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1. Introduction 

Micro-Robots have been and continue to be essential components of medical field. Micro-

Robots are used in medical field to surgical applications. Knowledge of the kinematics, 

dynamics and trajectory planning of these Micro-Robots is most important for their design 

and control. MATLAB is a modern tool that has transformed the mathematical calculations 

methods because MATLAB not only provides numerical calculations but also facilitates 

analytical calculations using the computer. The present textbook uses MATLAB as a tool to 

solve problems from micro-robots. The intent is to show the convenience of MATLAB for 

micro-robots analysis. Using example problems the MATLAB syntax will be demonstrated. 

MATLAB is very useful in the process of deriving solutions for any problem in micro-

robots. The chapter includes a most problem of micro-robots for surgical applications that 

are being solved using MATLAB. The programs are available at the end of this chapter. 

Robots are widely used in medical field for getting minimally invasive surgery efficiently 

and accurately. Minimally invasive surgery is an innovative approach that allows reducing 

patient trauma, postoperative pain and recovery time [1]. The kinematic and dynamic 

analysis of the robot, for any applications whether in medical field or another, are very 

important. The direct aim is to properly select the workspace and the actuator size. 

Frumento [1] designed a minimally invasive robot for heart surgery. They concentrated 

mainly on the kinematic analysis and the workspace of the robot. Tsai and Hsu [3] 

investigated a parallel surgical robot having six degrees of freedom. They studied the 

kinematics only, to obtain the workspace of surgical robot and control it using Fuzzy Logic 

control. Miller and Christensen [4] analyzed the dynamics of the Multi-rigid-body robot 

using Newton’s second law of motion and used the results to design the controller. 

Featherstone and Orin [5] investigated the robot dynamics and used Newton-Euler 

technique to obtain the equation and algorithms of robot motion. Wang, et al [6] designed 

the dimensional synthesis of 6-DOF Micro-surgery manipulator (Micro Hand) .They studied 

the kinematics and the workspace of the manipulator they considered by an Optimal design 
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method. Alici and Shirinzadeh [7] obtained the singularity loci of parallel manipulators 

exemplified by a 3-DOF spherical parallel manipulator. They utilized the inverse kinematics, 

and Jacobian matrices to obtain the velocity equation of the actuator and the end effector. 

The determinants of the manipulator Jacobian matrices were evaluated for a specified set of 

geometric parameters. Finally, the singularity loci of the manipulator in Cartesian space 

were generated. Ben-Horin, et al [8] analyzed the kinematics and dynamics of parallel robot 

consisting of three plenary actuated links [6-DOF parallel manipulator]. They investigated 

by direct kinematic analysis and obtained the dynamics equations and algorithms using 

Newton’s second law and presented the system performance. Bonnifait and Garcia [9] 

studied the 6-DOF dynamic localization of an outdoor mobile robot. They obtained the 

robot dynamics equations and algorithms using the numerical method (Taylor method) and 

used the azimuth and elevation angles of known landmarks, collected by a rotating linear 

camera to obtain the simulation results of the robot. They finally presented and analyzed the 

results of real experiments, performed with an outdoor mobile robot. Abdellatif and 

Heimann [10] investigated the inverse dynamics equations of 6-DOF fully parallel 

manipulators using the Lagrangian formalism. With respect to a proposed set of generalized 

coordinates and velocities they obtained the final form with respect to the robot’s active 

coordinates. Attention was paid to the transformation of the sub chains dynamics. Finally, a 

systematic study of the resulting computational effort was presented and discussed with 

respect to results of other methods and approaches of other researches. Zhu, et al [11] 

investigated the kinematic and dynamic modeling for a newly developed parallel robot with 

the proposed Tau configuration and used the inverse kinematics method to obtain the 

kinematic equations of end effector of 3-DOF parallel robot. The dynamic modeling of 3-

DOF parallel robot was derived by analytical solutions, which were verified by both 

numerical simulation and actual experiments. This analytical approach enabled the real-

time control of this parallel robot with high positioning accuracy. Gouliaev and 

Zavrazhina [12] investigated the dynamic and kinematic control of the spatial movements 

of a flexible multi-link manipulator. They focused on the dynamics of a flexible multi-link 

manipulator by Euler-Bernoulli method, so that each element was in a compound motion. 

