter specifications such that the
problem is solvable using the RME algorithm, the essential problem in the PM algorithm is
the following:

Core Discrete Approximation Problem: Given nz − 1 1, the number of unknowns a[n] for n =
0, 1, . . . , nz − 2, and the grid points grid(k) included in the vector grid of length ngrid, which
contains values between 0 and 0.5 2, along with the vectors des and wt of the same length
ngrid, the entries of which carry the information of the desired and weight values, respectively,
at the corresponding grid points of the vector grid, find the unknowns a[n] to minimize the
following quantity:

ε =
max

1≤k≤ngrid|E(k)|, (1a)

1 In this contribution, nz − 1 is chosen to be the number of adjustable parameters in both the FORTRAN and the
MATLAB implementations of the PM algorithm because in this case nz stands for the number of extrema at which
Alternation Theorem should be satisfied in order to guarantee the optimality of the solution.

2 In the original PM algorithm, this range is the baseband for the so-called normalized frequencies from which the
corresponding angular frequencies are obtained by multiplying these frequencies by 2π [17].

39Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

4 Will-be-set-by-IN-TECH

where

E(k) = wt(k) [G(k)− des(k)] (1b)

and

G(k) =
nz−2

∑
n=0

a[n] cos[2πn · grid(k)]. (1c)

According to Alternation (characterization) Theorem [4, 12, 13], G(k) of the form of (1c) is the
best unique solution minimizing ǫ as given by (1a) if and only if there exists a vector ℓopt

that contains (at least) nz entries ℓopt(1), ℓopt(2), . . . , ℓopt(nz) having the values of k within
1 ≤ k ≤ ngrid such that

ℓopt(1) < ℓopt(2) < . . . < ℓopt(nz − 1) < ℓopt(nz)

E[ℓopt(m + 1)] = −E[ℓopt(m)] for m = 1, 2, . . . , nz − 1

∣∣E[ℓopt(m)]
∣∣ = ε for m = 1, 2, . . . , nz.

It is worth mentioning that the core discrete approximation problem is the same for both the
implementations I and II as defined in the Introduction.

3. Implementation I

This section discusses Implementation I in detail as follows. First, the theoretical formulation
of the algorithm is described so that the reader can grasp the very essence of the MATLAB
code snippet provided later on in this section. Second, during this inclusion, it is emphasized
that instead of using approximately 15 nested loops and around 300 lines of code, only 3
looping structures and approximately 100 lines of code are required by Implementation I.
Third, it is shown, by means of four examples, that the overall CPU execution time required
by the proposed implementation to arrive practically in the same manner at the optimum
FIR filter designs is only around one third in comparison with the original implementation.
Fourth, in the last two examples, there are unwanted peaks in the transition bands. In order
to suppress these peaks to acceptable levels, two methods of including the transition bands in
the original problem are introduced.

3.1. Theoretical formulation

The theoretical formulation of the proposed algorithm is roughly classified into the
initialization phase and the iteration phase. The initialization phase performs the necessary
initializations for the algorithm, whereas the iteration phase carries out the actual Remez
exchange loop. In order to explain why Implementation I is a compact and efficient MATLAB
based routine, the iteration phase is further decomposed into four well-defined primary
segments. Each segment is constructed in such a way that before the start of the basic
steps, there is a thorough explanation on the benefits of carrying out the segment under
consideration with the aid of the proposed basic steps.

40 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 5

3.1.1. Initialization phase

The overall implementation starts with the following initializations:

• Initialize the element values of ”trial” vector ℓtrial of length nz for ℓopt as ℓtrial(m) = 1 +
(m − 1)⌊(ngrid − 1)/nz⌋ for m = 1, 2, . . . , nz − 1 and ℓtrial(nz) = ngrid. Here, ⌊x⌋ stands
for the integer part of x.

• Initialize the iteration counter as niter = 1 and set the maximum number of iterations as
itrmax = 250.

3.1.2. Iteration phase

The Remez exchange loop iteratively locates the desired optimum vector ℓtrial having as its
entries the nz values of k within 1 ≤ k ≤ ngrid, at which Alternation Theorem is satisfied as
follows. In the first loop, the vector ℓtrial found in the initialization phase is the first “trial”
vector for being the desired optimum vector ℓopt. As this is extremely unlikely to happen,
Segment 1, based on the vector ℓopt, generates the weighted error vector wei_err(k) for 1 ≤
k ≤ ngrid corresponding to E(k), as given by (1b), in such a way that the nz − 1 unknowns
a[0], a[1], . . . , a[nz − 2] as well as dev 3 are implicitly found so that the following nz equations

wei_err(ℓtrial(m)) = (−1)m+1dev for m = 1, 2, . . . , nz (2)

are satisfied. When concentrating only on the values of k being the enteries of the “trial”
vector ℓtrial, this solution is the best one according to Alternation Theorem. However, when
considering all the values of k within 1 ≤ k ≤ ngrid, this solution is not the best one.

The efficiency of Implementation I in comparison with the original MATLAB function firpm,
in terms of significant reduction in the code compactness and a considerable reduction in
the CPU execution time for obtaining practically in the same manner the best linear-phase
FIR solutions are mostly based on the following two novel facts. First, the steps under
Segment 1 are accomplished by employing the efficient MATLAB vectorization operations
whenever possible and, most importantly, by avoiding the call for one subroutine by replacing
this call with highly efficient matrix operations available in MATLAB. Second, as already
mentioned in the introduction, the lengthy search technique involved in the function firpm

for locating the true extremal points based on the weighted error function can be compressed
into Vicinity Search and Endpoint Search. In the sequel, Segment 2 and Segment 3 will take
care of Vicinity Search and Endpoint Search, respectively. More detail can be found in the actual
implementations of Segments 1, 2, and 3.

Finally, Segment 4 checks whether ℓreal ≡ ℓtrial or not. If this equivalence is established, then
the best solution has been found as in this case ℓopt ≡ ℓreal ≡ ℓtrial. Otherwise, the whole
process is repeated by using the “real” vector ℓreal of the present iteration as a “trial” vector
for the next iteration. This exchange of the vectors is continued until ℓreal and ℓtrial coincide
or the maximum allowable number of the iterations is exceeded, which is extremely unlikely
to occur.

Segment 1: After knowing the “trial” vector ℓtrial that contains the nz trial values of k in the
ascending order for 1 ≤ k ≤ ngrid in the present iteration, this first segment guarantees that

3 It should be noted that the value of dev is either positive or negative.

41Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

6 Will-be-set-by-IN-TECH

Alternation Theorem is satisfied when concentrating only on those nz values of k being involved
in the vector ℓtrial. For this purpose, it generates the weighted error vector wei_err(k) for
1 ≤ k ≤ ngrid such that the following system of nz equations:

wt(ℓtrial(m))

[
nz−2

∑
m=0

a(n) cos (2πn · grid(ℓtrial(m)))− des(ℓtrial(m))

]

= (−1)m+1dev for m = 1, 2, . . . , nz (3)

is implicitly solved for the nz− 1 unknowns a[0], a[1], . . . , a[nz− 2] as well as for dev. 4 For this
purpose, similar to the function firpm, for a given “trial” vector ℓtrial, the value of wei_err(k)
at k = ℓtrial(1), denoted by dev, the corresponding abscissa vector x, the ordinate vector y,
and the coefficient vector ad, each of which are of length nz, are determined. These vectors are
required to express the zero-phase frequency response when using the Lagrange interpolation
formula in the barycentric form at each value of k for 1 ≤ k ≤ ngrid, thereby making the
implementation of the Remez loop very accurate and efficient.

In comparison with many scattered scalar operations in the original function firpm, the
MATLAB code snippet, which is available in the following subsection, is computationally
efficient and is highly compact due to the above-mentioned vectors. In addition to that, the
time consuming subroutine of “remezdd” is replaced with simple and highly efficient matrix
operations. Further improvements are obtained by using the vector grid, which contains the
grid points under consideration, as well as des and wt, which carry information of the desired
values and weights at these grid points, respectively. With the above-mentioned data, the
weighted error function is generated only once during each iteration and is a single vector
wei_err. This vector plays a pivotal role in the implementations of Vicinity Search in Segment

2 and Endpoint Search in Segment 3.

This segment is performed by using the following ten steps:

Step 1: Determine the entries of the vectors x and ad as

x(m) = cos[2π · ℓtrial(m)] for m = 1, 2, . . . , nz (4)

and

ad(m) = 1

/
nz

∏
k=1
k �=m

[x(m)− x(k)] for m = 1, 2, . . . , nz, (5)

respectively, as well as the corresponding deviation value as

dev = −
∑

nz
m=1 ad(m)des[ℓtrial(m)]

∑
nz
m=1(−1)m−1ad(m)wt[ℓtrial(m)]

. (6)

4 It is worth emphasizing that implicit solutions for the calculation of a[n]’s are not required for the intermediate
iterations. The explicit solution for the calculation of a[n]’s is needed only after achieving the convergence to the
best solution.