A technique for the numerical construction of solutions for an essentially non-linear 

hybrid-type system of constituent equations was proposed. They used the linear control 

method. Eliodoro and Serna [13] investigated the inverse dynamics of flexible robots. 

They focused on the new and general technique for solving the inverse dynamics of 

flexible robots. The proposed method finds the joint torques that must be applied by the 

actuators to obtain a specified end-effector trajectory. The inverse dynamics of flexible 

robots are derived by using the Euler-Bernoulli beam theory and Lagrange's equations. 

The finite element method was utilized to discretize space variables. They finally 

established the global dynamic equations of the robot. Kinematic constraints were 

introduced in the dynamic equations by means of a penalty formulation. The system 

performance was drawn for different tip trajectories.  

Martins et al [14] examined an adaptive controller to guide a unicycle-like mobile robot 

during trajectory tracking. They concentrated, mainly on the kinematic analysis to design 
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the adaptive controller using Lyapunov theory. The kinematic equations of mobile robot 

were found by inverse kinematics method to obtain the desired values of the linear and 

angular velocities, which represented the input to adaptive controller. Valero et al [15] 

investigated a trajectory planner for 3-DOF industrial robots that have to operate in 

workspaces with obstacles. They found the workspace modeling analytically using the 

differential equations of all joints angle and solved them in Cartesian coordinates system. 

The trajectory planner for 3-DOF industrial robots they found by workspace model using 

the finite element method for joints and end effector. Integrating all elements, the function of 

the trajectory planner for 3-DOF industrial robots was obtained. Finally they minimized the 

objective function of the trajectory planner to attain the minimum time. Geng [16] 

investigated the dynamics and trajectory planning of a planar flipping robot with two feet 

and one-leg robot. Geng made a dynamic analysis to obtain the trajectory planning using 

Lagrange’s formulation. Geng presented the simulation results for joints kinetic variables 

with time. Alessandro and Vanni [17] investigated a technique for optimal trajectory 

planning of robot manipulators to minimize the jerk. They concentrated on the trajectory 

planning of robot manipulators. In order to get the optimal trajectory, an objective function 

composed of two terms was minimized. The first term was proportional to the total 

execution time, and the second was proportional to the integral of the squared jerk. Finally, 

they minimized the time of trajectory planning to minimize energy (or actuator effort) and 

jerk of manipulator joints. They represented the Simulation results for joints kinetic 

variables and jerk against the minimized time. Pires et al [18] tested a manipulator trajectory 

planning with multiple objectives and obstacle avoidance (MOEA).It is a non-trivial 

optimization problem. They concentrated on the trajectory planning of 2-DOF robot 

manipulators using MOEA method and simulated for several ranges of joint angle. Finally 

they gave the simulation results for joints kinetic variables with minimized time. Chettibi et 

al [19] studied the problem of minimum cost trajectory planning for 2-DOF industrial 

manipulators. They studied the optimal control via direct parameter optimization of joint 

positions then they concentrated on the trajectory planning of 2-DOF industrial 

manipulators for six ranges of joint angle. Finally, they represented the simulation results 

for joints kinetic variables, jerk and torque with minimized time, to obtain the optimum 

parameters of joint positions and minimum cost trajectory planning. Alessandro and Vanni 

[20] investigated a method for smooth trajectory planning of robot manipulators. In order to 

ensure that the resulting trajectory is smooth enough they used the same method used by 

them in reference. They also presented in their work a new method to obtain the smooth 

jerk by composing the overall trajectory with respect to other trajectory optimization 

techniques. 

1.1. Introductory remarks on robots for medical field applications 

Robots in medicine are recent entry, beginning as generic instrumental aides and aiming at 

specialized duties once technology sophistication enables effective settings. Several 

classifications are used, mainly, dressing taxonomy by means of the expected 

accomplishments [1]: 
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1. Patients and disabled aid: bed automation, walking assistants, delivery servants, etc. 

2. Laboratory support: clinical testers, radiation therapies assistants, etc. 

3. Soundness care: pace-makers, health-monitors, drugs dosing up suppliers, etc. 

4. Surgery help: surgeon’s servants, remote effectors, autonomous actors, etc. 

Moreover, roughly speaking, the example taxonomy distinguishes extra corporeal fixtures, 

mainly derived out of conventional technologies, from in-body active devices, generally 

requiring invasive actions, thus, critically dependent on micro-mechanics and 

nanotechnologies. With focus on surgery robots, four kinds of tasks are, generally, 

considered: 

1. Organ inspection: cerebral probing, laparoscopic monitoring, etc. 

2. Organ nursing or repair: internal anastomosis, obstruction relief, etc. 

3. Organ removal: cysts excision, lymph node dissection, etc. 

4. (Artificial) organ implant: prosthesis insertion, etc.   

Surgical robotic systems are commonly classified according to the degree of direct control 

the surgeon has over the machine [2].Under this classification there are three principal types 

of robots Table 1: 

1. Autonomous: performs a preoperative plan without any immediate control from the 

surgeon. 

2. Surgical Assist Device: surgeon and robot share control. 

3. Teleoperator: function of the robot completely controlled by the surgeon. 

 

Type of system Examples Function(s) Clinical 

Discipline(s) 

Autonomous 

Robodoc 
Percutaneous renal 

needle placement 
Orthopedic surgery 

PAKY-RCM Prostatectomy Urology 

ProBot Hip surgery Urology 

Surgical Assist 

Caspar 
Voice controlled 

telescope 
Orthopedic surgery 

AESOP Stereotactic Multiple 

NeuroMate Neurosurgery Neurosurgery 

Teleoperator 

Acrobat Knee arthroplasty Orthopedic surgery 

PUMA 

(Programmable 

Universal Machine 

for Assembly) 

Multiple Multiple 

Da Vinci Multiple Multiple 

Zeus Multiple Multiple 

Neurobot Multiple Neurosurgery 

Table 1. Classification of robotic surgical systems 
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The systems in study at this present work are Zeus and Da Vinci robotic arms which are 

usually attached to a patient-side tower structure and consists of two to three arms that 

control the operative instruments and a separate arm that controls the video endoscope as 

shown in the Figure 1. 

 

 

Figure 1. Zeus and Da Vinci robotic arms  

Both the Zeus and Da Vinci systems enhance dexterity in several ways. Internal software 

filters out the natural tremor of a surgeon’s hand, which becomes particularly evident under 

high magnification and problematic when attempting fine maneuvers in very small fields. In 

addition, the system can scale movements such that large movements of the control grips 

can be transformed into smaller movements inside the patient. Finally the system group has 

7-DOF. The Surgery arm has 6-DOF plus 1-DOF for the tool actuation. Arrangement, the 

DOF ‘‘a’’ and ‘‘b’’ are respectively the last DOF at the carrier and the 6-DOF robot joints has 

Roll-Yaw-Pitch motions as shown in the Figures .2, 3 and 4. 

 

 
 

Figure 2. The ZEUS® surgery tools 
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Figure 3. Da Vinci® surgery tools 

 

Figure 4. Roll-Yaw-Pitch motions 

2. The kinematic model 

2.1. The forward kinematics 

The forward kinematics problem is concerned with the relationship between the individual 

joints of the robot manipulator and the position and orientation of the tool or end effector. 

Stated more formally, the forward kinematics problem is to determine the position and 

orientation of the end effector, given the values for the joint variables of the robot. The joint 

variables are the angles between the links in the case of revolute or rotational joints, and the 

link extension in the case of prismatic or sliding joints.  

The solution is always unique: one given joint position vector always corresponds to only 

one single end effector pose. The FK problem is not difficult to solve, even for a completely 

arbitrary kinematic structure. 

There are different methods for a forward kinematic analysis: like using straightforward 

geometry and using transformation matrices. 

2.1.1. The Denavit-Hartenberg convention 

The D-H modeling rules: 
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1. Find and identify all joint axes: Z0 to Zn-1. 