42 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 7

Step 2: Determine the entries of the vector y as

y(m) = des[ℓtrial(m)] + (−1)m−1ad[ℓtrial(m)]/wt[ℓtrial(m)] for m = 1, 2, . . . , nz. (7)

Step 3: Generate the entries of the abscissa vector x_all covering all the entries in the vector
grid as

x_all(k) = cos[2π · grid(k)] for k = 1, 2, . . . , ngrid. (8)

Step 4: Select the entries of the vectors err_num and err_den of length ngrid to be zero valued,
set m = 1, and go to the next step.

Step 5: Generate the entries of the vector aid as

aid(k) = ad(m)
/
[x_all(k)− x(m)] for k = 1, 2, . . . , ngrid (9)

and update err_num(k) and err_den(k) for k = 1, 2, . . . , nz as err_num(k) = err_num(k) +
y(m)aid(k) and err_den(k) = err_den(k) + aid(k), respectively.

Step 6: Set m = m + 1. If m > nz, then go to the next step. Otherwise, go to the previous step.

Step 7: Generate the entries of the weighted error function wei_err for k = 1, 2, . . . , ngrid as

wei_err(k) = [err_num(k)
/

err_den(k) − des(k)]wt(k). (10)

The resulting wei_err contains undefined values at the entries of ℓtrial due to the use of
the Lagrange interpolation formula in the barycentric form. The undefined values can be
conveniently filled based on the fact that at ℓtrial(m) with m odd (even), the desired value is
dev (−dev), where dev is given by (6). Hence, the vector wei_err can be completed by using
the following three steps:

Step 8: Set m = 1 and go to the next step.

Step 9: Update the vector wei_err as

wei_err(ℓtrial(m)) =

{
+dev for m odd

−dev for m even.
(11)

Step 10: Set m = m + 1. If m < nz + 1, then go to the previous step. Otherwise, go to Step 1
under Segment 2.

Segment 2: This segment explains how to perform Vicinity Search based on the values of the
weighted error function wei_err(k) for 1 ≤ k ≤ ngrid, which has been generated at Segment

1, and the “trial” vector ℓtrial, which is under consideration in the present iteration. The key
idea in Vicinity Search is to determine the mth entry of the “real” vector ℓreal, denoted by
ℓreal(m) for m = 1, 2, . . . , nz, to be the value of k in the close vicinity of k = ℓreal(m), where a
local extremum of wei_err(k) with the same sign occurs. The location of these nz entries are
simplified as follows.

In the first phase, the search of both local minima and maxima is reduced to that of local
maxima by multiplying the values of wei_err(k) for 1 ≤ k ≤ ngrid by sign[wei_err(ℓtrial(m))]
as in this case the values of the resulting signed weighted function sign[wei_err(ℓtrial(m))]×

43Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

8 Will-be-set-by-IN-TECH

wei_err(k) become positive at k = ℓtrial(m) as well as in its proximity. In the second phase,
the proper location of each ℓreal(m) for m = 1, 2, . . . , nz can be obtained conveniently based
on the following facts. First Segment 1 guarantees that for m > 1 [m < nz], the “signs” of
wei_err(k) at both k = ℓtrial(m− 1) and k = ℓtrial(m + 1) is opposite to that of k = ℓtrial(m), or
correspondingly, at k = ℓreal(m). Second, during the course of the present search, ℓreal(m − 1)
is located before ℓreal(m) in such a way that the sign of wei_err(k) at k = ℓreal(m − 1) is
opposite to that of the sign of wei_err(k) at k = ℓreal(m + 1). The above mentioned facts
together with the reasoning that the lowest value of k for locating ℓreal(1) is 1 and the highest
value of k for locating ℓreal(nz) is ngrid inherently lead to carrying out Vicinity Search by using
the following three steps:

Step 1: Set m = 1 and go to the next step.

Step 2: Find the mth element, denoted by ℓ̃real(m), at which the vector

err_vicinity = sign[wei_err(ℓtrial(m))]wei_err(low : upp), (12a)

where

low =

{
1 for m = 1

max{ℓtrial(m − 1) + 1, ℓreal(m − 1) + 1} for 2 ≤ m ≤ nz
(12b)

and

upp =

{
ℓtrial(m + 1)− 1 for 1 ≤ m ≤ nz − 1

ngrid for m = nz
(12c)

achieves the maximum value. Generate ℓreal(m) = ℓ̃real(m) + low− 1. If m = 1 [m = nz], then
store the corresponding maximum value as err_vic(1) [err_vic(nz)] to be used in Endpoint
Search at Segment 3 . Update ℓreal(m) as ℓreal(m) = ℓ̃real(m) + low − 1.

Step 3: Set m = m + 1. If m < nz + 1, then go to the previous step. Otherwise, go to Step 1
under Segment 3.

Segment 3: This segment explains how to perform Endpoint Search. After Vicinity Search, the
role of Endpoint Search is to check whether the weighted error function wei_err(k) contains an
additional local extremum before k = ℓreal(1) [after k = ℓreal(nz)] such that its sign is opposite
to that of occurring at k = ℓreal(1) [k = ℓreal(nz)]. It is worth emphasizing that in order to take
into account all the candidate extrema, Endpoint Search is necessary to be used after Vicinity
Search as Vicinity Search totally omits the existence of these possible additional extrema.

The appearance of the additional first local extremum implies that 5

uppend = min{ℓtrial(1)− 1, ℓreal(1)− 1} (13)

5 Vicinity Search automatically guarantees that the sign of the weighted error function wei_err(k) is same at both k =
ℓtrial(1) and k = ℓreal(1). Hence, uppend is the smallest value of k, where the sign of wei_err(k) can be opposite before
these values. Similarly, the sign of wei_err(k) is same at both k = ℓtrial(nz) and k = ℓreal(nz) and lowend as given by
(14) is the largest value of k, where the sign of wei_err(k) can be opposite after these values.

44 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 9

is larger than or equal to 1. If this fact holds true, then the largest entry in the sub-vector
−sign[wei_err(ℓreal(1))] · wei_err(1 : uppend) should be positive. Similarly, the existence of
the additional last local extremum implies that

lowend = max{ℓtrial(nz) + 1, ℓreal(nz) + 1} (14)

is smaller than or equal to ngrid. If this fact holds true, then the largest entry in the subvector
−sign[wei_err(ℓreal(nz))] · wei_err(lowend : ngrid) should be positive.

If no additional extremum exists, then the “final” ℓreal is the one found in Vicinity Search.
Otherwise (that is, one or both the additional extrema exist), the final ℓreal is constructed
according to the following alternatives:

Alternative 1: The additional last extremum exists such that its absolute value is larger than or
equal to those of the first extremum found by Vicinity Search and the possible additional first
extremum.

Alternative 2: The additional first extremum exists such that its absolute value is larger than or
equal to that of the first extremum found by Vicinity Search and larger than that of the possible
additional last extremum.

If Alternative 1 (Alternative 2) is valid, then the final ℓreal is formed such that the first (last)
entry of ℓreal of Vicinity Search is disregarded and the last (first) entry is the value of k for 1 ≤
k ≤ ngrid, where the additional last (first) maximum of the signed weighted error function
−sign[wei_err(ℓreal(nz))] · wei_err(k) [−sign[wei_err(ℓreal(1))] · wei_err(k)] occurs.

The above explanation is the key idea to perform Endpoint Search in the function firpm.
However, the function firpm performs Endpoint Search in a lengthier manner and in order
to exactly follow this strategy, it is carried out by using the following eight steps:

Step 1: Set endsearch = 0.

Step 2: Determine uppend according to (13). If uppend = 0, then set err_end(1) = 0. Otherwise,
find the index, denoted by ℓend_real(1), where the vector

err_endpoint = −sign[wei_err(ℓreal(1))] · wei_err(1 : ℓend(1)) (15)

achieves the corresponding maximum entry value. Store this maximum entry value as
err_end(1).

Step 3: If err_end(1) < err_vic(nz), where err_vic(nz) has been saved at Step 2 under Segment

2, then go to the next step. Otherwise, set endsearch = 1.

Step 4: Determine lowend according to (14). If lowend = ngrid+ 1, then go to Step 6. Otherwise,
find the index, denoted by �̃end_real(nz), where the vector

err_endpoint = −sign[wei_err(ℓreal(nz))] · wei_err(lowend : ngrid) (16)

achieves its maximum entry value. Set ℓend_real(nz) = ℓ̃end_real(nz) + lowend − 1 and store
the corresponding maximum entry value as err_end(nz).

Step 5: If err_end(nz) < max{err_end(1), err_vic(1)}, where err_vic(1) has been saved at
Step 2 under Segment 2, then go to the next step. Otherwise, set endsearch = 2.

45Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

10 Will-be-set-by-IN-TECH

Step 6: If endsearch = 0, then go to Step 1 under Segment 4. Otherwise, go to the next step.

Step 7: If endsearch = 1, then set ℓreal(nz + 1 − m) = ℓreal(nz − m) for m = 1, 2, . . . , nz − 1 and
ℓreal(1) = ℓend_real(1) and got to Step 1 under Segment 4. Otherwise, go to the next step.

Step 8: If endsearch = 2, set ℓreal(m) = ℓreal(m + 1) for m = 1, 2, . . . , nz − 1 and ℓreal(nz) =
ℓend_real(nz). Go to Step 1 under Segment 4.

Segment 4: This concluding segment check the convergence of the Remez exchange loop as
follows. If the entries of the vectors ℓtrial and ℓreal are the same, then stop as in this case the
ultimate goal ℓopt ≡ ℓreal ≡ ℓtrial has been achieved. Otherwise, use the present “real” vector
ℓreal as the “trial” vector for the subsequent iteration by using the substitution ℓtrial = ℓreal

and go to Step 1 under Segment 1. Continue the Remez loop until ℓtrial and ℓreal coincide or
the value of the iteration counter niter exceeds itrmax = 250, which is extremely unlikely to
occur.

This segment requires only the following two basic steps:

Step 1: If ℓtrial and ℓreal coincide, then stop. Otherwise, go to the next step.

Step 2: Set ℓtrial = ℓreal and niter = niter + 1. If niter > itrmax, then stop. Otherwise, go to
Step 1 under Segment 1.

3.2. MATLAB code snippet

The code pasted below has been tested for realizing Implementation I by using MATLAB
version 7.11.0.584(R2010b). In order to embed this code snippet in the MATLAB function
firpm, edit the function by taking away the code between lines 214 and 514, introduce the
function call (the first line of the function of remez_imp1) and copy the function at the end of
the file. Remember to take the backup copy of the original function. It is worth emphasizing
that the implementation of Remez algorithm in the function firpm uses approximately 15
nested loops and 300 lines of code, whereas the code snippet provided below requires only 3
looping structures and approximately 100 lines of code to achieve the same optimum solution.

1 function [x,y,ad,dev] = remez_imp1(nz,iext,ngrid,grid,des,wt)
2 % remez_imp1 implements the Segments 1 - 4 described in the preceding
3 % section, the function needs to be inserted within the MATLAB function
4 % firpm. The input argument values come directly from the function firpm
5 % and the output arguments are required to perform the Inverse Fourier
6 % transform in order to calculate the filter coefficients. In case of
7 % any issues send an e-mail to muhammad"dot"ahsan"at"tut "dot" fi.
8 % Last updated 04.15.2012 4:15 AM (UTC/GMT+2)
9

10 % INITIALIZATIONS PHASE
11 niter = 1; % Initialize the iteration counter.
12 itrmax = 250; % Maximum number of iterations.
13 l_trial = iext(1:nz)'; % Startup value of l_trial.
14

15 % ITERATION PHASE
16 % REMEZ LOOP FOR LOCATING DESIRED nz INDICES AMONG THE GRID POINTS
17 while (niter < itrmax)
18

19 % SEGMENT 1: BASED ON THE PRESENT 'TRIAL' VECTOR l_trial, GENERATE THE

46 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 11

20 % WEIGHTED ERROR FUNCTION wei_err(k) AT ALL THE GRID POINTS
21 x = cos(2*pi*grid(l_trial)); % Step 1: Lagrange abscissa vector x.
22 A = x'*ones(1,nz)-ones(nz,1)*x;
23 A(eye(nz)==1) = 1;
24 ad = prod(A);
25 ad = ad * (-2)^(nz-1); % Step 1: Lagrange coefficient vector ad...
26 ad = 1./ad; % found efficiently without using the function remezdd.
27 add = ones(size(ad));
28 add(2:2:nz) = -add(2:2:nz);
29 dnum = ad*des(l_trial)';
30 dden = add*(ad./wt(l_trial))';
31 dev = -dnum/dden; % Step 1: Current value of deviation.
32 % Step 2: Lagrange ordinate vector y
33 y = des(l_trial) + dev*add./wt(l_trial);
34 % Step 3: Overall abscissa vector x_all
35 x_all = cos(2*pi*grid(1:ngrid));
36 err_num = zeros(1,ngrid); % Step 4: Initializations of err_num...
37 err_den = err_num; % and err_den.
38 for jj = 1:nz % Steps 5 and 6: Intermediate evaluations for...
39 aid = ad(jj)./(x_all - x(jj)); % obtaining the weighted error...
40 err_den = err_den + aid; % wei_err(k) at all the grid points.
41 err_num = err_num + y(jj)*aid;
42 end
43 err_cy = err_num./err_den;
44 wei_err = (err_cy - des).*wt; % Step 7: Generate the vector wei_err.
45 dev_vect = ones(size(l_trial)); % Steps 8-10: Fill in the undefined
46 dev_vect(2:2:length(l_trial))= -dev_vect(2:2:length(l_trial));
47 dev_vect = dev_vect * dev; % entries of wei_err at l_trial(1:nz)...
48 wei_err(l_trial)=dev_vect; % by using the values of dev (-dev).
49

50 % SEGMENT 2: PERFORM VICINITY SEARCH
51 for k=1:nz % Steps 1,2, and 3: Start of Vicinity search.
52 if k==1
53 low = 1;
54 err_vicinity = sign(wei_err(l_trial(k)))*...
55 wei_err(low:l_trial(2)-1);
56 elseif k==nz
57 low = max(l_trial(k-1)+1,l_real(k-1)+1);
58 err_vicinity = sign(wei_err(l_trial(k)))*wei_err(low:ngrid);
59 else
60 low = max(l_trial(k-1)+1,l_real(k-1)+1);
61 err_vicinity = sign(wei_err(l_trial(k)))* ...
62 wei_err(low:l_trial(k+1)-1);
63 end
64 [~,ind_vicinity]=max(err_vicinity); % tilde operator does not...
65 % work with older MATLAB releases If you are running an older...
66 % MATLAB version, considering replacing it with a dummy value.
67 l_real(k) = ind_vicinity+low-1;
68 if k==1 || k==nz % Step 3: Find err_vic(1)=wei_err(l_real(1))...
69 err_vic(k) = wei_err (l_real(k));
70 end % and err_vic(nz)=wei_err(l_real(nz)) for use at STEP III.
71 end % Steps 1, 2, and 3: End of Vicinity search.
72

73 % SEGMENT 3: PERFORM ENDPOINT SEARCH
74 endsearch=0; % Step 1: Start Endpoint search.
75 err_end(1) = 0; % Step 2: Needed for the case, where upp_end = 0.
76 if l_real(1)>1 && l_trial(1)> 1 % Step 2: Find l_end_true(1)...
77 upp_end = min(l_real(1)-1,l_trial(1)-1); % and err_end(1).
78 err_endpoint = -sign(wei_err(l_real(1)))*wei_err(1: upp_end);
79 [~,ind_endpoint]=max(err_endpoint);

47Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

12 Will-be-set-by-IN-TECH

80 l_end_real(1) = ind_endpoint;
81 err_end(1) = -sign(wei_err(l_real(1)))*wei_err(l_end_real(1));
82 if err_end(1) > abs(err_vic(nz)) % Step 3:Use 'endsearch=1'...
83 endsearch=1; % or not?
84 end
85 end
86 if l_real(nz) < ngrid & l_trial(nz) < ngrid % Step 4: Find...
87 low_end = max(l_real(nz)+1,l_trial(nz)+1); % l_end_real(nz)...
88 err_endpoint = -sign(wei_err(l_real(nz)))*wei_err(low_end:ngrid);
89 [~,ind_endpoint]=max(err_endpoint); % and err_end(nz).
90 l_end_real(nz) = ind_endpoint+low_end-1;
91 err_end(nz) = -sign(wei_err(l_real(nz)))*wei_err(l_end_real(nz));
92 if err_end(nz) > max(abs(err_vic(1)), err_end(1)) % Step 5:...
93 endsearch=2; % Use 'endsearch=2' or not?
94 end
95 end
96 if endsearch == 1 % Step 7: 'endsearch=1' is valid. Form...
97 l_real=[l_end_real(1) l_real(1:nz-1)]; % l_real accordingly.
98 elseif endsearch == 2 % Step 8: 'endsearch=2' is true. Form...
99 l_real=[l_real(2:nz) l_end_real(nz)]; % l_real accordingly.