2. Establish the base frame. Set base origin anywhere on the Z0 axis. Choose X0 and Y0 

conveniently and to form a right hand frame. 

3. Locate the origin Oi where the common normal to Zi-1 and Zi intersects Zi. 

If Zi intersects Zi-1 locate Oi at this intersection. 

If Zi-1 and Zi are parallel, locate Oi at Joint (i+1). 

4. Establish Xi along the common normal between Zi-1 and Zi through Oi, or in the 

direction normal to the plane Zi-1 - Zi if these axes intersect. See Figure 5. 

5. Establish Yi to form a right hand system 

6. Repeat Steps 3 to 5 for i= 1 : n-1. 

7. Establish the end effector (n) frame: OnXnYnZn. Assuming the nth joint is revolute. 

Set Kn = a along the direction Zn-1 and establish the origin On conveniently along Zn, at 

center of tool tip. Set jn=o in the direction of tool closure (opening) and set in= n, such 

that n=oxa. 

If the tool is not a simple gripper, set Xn and Yn conveniently to form a right hand frame. 

8. Create a table of “Link” parameters: See Figure 5. 

Joint Angle qi : angle between Xi-1 and Xi about Zi. 

Link Offset di : distance from Xi-1 and Xi along Zi. 

Link Twist ai : angle between Zi and Zi+1 about Xi. 

Link length ai : distance between Zi and Zi+1 along Xi. 

9. Form HTM matrices A1, A2 … An from the information contained in each row of the LP 

table by substituting q, d, a and a into the general model. 

10. Build forward kinematic solution: Tଵ୬ = A1* A2 * … * An. 

 

Figure 5. Construction of the link frame 
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2.2. The kinematics of Zeus and Da Vinci robotic arms 

The geometrical model of the surgical robot in this study has 6 degrees of freedom (DOF) 

and an extra one for tool action. The end-effector has 3 rotations (Roll, Pitch and Yaw) as 

shown in Figure 6 and the frame assignment of 6-DOF surgical manipulator is represented 

in Figure 7. 

 

Figure 6. The geometrical model of surgical manipulator 

 

Figure 7. The frame assignment of 6-DOF surgical manipulator 
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The 6-DOF manipulator kinematic parameters are derived using Denavit Hartemberg 

formulation shown in Table 2. 

Link # θj dj aj αj T

1 θ1 0 L1 0 0T1

2 θ2 0 L2 90 1T2

3 θ3 0 0 -90 2T3

4 θ4 L3 0 90 3T4

5 θ5 0 0 -90 4T5

6 θ6 L4 0 0 5T6

Table 2. Full mobility robotic tool: geometry and link parameters 

The flowchart representing the sequence of generating the MATLAB CODE of the link 

transformations matrix is shown in Figure 8. 

 

Figure 8. The flowchart of the link transformations matrix 

The general form of the Homogeneous Transformation Matrix is: 

 

     

     

 

 
 

 
  
 
 
 

j j j j j j

j j j j j jj-1
j

j j

cos sin cos sin sin cos

sin cos cos cos sin sin
T

0 sin cos

0 0 0 1

j

j

j

a

a

d
 (1) 

The link transformations matrix can be given as: 

 
 
   
 
  

1 1 1 1

0 1 1 1 1
1

0

0

0 0 1 0

0 0 0 1

C S L C

S C L S
T     

 
 

   
 
  

2 2 2 2

1 2 2 2 2
2

0

0

0 1 0 0

0 0 0 1

C S L C

S C L S
T   

 
 
    
  

3 3

2 3 3
3

0 0

0 0

0 1 0 0

0 0 0 1

C S

S C
T  

- END EFFECTOR POSITION: X, Y, Z 
- END EFFECTOR ORIENTATION: R

TRANSFORMATION 

MATRIX

ROBOT ARCHITECTURE 
GEOMETRY PARAMETERS: L1, L2, L3, L4 

JOINT COORDINATES:  

JOINT RANGES:  

DENAVIT HARTEMBERG
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 
 
    
  

4 4

3 4 4
4

3

0 0

0 0

0 1 0

0 0 0 1

C S

S C
T

L
    

 
 
    
  