100 end % End of Endpoint search.
101

102 % SEGMENT 4: TEST CONVERGENCE
103 if (l_real == l_trial) % Step 1: The real and trial vectors...
104 break; % coincide. Hence, stop. Remez loop ended successfully.
105 else
106 l_trial = l_real; % Step 2: Otherwise, replace the values of...
107 niter = niter + 1; % l_trial with the values of l_real and...
108 end % continue.
109 end % END OF THE OVERALL REMEZ LOOP

3.3. Performance comparison

This section presents a performance comparison between the Implementation I and the
implementation available in the MATLAB function firpm. The performance measurement
criteria is the time taken by both the implementations to design a particular filter and is
measured with the help of MATLAB built-in function profiler. This function indicates
the CPU execution time taken by a function and provides the following information:

• Calls − The number of times the function was called while profiling was on.

• Total Time − The total time spent in a function, including all child functions called, in
seconds.

• Self Time − The total time taken by an individual function, not including the time for any
child functions called, in seconds.

Time measurement was carried out on an IBM ThinkCentre machine equipped with Intel Core
2 Duo processor E6550 running at a speed of 2.33 GHz with a memory of 3 GB.

The following four filters were designed with both implementations. After the examples, the
time taken by them will be tabulated in Table 1.

Example 1: It is desired to design a lowpass filter meeting the following criteria:

ωp = 0.05π, ωs = 0.1π, δp = 0.01, and δs = 0.001.

48 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 13

The minimum order to meet these criteria is 108 and the relevant MATLAB commands are

1 >> [N,F,A,W] = firpmord([0.05 0.1],[1 0],[0.01 0.001]);
2 >> firr_coeff = firremez_imp1(N+6,F,A,W);
3 >> fvtool(firr_coeff); % filter visualization tool

The magnitude response of the resulting filter is shown in Fig. 1.

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Angular frequency

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

0.99

1

1.01

Passband details (linear scale)

0 0.01π 0.02π 0.03π 0.04π 0.05π

Figure 1. Magnitude response of the lowpass filter of Example 1.

Example 2: It is desired to design a highpass filter meeting the following criteria:

ωs = 0.02π, ωp = 0.05π, δp = 0.01, and δs = 0.001.

The minimum order to meet these criteria is 172 and the relevant MATLAB commands are

1 >> [N,F,A,W] = firpmord([0.02 0.05],[0 1],[0.001 0.01]);
2 >> firr_coeff = firremez_imp1(N-4,F,A,W);

The magnitude response of the resulting filter is shown in Fig. 2.

Example 3: It is desired to synthesize a bandpass filter meeting the following criteria:

ωs1 = 0.2π, ωp1 = 0.25π, ωp2 = 0.6π, ωs2 = 0.7π, δp = δs2 = 0.01, and δs1 = 0.001.

The minimum order required to meet the criteria is 102 and the relevant MATLAB commands
are

1 >> [N,F,A,W] = firpmord([0.2 0.25 0.6 0.7],[0 1 0],[0.001 .01 .01]);
2 >> firr_coeff = firremez_imp1(N,F,A,W);

49Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

14 Will-be-set-by-IN-TECH

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Angular frequency

M
a

g
n

it
u

d
e

 (
d

B
)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

0.99

0.995

1

1.005

1.01

Passband details (linear scale)

0.2π 0.4π 0.6π 0.8π π

Figure 2. Magnitude response of the highpass filter of Example 2.

−100

−80

−60

−40

−20

0

20

Angular frequency

M
a

g
n

it
u

d
e

 (
d

B
)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

0

2

4

6

Transition band peak (linear scale)

0.6π 0.65π 0.7π

Figure 3. Magnitude response and the highest transition band peak of the bandpass filter of Example 3.

Figure 3 illustrates the magnitude response of the resulting filter. Although the amplitude
response is optimal according to Alternation Theorem, it is worth noting that this particular
filter has an extra peak in the second transition band region of approximately 16 dB. This
is because of the fact that the approximation interval is a union of passband and stopband
regions and transition bands are considered as “don’t care” regions. This assumption works
perfectly for filters having bands less than three. However, in case of three or more bands,
there is no guarantee that the response is well-behaved in the transition bands, even though it
is optimal according to the approximation theory. This fact is especially prominent if any one
of the following holds true [9]:

50 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 15

• Transition bandwidths are very large compared to the passband and/or stopband widths.

• Width of transition bands is different; the larger the difference, the greater the problem.

In order to conveniently avoid the appearance of the unwanted transition peaks, consider an
original problem stated for linear-phase Type I and Type II filters as follows.

First, there are R interlaced passband and stopband regions as given by

Ωκ =
[
ω
(low)
κ , ω

(upp)
κ

]
for κ = 1, 2, . . . , R. (17a)

Such that these regions do not overlap. The lower and upper limits for the zero-phase
frequency response in these bands are, respectively, specified as

L
(low)
κ = Dκ − δκ and L

(upp)
κ = Dκ + δκ (17b)

Here, the Dκ ’s alternatingly achieve the values of zero and unity such that the first value is
zero (unity) if the first band is a stopband (passband). For this original problem, the overall
approximation region is

Ω = Ω1 ∪ Ω2 ∪ . . . ∪ ΩR. (17c)

This region can be extended to cover the transition bands as follows:

Ω̂ = Ω1 ∪ ΩT
1 ∪ Ω2 ∪ ΩT

2 ∪ . . . ΩT
R−1 ∪ ΩR, (17d)

where

ΩT
κ = [ω

(upp)
κ + α, ω

(low)
κ − α] for κ = 1, 2, . . . , R − 1. (17e)

In order to guarantee that Ω̂κ is still a closed subset of [0, π], α should be a small positive
number. 6 There are two natural ways to state the transition band constraints, referred to as
Type A and Type B transition band constraints. For both types, the upper and lower limits for
the zero-phase frequency response in the κth transition band ΩT

κ are specified as follows. For
both Type A and Type B, the upper limit is 7

L̂
(upp)
κ = max{Dκ + δκ , Dκ+1 + δκ+1}, (17f)

whereas the lower limits depend on the type as follows:

L̂
(low)
κ =

{
min{Dκ − δκ , Dκ+1 − δκ+1}, for Type A

−L̂
(upp)
κ for Type B

(17g)

The above limits for Type A are determined such that if the filter meets the overall criteria, then
the maximum (minimum) value of the zero-phase frequency response in each transition band

6 The only condition for α is that it should be small enough to avoid the extra peaks between the adjacent passbands
and the newly formed intervals in the transition band regions.

7 It is worth emphasizing that the use of max{Dκ + δκ, Dκ+1 + δκ+1} implies that the maximum allowable value in the
nearest passband is the upper limit. Similarly, in the following equation, min{Dκ − δκ, Dκ+1 − δκ+1} means that the
lower limit is the one in the nearest stopband.

51Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

16 Will-be-set-by-IN-TECH

is less than or equal to the stated upper limit in the nearest passband region (larger than or
equal to the stated lower limit in the nearest stopband region). For Type B, in turn, the upper
limit is the same, whereas the lower limit is obtained from the upper limit by changing its
sign, thereby indicating that the magnitude response of the filter is less than or equal to the
stated upper limit in the nearest passband region.

The desired value in the κth transition band ΩT
κ for both types is the average of the

corresponding lower and upper limits, whereas the admissible deviation is the difference
between the upper limit and the above-mentioned desired value. Hence, in ΩT

κ for κ =
1, 2, . . . , R − 1 the desired values, denoted by D̂κ , and the admissible deviations, denoted by
δ̂κ , are as follows:

D̂κ =

{
[max{Dκ + δκ , Dκ+1 + δκ+1}+ min{Dκ − δκ , Dκ+1 − δκ+1}]

/
2 for Type A

0 for Type B.
(17h)

and

δ̂κ =

{
max{Dκ + δκ , Dκ+1 + δκ+1} − D̂κ for Type A

max{Dκ + δκ , Dκ+1 + δκ+1} for Type B.
(17i)

The following MATLAB function converts the original design specifications into those ones
including either Type A or Type B transition band constraints as follows. The first three input
parameters F_ori, Des_ori, and Dev_ori contain the 2R edges of the R bands as a fraction
of π as well as the desired values and the admissible deviations from these values in the R
bands in the original specifications. . "alpha" corresponds directly to α which is used in (17e),
whereas itype=1 (itype=2) means that Type A (Type B) transition band constraints are in use.
The output of this function consists of vectors F, Des, and Wt that are in the desired form
when calling the MATLAB function firpm in its original form or its modifications referred to
as Implementation I or II in this contribution.

1 function [F,Des,Wt]=convert2constrt(F_ori, Des_ori,Dev_ori,alpha,itype)
2 % This function converts the original deisgn specifications into Type A
3 % or Type B transition band constraints compatible specifications.
4 %
5 % Input parameters:
6 % - F_ori contains the edges of the R bands, where R = length(Des_s).
7 % - Des_ori contains the desired values in the R bands.
8 % - Dev_ori contains the admissiable deviations in the R bands.
9 % - alpha is a small positive constant.

10 % - type=1 (2) generates Type A (B) transition band constraints.
11 %
12 % Output parameters
13 % - F contains the edges of the 2R-1 bands.
14 % - Des contains the desired values on all the edges of 2R-1 bands.
15 % - Wt contains the weights in the 2R-1 bands.
16

17 % Check if the input data is correct
18 if (alpha < 0)
19 error('alpha should be a small positive number.');
20 end
21 R = numel(Des_ori);
22

52 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 17

23 % Generate the output parameters
24 for k=1:R
25 F(4*(k-1)+1)=F_ori(2*k-1); F(4*(k-1)+2)=F_ori(2*k);
26 Des(2*(k-1)+1)=Des_ori(k); Dev(2*(k-1)+1)=Dev_ori(k);
27 end
28 for k=1:R-1
29 F(4*(k-1)+3)=F_ori(2*k)+alpha;F(4*(k-1)+4)=F_ori(2*k+1)-alpha;
30 aid1=max(Des_ori(k)+Dev_ori(k),Des_ori(k+1)+Dev_ori(k+1));
31 aid2=min(Des_ori(k)-Dev_ori(k),Des_ori(k+1)-Dev_ori(k+1));
32 if itype==1
33 Des(2*k) = (aid1+aid2)/2;
34 Dev(2*k) = aid1-Des(2*k);
35 elseif itype==2
36 Des(2*k) = 0;
37 Dev(2*k) = aid1;
38 else
39 error('Type should be either 1 or 2.');
40 end
41 end
42 temp = Des(ones(2,1),:);
43 F = F';
44 Des = temp(:);
45 Wt = (1./Dev)';

When using the above MATLAB function with α = 0.0005, the ten band-edges of the five
bands as fractions of π for both Type A and Type B transition band constraints become

Ω̂κ = [0, 0.2, 0.2005, 0.2495, 0.25, 0.6, 0.6005, 0.6995, 0.7, 1] .

The corresponding desired and weight values for Type A and Type B transition band
constraints are, respectively,

DA = [0, 0.5045, 1, 0.5, 0]

WA = [1000, 1.9782, 100, 1.9608, 100],

and

DB = [0, 0, 1, 0, 0]

WB = [1000, 0.9901, 100, 0.9901, 100].

The relevant MATLAB commands are

1 >> % Data for Type A design
2 >> [F1,A1,W1] = convert2constrt([0 0.2 0.25 0.6 0.7 1],[0 1 0],...
3 [.001 .01 .01],0.0005,1);
4 >> N1 = 103; firr_coeff1 = firremez_imp1(N1,F1,A1,W1);
5 >> % Data for Type B design
6 >> [F2,A2,W2] = convert2constrt([0 0.2 0.25 0.6 0.7 1],[0 1 0],...
7 [.001 .01 .01],0.0005,2); firr_coeff2 = firremez_imp1(N1,F2,A2,W2);

As seen in Fig. 4, by increasing the original filter’s order from 102 to 103, the transition bands
constraints guarantee that the overall response of the filters stays within the desired limits.

53Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

18 Will-be-set-by-IN-TECH

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Angular frequency

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

1+δ
p
 and −δ

s

1+δ
p
 and −(1−δ

p
)

0.99

1

1.01

linear passband details

0.3π 0.4π 0.5π 0.6π

Figure 4. Magnitude response of the two bandpass filters of Example 3.

Example 4: It is required to synthesize a bandstop filter meeting the following criteria:

ωp1 = 0.15π, ωs1 = 0.3π, ωs2 = 0.6π, ωp2 = 0.65π, δp1 = δp2 = 0.01, and δs = 0.001.

The minimum order required to meet these criteria is 102 and the relevant MATLAB
commands are

1 >> [N,F,A,W] = firpmord([0.15 0.3 0.6 0.65],[1 0 1],[0.01 0.001 0.01]);
2 >> firr_coeff = firremez_imp1(N-4,F,A,W);

The magnitude response of the resulting bandstop filter is shown in Fig. 5. This response is the
best one according to Alternation Theorem, but contains two extra peaks of approximately 33
and 15 dB in the first transition band. By using the technique described above, the transition
band peaks can be attenuated to an acceptable level. The relevant MATLAB commands are

1 >> % Data for Type A design
2 >> [F1,A1,W1] = convert2constrt([0 0.15 0.3 0.6 0.65 1],[1 0 1],...
3 [0.01 0.001 0.01],0.0005,1);
4 >> N1 = 102; firr_coeff1 = firremez_imp1(N1,F1,A1,W1);
5 >> % Data for Type B design
6 >> [F2,A2,W2] = convert2constrt([0 0.15 0.3 0.6 0.65 1],[1 0 1],...
7 [0.01 0.001 0.01],0.0005,2); firr_coeff2 = firremez_imp1(N1,F2,A2,W2);

As seen in Fig. 6, the overall response of the filters of the same order as the original one, that
is, 102, stay within the desired limits for both Type A and Type B transition band constraints.
Among these two constrained designs, Type A constrained design is preferred as for it the
undershoot of the zero-phase frequency response is limited to be larger than or equal to −δs =
−0.001. Furthermore, the response in the first passband remains equiripple.

54 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 19

−100

−80

−60

−40

−20

0

20

40

Angular frequency

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

0

50

Transition band peak (linear scale)

0.2π 0.3π

Figure 5. Magnitude response of the bandstop filter of Example 4.

Table 1 indicates the outcomes obtained from the original implementation and the
Implementation I of the Remez algorithm, both of which work practically in the same manner.
It is evident that the time required by the Implementation I is almost one third of the time
taken by the original implementation and illustrates the superiority of the proposed MATLAB
implementation of the algorithm.

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Angular frequency

M
a

g
n

it
u

d
e

 (
d

B
)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

1+δ
p
 and −δ

s

1+δ
p
 and −(1−δ

p
)

0.99

1

1.01

linear passband details

angular frequency

0 0.05π 0.1π 0.15π

Figure 6. Magnitude response of the two bandstop filters of Example 4.

55Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

20 Will-be-set-by-IN-TECH

Example
Original Implementation Implementation I

Total Time* Self Time Total Time Self Time

1 0.152 0.125 0.032 0.032

2 0.235 0.136 0.064 0.064

3⊤ 0.159 0.120 0.032 0.032

3⊥A 0.262 0.191 0.056 0.056

3⊥B 0.307 0.184 0.061 0.061

4⊤ 0.198 0.138 0.047 0.047

4⊥A 0.272 0.169 0.051 0.051

4⊥B 0.318 0.186 0.055 0.055

*Time in seconds
⊤Transition bands are excluded.
⊥A Type A transition band constraints are used.
⊥B Type B transition band constraints are used.

Table 1. Performance Comparison of Original Implementation and Implementation I

4. Implementation II

This section discusses the Implementation II in detail. First, a theoretical formulation of
the algorithm is presented and, then, the corresponding MATLAB code is specified. After
that, a detailed comparison shows how this implementation is superior to the original
implementation of the Remez algorithm in the function firpm, in terms of significant
reductions in the number of iterations and the CPU execution time required to generate the
same optimum solution, especially in multiband cases.

4.1. Theoretical formulation

As mentioned in the introduction, the key difference between Implementations I and II is
the search strategies employed for the “real” extremal points of the weighted error function,
which is formed based on the “trial” extremal points. Consequently, Segment 1 and Segment

4 are same for both the implementations. The remaining Segment 2 and Segment 3 along
with the accompanying steps are as follows.

Segment 2: Based on the values of wei_err(k) for 1 ≤ k ≤ ngrid generated at Segment 1, this

main step generates the vector ℓ
(start)
real to include as many entries as possible in the ascending

order subject to the following three conditions:

Condition 1: At each entry of ℓ
(start)
real , wei_err(k), when regarded as a function of k, achieves a

local extremum whose absolute value is larger than or equal to |dev|, where |dev| is determined
according to (6).

Condition 2: In case of several consecutive local extrema of wei_err(k) with the same sign for

k(low) ≤ k ≤ k(upp), only one entry is included in ℓ
(start)
real and its value is the value of k for

k(low) ≤ k ≤ k(upp), where |wei_err(k)| achieves its maximum value.

56 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 21

Condition 3: The sign of wei_err as a function of k alternates at the consecutive enteries of

ℓ
(start)
real

.

This vector ℓ
(start)
real serves as a start-up vector for generating the “real” vector ℓreal at Segment

3. This segment is carried out using the following four steps:

Step 1: Find all the values of k in the range 1 ≤ k ≤ ngrid, where a local extremum of
wei_err(k) occurs. Store these values of k in the ascending order into the vector ℓaid1.

Step 2: Extract those entries from ℓaid1, where the absolute value of wei_err is larger than or
equal to |dev|, and store these entries into the vector ℓaid2.