5 5

4 5 5
5

0 0

0 0

0 1 0 0

0 0 0 1

C S

S C
T      

 
 
   
 
  

6 6

5 6 6
6

4

0 0

0 0

0 0 1

0 0 0 1

C S

S C
T

L
 

The kinematics equations of the end effectors are manipulated using MATLAB symbolic 

Toolbox were as follows: 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

1 2 1 2 3 4 1 2 1 2 4 5

1 2 1 2 3 5 4 1 2 1 2 3 3

1 2 2 1 2 2 1 1

1 2 1 2 3 4 1 2 1 2 4 5

((-(C *C -S *S )*C *C -(-C *S -S *C )*S )*S +

(C *C -S *S )*S *C )*L -(C *C -S *S )*S *L +

C *L *C -S *L *S +L *C

((-(C *S +S *C )*C *C -(C *C -S *S )*S )*S +

X

Y

Z

P

P

P

Z

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

1 2 1 2 3 5 4 1 2 1 2 3 3

1 2 1 2 2 1 1

3 4 5 3 5 4 3 3

(C *S +S *C )*S *C )*L -(C *S +S *C )*S *L +

S *L2*C +C *L *S +L *S

(-S *C *S -C *C )*L +C *L

1

 

2.3. The robot workspace 

The workspace of a robot can be defined as the set of points that are reachable by the 

manipulator (with fixed base). Roughly speaking the workspace is the volume of space 

which the end effector of the robot can reach. Both shape and total volume are important. 

Workspace is also called work volume or work envelope.  

The workspace depends on the characteristics of the manipulator; physical configurations, 

size, number of axes, the robot mounted position (overhead gantry, wall-mounted, floor 

mounted, on tracks, etc), limits of arm and joint configurations. The addition of an end 

effector can move or offset the entire work volume. 

The kinematics design of a manipulator can tailor the workspace to some extent to the 

operational requirements of the robot. 

Some robots will have unusable spaces such as dead zones, singular poses, and wrist-wrap 

poses inside of the boundaries of their reach.  Elbow manipulators tend to have a wider 

volume of workspace. 

1. Dexterous workspace: This is the volume of space which the end-effector of the 

manipulator can reach with all orientations. 

2. Reachable workspace: This is the volume of space which the end-effector of the 

manipulator can reach with at least one orientation.  

The dexterous workspace is obviously a subset of the reachable workspace. 
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2.3.1. The workspace calculation 

The workspace may be found mathematically by writing equations that define the robot's 

links and joints and including their limitations, such as ranges of motions for each joint. 

Alternatively, the workspace may be found empirically, by moving each joint through 

each range of motion and combining all the space in can reach and subtracting what it 

cannot reach. 

The workspace of the surgical manipulator can be represented by solving the inverse 

kinematic equations and taking into consideration all the physical limits of the joints. 

Figure 9 represents the flowchart showing the sequence of generating the three 

dimensional workspace of the robot and end-effector to be manipulated using the 

MATLAB symbolic Toolbox. 

 

Figure 9. The flowchart of The Robot workspace 

Table 3 represent the physical limits of the six joints while Figure10 represent the workspace 

of end-effector respectively. 

Link # 1 2 3 4 5 6 

θi (degree) -180° -90º 0 -180° -90º -180° 

θf (degree) 180° 90º 180° 180° 90º 180° 

L (mm) 0 50 15 36 0 39.5 

Table 3. Joint coordinates ranges 

The workspace of the end-effector depends on the physical limits of the six joints angle, i.e. 

if the angle range of the robot joints is changes the workspace of the robot changes. So it is 

important to take into account the accuracy in determining the angle range of the robot 

joints to get the required workspace which covers the work area. 

The kinematics 
equations of the 

end effectors 

Robot workspace 
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Graphical output 
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Figure 10. The work space of end effector 

2.4. The robot Jacobian 

The Jacobian is a representation of the geometry of the elements of mechanism in time. It 

allows the conversion of differential motions or velocities of individual joints to differential 

motions or velocities of pints of interest. It also relates the individual joint motion to overall 

mechanism motions. Jacobian is time related; since the values of i vary in time, and the 

magnitude of the elements of Jacobian vary in time as well. 