Step 3: Split the range 1 ≤ κ ≤ naid2, where naid2 is the length of ℓaid2, into the sub-ranges

κ
(low)(m) ≤ κ ≤ κ

(upp)(m) for m = 1, 2, . . . , naid2 in such a way that the signs of

wei_err(ℓaid2(κ)) in the mth sub-range as given by κ
(low)(m) ≤ κ ≤ κ

(upp)(m) are the same.

Step 4: Generate the vector ℓ
(start)
real

of length nzstart such that its mth entry is the value among

ℓaid2(κ) for κ
(low)(m) ≤ κ ≤ κ

(upp)(m), at which |wei_err(ℓaid2(κ))| achieves its maximum
value. Go to Step 1 under Segment 3.

Segment 3: Based on the vector ℓ
(start)
real

generated at Segment 2, this main step extracts from its
enteries the nz enteries to be included in the “real” vector ℓreal such that the largest absolute
values of wei_err(k), when regarded as a function of k, are retained subject to the condition
that the maxima and minima alternate at the consecutive extracted enteries. If the length of

ℓ
(start)
real

is nz, then ℓreal ≡ ℓ
(start)
real

and no extraction is required. Otherwise, the extraction is
performed using the following steps:

STEP A: Denote the length of ℓ
(start)
real by n

(start)
real . If n

(start)
real − nz is an odd integer, then the first

(last) entry is discarded from ℓ
(start)
real if the absolute value of wei_err(k) at k = ℓ

(start)
real (1) is less

than or equal (larger) than the corresponding value at k = ℓ
(start)
real (k = n

(start)
real). Go to the next

step.

STEP B: Denote the remaining vector and its length by ℓ̃
(start)
real and ñ

(start)
real , respectively. If

ñ
(start)
real

− nz = 0, then stop. Otherwise go to the next step.

STEP C: Since ñ
(start)
real − nz is an even integer, two entries of ℓ̃

(start)
real should be simultaneously

discarded. There are altogether ñ
(start)
real optional pairs such that the first pair consists of the

first and last entries of ℓ̃
(start)
real and the remaining ones are ñ

(start)
real − 1 consecutive entry pairs.

The pair to be discarded is the pair, where the maximum of two absolute values of wei_err(k)
is the smallest. Go to STEP C.

This segment is carried out using the following seven steps:

Step 1: Set ℓ
(init)
real = ℓ

(start)
real . If nz

(init)
real − nz, where nz

(init)
real is the length of ℓ

(init)
real , is zero, then set

ℓreal = ℓ
(init)
real and go to Step 1 under Segment 4. Otherwise, go to the next step.

Step 2: If nz
(init)
real

− nz is an even integer, then go to Step 4. Otherwise, go to the next step.

57Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

22 Will-be-set-by-IN-TECH

Step 3: If |wei_err(ℓ
(init)
real (1))| ≤ |wei_err(ℓ

(init)
real (nz

(init)
real))|, then discard the first entry from

ℓ
(init)
real

. Otherwise, discard the last entry from ℓ
(init)
real

. Go to the next step.

Step 4: If nz
(init)
real − nz, where nz

(init)
real is the length of the remaining vector ℓ

(init)
real , is zero, then

set ℓreal = ℓ
(init)
real

and go to Step 1 under Segment 4. Otherwise, go to the next step.

Step 5: Determine the entries of the vector wei_comp as follows:

wei_comp(m) =max
(
|wei_err(ℓ

(init)
real

(m))|, |wei_err(ℓ
(init)
real

(m + 1))|
)

for m = 1, 2, . . . , nz
(init)
real − 1.

(18)

Step 6: If max
(
|wei_err(ℓ

(init)
real (1))|, |wei_err(ℓ

(init)
real (nz

(init)
real))|

)
is less than or equal to the

largest entry of wei_comp, then remove the first and last entries from ℓ
(init)
real and go to Step 4.

Otherwise, go to the next step.

Step 7: Find the entry of wei_comp with the smallest value. If this is the mth entry, then

remove the mth and the (m + 1)th entries from ℓ
(init)
real . Go to Step 4.

4.2. MATLAB code snippet

The code pasted below has been tested and implemented with MATLAB version 7.11.0.584
(R2010b). It can be embedded into the MATLAB function firpm in a similar fashion to
Implementation I.

1 function [x,y,ad,dev] = remez_imp2(nz,iext,ngrid,grid,des,wt)
2 % remez_imp1 implements the Segments 1 - 4 described in the preceding
3 % section, the function needs to be inserted within the MATLAB function
4 % firpm. The input argument values come directly from the function firpm
5 % and the output arguments are required to perform the Inverse Fourier
6 % transform in order to calculate the filter coefficients. In case of
7 % any issues send an e-mail to muhammad"dot"ahsan"at"tut "dot" fi.
8 % Last updated 04.15.2012 4:54 AM (UTC/GMT+2)
9

10 % INITIALIZATIONS PHASE
11 niter = 1; % Initialize the iteration counter.
12 itrmax = 250; % Maximum number of iterations.
13 l_trial = iext(1:nz)'; % Startup value of l_trial.
14

15 % ITERATION PHASE
16 % REMEZ LOOP FOR LOCATING DESIRED nz INDICES AMONG THE GRID POINTS
17 while (niter < itrmax)
18

19 % STEP I: BASED ON THE PRESENT 'TRIAL' VECTOR l_trial, GENERATE THE
20 % WEIGHTED ERROR FUNCTION wei_err(k) AT ALL THE GRID POINTS
21 x = cos(2*pi*grid(l_trial)); % Step 1: Lagrange abscissa vector x.
22 A = x'*ones(1,nz)-ones(nz,1)*x;
23 A(eye(nz)==1) = 1;
24 ad = prod(A);
25 ad = ad * (-2)^(nz-1); % Step 1: Lagrange coefficient vector ad...
26 ad = 1./ad; % found efficiently without using the function remezdd.
27 add = ones(size(ad));

58 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 23

28 add(2:2:nz) = -add(2:2:nz);
29 dnum = ad*des(l_trial)';
30 dden = add*(ad./wt(l_trial))';
31 dev = -dnum/dden; % Step 1: Current value of deviation.
32 % Step 2: Lagrange ordinate vector y
33 y = des(l_trial) + dev*add./wt(l_trial);
34 % Step 3: Overall abscissa vector x_all
35 x_all = cos(2*pi*grid(1:ngrid));
36 err_num = zeros(1,ngrid); % Step 4: Initializations of err_num...
37 err_den = err_num; % and err_den.
38 for jj = 1:nz % Steps 5 and 6: Intermediate evaluations for...
39 aid = ad(jj)./(x_all - x(jj)); % obtaining the weighted error...
40 err_den = err_den + aid; % wei_err(k) at all the grid points.
41 err_num = err_num + y(jj)*aid;
42 end
43 err_cy = err_num./err_den;
44 wei_err = (err_cy - des).*wt; % Step 7: Generate the vector wei_err.
45 dev_vect = ones(size(l_trial)); % Steps 8-10: Fill in the undefined
46 dev_vect(2:2:length(l_trial))= -dev_vect(2:2:length(l_trial));
47 dev_vect = dev_vect * dev; % entries of wei_err at l_trial(1:nz)...
48 % by alternatingly using the values of dev and -dev.
49 wei_err(l_trial)=dev_vect;
50

51 % STEP II DETERMINE THE VECTOR l_real_start
52 % Step 1: Find l_aid1.
53 l_aid1 = find(diff(sign(diff([0 wei_err 0]))));
54 % Step 2: Determine l_aid2.
55 l_aid2 = l_aid1(abs(wei_err(l_aid1)) >= abs(dev));
56 [~,ind] = max(sparse(1:length(l_aid2),... % Step 3
57 cumsum([1,(wei_err(l_aid2(2:end))>=0) ...
58 ~=(wei_err(l_aid2(1:end-1))>=0)]),...
59 abs(wei_err(l_aid2))));
60 l_real_start = l_aid2(ind); % Step 4: Determine l_real_start.
61

62 % STEP III DETERMINE THE VECTOR l_real
63 l_real_init = l_real_start; % Step 1
64 if rem(numel(l_real_init) - nz,2) == 1 % Step 2: odd difference.
65 if abs(wei_err(l_real_init(1))) <= abs(wei_err(l_real_init(end)))
66 l_real_init(1) = []; % Step 3: discard the first entry...
67 else % of l_real_init.
68 l_real_init(end) = []; % otherwise discard the last entry.
69 end
70 end
71 while numel(l_real_init) > nz % Step 4
72 wei_real=abs(wei_err(l_real_init)); % Start of Step 5
73 wei_comp=max(wei_real(1:end-1),...
74 wei_real(2:end)); % End of Step 5
75 if max(abs(wei_err(l_real_init(1))),... % Start of Step 6
76 abs(wei_err(l_real_init(end))))<= min(wei_comp)
77 l_real_init = l_real_init(2:end-1); % End of Step 6
78 else
79 [~,ind_omit]=min(wei_comp); % Start: Step 7
80 l_real_init(ind_omit:ind_omit+1) = []; % End: Step 7
81 end
82 end
83 l_real = l_real_init;
84

85 % STEP IV: TEST CONVERGENCE
86 if (l_real == l_trial) % Step 1: The real and trial vectors...
87 break; % coincide. Hence, stop. Remez loop ended successfully.

59Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

24 Will-be-set-by-IN-TECH

88 else
89 l_trial = l_real; % Step 2: Otherwise, replace the values of...
90 niter = niter + 1; % l_trial with the values of l_real and...
91 end % continue.
92 end % END OF THE OVERALL REMEZ LOOP

4.3. Performance comparison

This subsection shows how the proposed Implementation II, following the fundamental
principle of the RME algorithms, outperforms the original implementation in terms of
significant reductions in both the number of iterations and the CPU execution time required
to arrive at the same optimum solution. For this purpose, four practical filter design examples
are discussed. In all these examples, the problem is to design a filter having five interlaced
passbands and stopbands. In order to achieve the accepted behavior in the transition band
regions, the last two examples require the use of the Type A or Type B transition band
constraints described in Subsection 3.3.

Example 5: It is desired to design a five-band filter with two passbands and three stopbands
meeting the following specifications:

ωs1 = 0.17π, ωp1 = 0.23π, ωp2 = 0.47π, ωs2 = 0.53π, ωs3 = 0.67π, ωp3 = 0.73π,

ωp4 = 0.82π, ωs4 = 0.88π, δs1 = δs2 = δs3 = 0.001, and δp1 = δp2 = 0.01.

The minimum order to meet the criteria is 91 and the relevant MATLAB commands are

1 >> [n,f,a,w] = firpmord([.17 .23 .47 .53 .67 .73 .82 .88],...
2 [0 1 0 1 0], [.001 .01 .001 .01 .001]);
3 >> firr_coeff = firremez_imp2(n+4,f,a,w);

The magnitude response of the resulting filter is shown in Fig. 7.

Example 6: It is desired to design a five-band filter with three passbands and two stopbands
with following specifications:

ωp1 = 0.1π, ωs1 = 0.15π, ωs2 = 0.3π, ωp2 = 0.35π, ωp3 = 0.75π, ωs3 = 0.8π, ωs4 = 0.85π,

ωp4 = 0.9π, δp1 = δp2 = δp3 = 0.01, and δs1 = δs2 = 0.001.

The minimum order to meet the criteria is 106 and the relevant MATLAB commands are

1 >> [n,f,a,w] = firpmord([.1 .15 .3 .35 .75 .8 .85 .9],[1 0 1 0 1],...
2 [.01 .001 .01 .001 .01]); firr_coeff = firremez_imp2(n,f,a,w);

The magnitude response of the resulting filter is shown in Fig. 8.

Example 7: It is desired to design a five-band filter with two passbands and three stopbands
with following specifications:

ωs1 = 0.15π, ωp1 = 0.2π, ωp2 = 0.45π, ωs2 = 0.55π, ωs3 = 0.7π, ωp3 = 0.8π, ωp4 = 0.85π,

ωs4 = 0.93π, δs1 = δs2 = δs3 = 0.001, and δp1 = δp2 = 0.01.

60 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 25

−100

−80

−60

−40

−20

0

20

40

Angular frequency

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

0.99

1

1.01

First passband (linear scale)

0.25π 0.3π 0.35π 0.4π 0.45π

Figure 7. Magnitude response of the five-band filter of Example 5.

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Angular frequency

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

0.99

0.995

1

1.005

1.01

Passband details (linear)

0.4π 0.5π 0.6π 0.7π

Figure 8. Magnitude response of the five-band filter of Example 6.

The minimum filter order required to meet these specifications is 100. The magnitude
response of the resulting filter designed without any constraints in the transition bands is
shown by the solid blue line in Fig. 9. It is observed that in the second and third transition
bands there are unwanted peaks of approximately 9 dB and 16 dB, respectively. These
undesired peaks can be avoided by using Type A and Type B transition band constraints in the
approximation problem according to the discussion of Subsection 3.3. When using α = 0.0005,
the minimum order to meet the resulting criteria for both Type A and Type B constraints is 101.
The responses of the resulting filters meeting these additional constraints are depicted in Fig.
9 by using a dashed red line and a dot-dashed black line, respectively.

61Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

26 Will-be-set-by-IN-TECH

The relevant MATLAB commands for designing the above-mentioned three filters are

1 >> % Filter design without transition band constraints
2 >> [n,f,a,w] = firpmord([.15 .2 .45 .55 .7 .8 .85 .93],...
3 [0 1 0 1 0],[.001 .01 .001 .01 .001]);
4 >> N1 = 101;h = firremez_imp2(n-2,f,a,w);
5 >> % Filter design with Type A transition band constraints
6 >> [F1,A1,W1] = convert2constrt([0 .15 .2 .45 .55 .7 .8 .85 .93 1],...
7 [0 1 0 1 0],[.001 .01 .001 .01 .001],0.0005,1);
8 >> htbi1 = firremez_imp2(N1,F1,A1,W1);
9 >> % Filter design with Type B transition band constraints

10 >> [F2,A2,W2] = convert2constrt([0 .15 .2 .45 .55 .7 .8 .85 .93 1],...
11 [0 1 0 1 0],[.001 .01 .001 .01 .001],0.0005,2);
12 >> htbi2 = firremez_imp2(N1,F2,A2,W2);

−100

−80

−60

−40

−20

0

20

Angular frequency

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

No constraints

1+δ
p
 and −δ

s

1+δ
p
 and −(1−δ

p
)

Figure 9. Magnitude responses of the three five-band filters of Example 7.

Example 8: It is desired to design a five bands filter with three passbands and two stopbands
with following specifications:

ωp1 = 0.17π, ωs1 = 0.27π, ωs2 = 0.47π, ωp2 = 0.52π, ωp3 = 0.69π, ωs3 = 0.79π, ωs4 = 0.87π,

ωp4 = 0.92π, δp1 = δp2 = δp3 = 0.01, and δs1 = δs2 = 0.001.

The minimum filter order to meet these specifications is 102. The magnitude response of the
resulting filter designed without any constraints in the transition bands is shown by the solid
blue line in Fig. 10. It is observed that in the first, second, and third transition bands, there are
undesired peaks of approximately 1 dB, 2 dB, and 1.7 dB, respectively. These undesired peaks
can be avoided in a manner similar to that used in the previous example. In this example,
for Type A and Type B constraints, the minimum filter orders are 104 and 102, respectively,
whereas the responses of the resulting filters are depicted in Fig. 10 using a dashed red line
and a dot-dashed black line, respectively.

The relevant MATLAB commands for designing the above-mentioned three filters are

62 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 27

1 >> % Filter design without transition band constraints
2 >> [n,f,a,w] = firpmord([0.17 0.27 0.47 0.52 0.69 0.79 0.87 0.92],...
3 [1,0,1,0,1],[0.01,0.001,0.01,0.001,0.01]);
4 >> h = firremez_imp2(n-4,f,a,w);
5 >> % Filter design with Type A transition band constraints
6 >> [F1,A1,W1] = convert2constrt([0 0.17 0.27 0.47 0.52 0.69 0.79,...
7 0.87 0.92 1], [1,0,1,0,1],[0.01,0.001,0.01,0.001,0.01],0.0005,1);
8 >> N1 = 104; htbi1 = firremez_imp2(N1,F1,A1,W1);
9 >> % Filter design with Type B transition band constraints

10 >> [F2,A2,W2] = convert2constrt([0 0.17 0.27 0.47 0.52 0.69 0.79,...
11 0.87 0.92 1], [1,0,1,0,1],[0.01,0.001,0.01,0.001,0.01],0.0005,2);
12 >> N2 = 102; htbi2 = firremez_imp2(N2,F2,A2,W2);

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Angular frequency

M
a
g
n
it
u
d
e
 (

d
B

)

0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

No constraint

1+δ
p
 and −δ

s

1+δ
p
 and −(1−δ

p
)

Figure 10. Magnitude response of three five-band filters of Example 8.

Example
Original Implementation Implementation II Reduction Percentage(%)

Iterations Time* Iterations Time Iterations Time

1 34 0.223 7 0.024 79 89
2 35 0.269 16 0.040 54 85

3⊤ 15 0.160 15 0.033 − 79

3⊥A 93 0.617 23 0.055 75 91

3⊥B 38 0.283 20 0.051 47 82

4⊤ 11 0.146 11 0.029 − 80

4⊥A 49 0.360 37 0.082 24 77

4⊥B 66 0.398 23 0.057 65 86

*Time in seconds
⊤Transition bands are excluded.
⊥AType A transition band constraints are used.
⊥BType B transition band constraints are used.