2.4.1. The differential motions and velocities equations 

Differential motions are small movements of robot parts that can be used to derive velocity 

relationships between different parts of the robot. To find these relations the following steps, 

are to be considered: 

1. Frames relative to a fixed frame. 

2. Robot joint relative to a fixed frame. 

3. Jacobian matrix. 

4. Robot velocity relationship. 

2.4.2. The Jacobian equations 

Suppose we have a set of equations Yi in terms of variables Xj 

  1 2 3( , , . , )i i jY f X X X X  (2) 

The differential change in Yi for a differential change in Xj is:  
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2.4.3. The Jacobian matrix 

 
 

                       
iY i

j
i

f
X D J D

X
 (4) 

2.4.4. The Jacobian relations 

The Kinematics equations of the end effectors which are used to calculate the Jacobian 

matrix of the robot are:  

  1 2 1 2 3 4 1 2 1 2 4 5 1 2 1 2 3 5 41

1 2 1 2 3 3 1 2 2 1 2 2 1 1

((-(C *C -S *S )*C *C -(-C *S -S *C )*S )*S +(C *C -S *S )*S *C )*L - 

        (C *C -S *S )*S *L +C *L *C -S *L *S +L *C
XP f

 

  1 2 1 2 3 4 1 2 1 2 4 5 1 2 1 2 3 5 42

1 2 1 2 3 3 1 2 1 2 2 1 1

((-(C *S +S *C )*C *C -(C *C -S *S )*S )*S +(C *S +S *C )*S *C )*L -

         (C *S +S *C )*S *L +S *L2*C +C *L *S +L *S
YP f

 

  3 4 5 3 5 4 3 33 (-S *C *S -C *C )*L +C *LZP f  

 

Figure 11. The flowchart of the Jacobian matrix 
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The Jacobian matrix of the robot can be calculated by MATLAB symbolic Toolbox using the 

kinematics equations as shown in the Figure 11.  

The differential equations of motion of the end effector for the surgical robot are represented 

by: 


x x 1 2 1 2 3 4 1 2 1 2 4 5 1 2 1 2 3 4

1 2 1 2 3 3 1 2 2 1 2 2 1 1 1 1 2 1 2 3 4

1 2 1 2 4 5 1 2 1 2 3 5 4

dP  =V ((((C *S +S *C )*C *C -(-C *C +S *S )*S )*S +(-C *S -S *C )*S *C5*L -

(-C *S -S *C )*S *L -S *L *C -C *L *S -L *S )*d +((((C *S +S *C )*C *C -

(-C *C +S *S )*S )*S +(-C *S -S *C )*S *C )*L -(-C


 

1 2 1 2 3 3 1 2 2

1 2 2 2 1 2 1 2 3 4 5 1 2 1 2 3 5 4

1 2 1 2 3 3 3 1 2 1 2 3 4 1 2 1 2 4 5 4 4

1 2 1 2 3 4 1 2 1

*S -S *C )*S *L -S *L *C -

C *L *S )*d +(((C *C -S *S )*S *C *S +(C *C -S *S )*C *C )*L -

(C *C -S *S )*C *L )*d +((C *C -S *S )*C *S -(-C *S -S *C )*C )*S *L *d +

(((-C *C +S *S )*C *C -(-C *S -S *C 2 4 5 1 2 1 2 3 5 4 5)*S )*C -(C *C -S *S )*S *S )*L *d

 



y y 1 2 1 2 3 4 1 2 1 2 4 5 1 2 1 2 3 5 4

1 2 1 2 3 3 1 2 2 1 2 2 1 1 1 1 2 1 2 3 4

1 2 1 2 4 5 1 2 1 2 3 5 4 1

dP  =V ((((-C *C +S *S )*C *C -(-C *S -S *C )*S )*S +(C *C -S *S )*S *C )*L -

(C *C -S *S )*S *L +C *L *C -S *L *S +L *C )*d +((((-C *C +S *S )*C *C -

(-C *S -S *C )*S )*S +(C *C -S *S )*S *C )*L -(C


 