Table 2. Performance Comparison of Original Implementation and Implementation II.

63Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

28 Will-be-set-by-IN-TECH

The number of iterations as well as the CPU execution times required by the original
implementation and the proposed second implementation are summarized in Table 2 for
synthesizing all the eight filters considered in this section. The hardware and MATLAB
versions are the same as used earlier during the comparison of the original and the proposed
first implementations. It is seen that the reduction in the numbers of iterations is 79 and 54
percent, respectively, when synthesizing the filters in Example 5 and 6. In case of examples 7
and 8 with the transition band constraints in effect, the reduction in the numbers of iterations
is 45 percent (Type A), 38 percent (Type B) and 18 percent (Type A), and 55 percent (Type
B), respectively. The reduction percentage in the CPU execution time is between 71 and
86 percent for all the eight filter designs under consideration. Hence, the proposed second
implementation is highly efficient in the design of multiband filters.

5. Conclusion

This chapter has introduced two novel MATLAB based Remez algorithms for the design
of optimum arbitrary-magnitude linear-phase FIR filters. The first algorithm is a highly
optimized and compact translation of the PM algorithm from its original FORTRAN code to
its MATLAB counterpart in comparison with the existing MATLAB function firpm. These
attractive properties have been achieved by first observing that the PM algorithm’s very
lengthy search strategy for the “real” extremal points of the weighted error function, which is
formed based on the “trial” extremal points, can be compressed into two very compact basic
search techniques. Second, the MATLAB vectorization techniques are employed whenever
possible. As a result, the CPU execution time is roughly one third to synthesize linear-phase
FIR filters practically in the same manner in comparison with the function firpm being
more or less a direct translation from the FORTRAN code. Moreover, the code complexity
is reduced to a considerable extent. The original implementation utilizes approximately 15
nested loops and around 300 lines of code whereas the first proposed implementation uses
only 3 looping structures and approximately 100 lines of code. Thus, same efficient results are
achieved with one fifth of the looping structures and one third of the code lines in the original
implementation.

It is, however, important to note that the first technique does not follow the fundamental idea
of Remez algorithm as suggested in [20] as it tries to find the new “trial” extremal points in
the vicinity of previously found points as well as in the surroundings of the first and last grid
points under consideration.

The second implementation obeys the fundamental principle of the Remez multiple exchange
algorithm. This means that while searching for the “real” set of extrema, there is a possibility
to obtain more than the required points in intermediate calculations. In this situation, the idea
is to keep as many extremal points as possible subject to the condition that the corresponding
error values are the maximum absolute ones and they obey the sign alternation property.
Another prominent feature is that the weighted error function is calculated over the entire
grid. This, not only makes sure that no potential extremal frequency point is skipped
during a particular iteration, but also enables to transfer the two extremal points between
the consecutive bands which, in some cases, is a necessary prerequisite for the algorithms in
[16] and [19] to converge. Furthermore, the number of iterations as well as the CPU execution
times required by the proposed second implementation to design the linear-phase FIR filters

64 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design 29

in comparison with the existing MATLAB function firpm, especially in multi-band cases, are
significantly lower. Examples have shown that in most five-band cases with some constraints
in the transition bands, the reduction in the number of iteration is more than 50 percent,
whereas the reduction in the CPU execution time is around 80 percent.

The quality of the filters designed with the proposed implementations is analogous to that of
the PM algorithm with the added advantages of less number of iterations and CPU execution
time.

The proposed two implementations have concentrated only on the core discrete Remez
part of the PM algorithm. Future work is devoted to explore the possibilities of further
improvements in the overall function firpm and reimplementing the other portions of this
function efficiently.

Author details

Muhammad Ahsan and Tapio Saramäki
Tampere University of Technology, Tampere, Finland

6. References

[1] Ahsan, M. (2008). Design of optimum linear phase FIR filters with a modified
implementation of the Remez multiple exchange algorithm, In:Department of Signal
Processing, Tampere University of Technology, Master’s thesis, (Sep. 2008), Tampere,
Finland, 107 pages.

[2] Ahsan, M. & Saramäki, T. (2009). Significant improvements in translating the
Parks-McClellan algorithm from its FORTRAN code to its corresponding MATLAB
code, In:IEEE Symp. Circuits Syst., (May 2009), Taipei, Taiwan, pp. 289-292.

[3] Ahsan, M. & Saramäki, T. (2011). A MATLAB Based Optimum Multiband FIR
Filters Design Program Following the Original Idea of the Remez Multiple Exchange
Algorithm, In:IEEE Symp. Circuits Syst., (May 2011), Rio de Janiero Brazil, pp 137-140.

[4] Cheney, W. E. (1966). Introduction to Approximation Theory, AMS Chalsea Publishing.
[5] McClellan, J. H. & Parks, T. W. (1972). A program for the design of linear phase finite

impulse response digital filters, In: IEEE Trans. Audio Electroacoust., Vol. AU-20, (Aug.
1972) pp. 195-199.

[6] McClellan, J. H. & Parks, T. W. (1973). A unified approach to the Design of Optimum
FIR linear phase digital filters, In: IEEE Trans. Circuit Theory, Vol. 20, (Nov. 1973) pp.
697-701.

[7] McClellan, J. H. & Parks, T. W. & Rabiner, L. R. (1973). A computer program for
designing optimum FIR linear phase digital filters, In: IEEE Trans. Audio Electroacoust.,
Vol. 21, (Dec. 1973) pp. 506-526.

[8] Novodvorskii, E. P. & Pinsker, I. S. (1951). The process of equating maxima, In: Uspekhi
Mat. Nauk (USSR), Vol. 6, (1951) pp. 174-181 (Engl. transl. by A. Schenitzer).

[9] Rabiner, L. R., Kaiser, J. F. & Schafer, R. W. (1974). Some considerations in the design of
multiband finite-impulse-response digital filters, In: IEEE Trans. Acoust. Speech, Signal
Processing, Vol. 22, (Dec. 1974) pp. 462-472.

[10] Rabiner, R. L., Gold, G. (1975). Theory and Application of DIGITAL SIGNAL PROCESSING,
Prentice Hall.

65Two Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design

30 Will-be-set-by-IN-TECH

[11] Remez, E. (1934). Sur le calcul effectifdes polynomes d‘approximation de Tchebychef,
In: Compt. Rend. Acad. Sci, Vol. 199, (1934) pp. 337-340.

[12] Rice, R. J. (1964). The Approximation of Functions. Volume 1: Linear Theory,
Addison-Wesley Pub (Sd).

[13] Rivlin, J. T. (2010). An Introduction to the Approximation of Functions, Dover Publications.
[14] Saramäki, T. (1981). Design of digital filters requiring a small number of arithmetic

operations, In:Dept. of Electrical Engineering, Tampere University of Technology, Dr. Tech.
Dissertation, Publ. 12, Tampere, Finland, 1981,226 pages.

[15] Saramäki, T. (1987). Efficient iterative algorithms for the design of optimum IIR filters
with arbitrary specifications, In:Proc. Int. Conf. Digital Signal Process., Florence,Italy, (Sep.
1987) pp. 32-36.

[16] Saramäki, T. (1992). An efficient Remez-type algorithm for the design of optimum IIR
filters with arbitrary partially constrained specifications, In:IEEE Symp. Circuits Syst.,
Vol. 5, (May 1992) San Diego CA, pp. 2577-2580.

[17] Saramäki, T. (1993). Finite impulse response filter design, In:Handbook for Digital Signal
Processing, Mitra, S. K. & Kaiser, J. F. , (Eds.), Ch. 4, (1993) New York, NY:John Wiley and
Sons, pp. 155-277.

[18] Saramäki, T. (1994). Generalizations of classical recursive digital filters and their design
with the aid of a Remez-type Algorithm, In:IEEE Symp. Circuits Syst., Vol. 2, (May 1994),
London UK, pp. 549-552.

[19] Saramäki, T. & Renfors, M. (1995). A Remez-type algorithm for designing digital filters
composed of all-pass sections based on phase approximations, In:Proc. 38th Midwest
Symp. Circuits Syst., Vol. 1, (Aug. 1995), Rio de Janiero Brazil, pp. 571-575.

[20] Temes, G. C. & Calahan, D. A. (1967). Computer-aided network optimization the
state-of-the-art, In:Proc. IEEE, Vol. 55, (Nov. 1967), pp. 1832-1863. Nov. 1967.

[21] The MathWorks Inc. (2009). Filter design toolbox user’s guide, In:MATLAB Product Help,
Version 4.6, (Sep. 2009), The MathWorks Inc., Natick, MA.

66 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 2