2 1 2 3 3 1 2 2

1 2 2 2 1 2 1 2 3 4 5 1 2 1 2 3 5 4

1 2 1 2 3 3 3 1 2 1 2 3 4 1 2 1 2 4 5 4 4

1 2 1 2 3 4 1 2 1 2

*C -S *S )*S *L +C *L *C -

S *L *S )*d +(((C *S +S *C )*S *C *S +(C *S +S *C )*C *C )*L -

(C *S +S *C )*C *L )*d +((C *S +S *C )*C *S -(C *C -S *S )*C )*S *L *d +

(((-C *S -S *C )*C *C -(C *C -S *S )* 4 5 1 2 1 2 3 5 4 5S )*C -(C *S +S *C )*S *S )*L *d

 

  z z 3 4 5 3 5 4 3 3 3 3 4 5 4 4 3 4 5 3 5 4 5dP =V ((-C *C *S +S *C )*L -S *L )*d +S *S *S *L *d +(-S *C *C +C *S )*L *d
 

 

Figure 12. The relation between angle of joints and the end effector differential translation 

              (a) The first joint                           (b) The second joint                             (c) The third joint 

             (d) The forth joint                          (e) The fifth joint                                  (f) The sixth joint 
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The previous differential equations of motion of the end effector represent the relation 

between the magnitude of the elements of Jacobian (the elements of end effector motion) 

and the joints angle. Figures 12 a, b, c, d, e and f represents the relation between angle of 

joints and the end effector differential translation. This shows six figures is (a, b, c, d, e and f) 

for six joints. It is to be noted that in Figures 12-a and 12-b for the first and second joints 

respectively the relation between angle of joint and the end effector differential translation 

in the Z direction is constant i.e. the motion of the end effector in the Z direction is not 

affected by the change in angle of the first and second joints. In the same time the motion of 

the end effector in all directions (X, Y and Z) is not affected by the change in angle of the six 

joints because the frame of the end effector is in the same directions of the frame of the joint 

number six. This can clearly be inferred from the geometrical model and the frame of the 

robot given in Figures 6 and 7 respectively. 

The relations between the magnitude of the elements of Jacobian (the elements of end 

effector motion at all directions) i.e. dPX, dPY and dPZ give of the path of the robot joints as 

shown in Figures 13 a, b, c, d, e and f. 

 

Figure 13. The path of the robot joints  

3. The trajectory planning 

3.1. Introduction to the trajectory planning 

Robot study is divided into two parts; they are the kinematics and dynamics. This means 

that using the equations of motion of the robot, its position can be determined if the joint 

variables are known. Path and trajectory planning relates the way a robot is moved from 

one location to another in controlled manner. In this chapter, a study of the sequence of 

(a) The path of the first joint            (b) The path of the second joint       (c) The path of the third joint 

(d) The path of the forth joint              (e) The path of the fifth joint          (f) The path of the sixth joint 
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movements is to be made to create a controlled movement between motion segments, in 

straight-line motion, or in sequential motions. Path and trajectory planning requires the use 

of both kinematics and dynamics of robots. In practice, precise motion requirements are so 

intensive that approximations are always necessary [23].     

What is the different between the path and the trajectory planning? 

A Path is defined as a sequence of robot configurations in particular order without regard to 

timing of these configurations as shown in Figure 14. A trajectory is concerned about when 

each part of the path must be obtained thus specifying timing (Velocity and Acceleration). 

Or a trajectory is a spatial position/time curve that usually represents a desired 

manipulation motion in either link or Cartesian space as shown in Figure 15. 

 

Figure 14. Sequential robot movements in a path [23] 

 

Figure 15. Sequential motions of a robot to follow a straight line [23] 

3.2. The methods to calculate trajectory planning 

There are four different methods which have been derived to calculate the trajectory 

planning of the robot using MATLAB code. The trajectory planning in the four methods 

needs two parameters, namely the joint angle range and the final time required to 

complete the process. The first one was selected from the workspace needed to complete 

the process In any case, this dependent on the type of surgical applications and can easily 

be identified. The final time required is a very important parameter to derive the 

trajectory planning of the robot. As all the results that have been inferred from the 

orientation, velocity, acceleration and torque of the robot are based on this parameter. If 

the time increases the velocity required decreases and acceleration i.e. the inertia of the 
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robot link consequently decreases accidentally irrespective of the methods used. The 

orientation must be seen carefully examined and the behaviour should be increasing 

gradually with the time from the initial angle to the final angle. The final time required to 

complete the process for each method should be optimized and this is called optimal 

planning. In this work the trajectory planning of the four times is derived and then, 

comparison of the results at specific joint is made. The proper time which gives 

satisfactory results is obtained. 

3.2.1. Third-Order polynomial trajectory planning 

The most common techniques for trajectory planning for industrial robots are the use of 

polynomial of different orders, such as Cubic and B-splines, linear segments with parabolic 

blends and the soft motion trajectory [22]. The Linear Segments with Parabolic blends 

trajectories are faster and more suitable for industrial applications. On the other hand, the 

higher order polynomials trajectory as well as the soft motion trajectory [24] are easy to 

design and control especially for the jerk. They are accurate, precise and suitable for medical 

applications. In this work, the trajectory planning for each joint is designed using third order 

polynomial as a rest-to-rest manoeuvring where the link starts from rest, accelerates and 

decelerates at the end of the trajectory. The trajectory is given by [23]: 

     2 3
0 1 2 3( )t C C t C t C t  (5) 

In which 0 1 2, ,C C C  and 3C are coefficients to be determined from the initial conditions as 

follows: 

  2
1 2 3(t) = C + 2 C  t + 3 C  t   (6) 

   
i f(t ) =0  and  (t ) =0   (Rest to Rest manouvering) 

By substituting in to equation (6): 

 
i 1(t ) =C 0 

 

   2
f 1 2 f 3 f(t ) = C + 2 C  t  + 3 C  t 0   (7) 

The initial and final location and orientation of robot are known from: 

   i i f f(t ) =  and  (t ) =
 

By substituting in to equation (5): 

 i 0(t ) =C  i  

     2 3
f 0 1 2 3(t ) = f f f fC C t C t C t   (8) 
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By solving equations (7), (8) simultaneously: 

   2
2 3( ) /f i fC t  and    3

3 2( ) /f i fC t  

3.2.2. Fifth-Order polynomial trajectory planning 

The third order trajectory only takes into account starting and end velocities. The equations 

of the fifth order polynomial takes into account starting and end accelerations. In this case, 

the total number of boundary conditions are six, allowing a fifth. 

The initial and final velocities are zero. (Rest to Rest manoeuvring) and the trajectory is 

given by [23]: 

       2 3 4 5
0 1 2 3 4 5( )t C C t C t C t C t C t   (9) 

In which 0 1 2 3 4, , , ,C C C C C  and 5C are coefficients to be determined from the initial and final 

conditions as follows: 

       2 3 4
1 2 3 4 5( ) 2 3 4 5t C C t C t C t C t   (10) 

      2 3
2 3 4 5( ) 2 6 12 20t C C t C t C t   (11) 

    
i f(t ) =0  and  (t ) =0   (Rest to Rest manoeuvring) 

      
i i f(t ) =  and (t ) = f  

0 iC   ,  1 iC , 





2 2
iC , 

     


    2
f i f i f i f f

3 3

20 -20 -(8 +12  ) t -(3 - )t

2 f

C
t

, 

      


    2
f i f i f i f f

4 4

30 -30 (14 +16  ) t (3 -2 )t

2 f

C
t

 and 
     


    2

f i f i f i f f
5 5

12 -12 -(6 +6  ) t ( - )t

2 f

C
t

 

3.2.3. Linear segments with parabolic blends 

Linear segments can be blended with parabolic sections at the beginning and the end of the 

motion segment, creating continuous position and velocity. Acceleration is constant for the 

parabolic sections, yielding a linear velocity at the common points A and B as shown in the 

Figure 16. 

3.2.3.1. First parabolic blends (t0 to ta)  

  2
0 1 2

1
(t)= C + C t +    C t

2
  (12) 
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  1 2(t)=  C  +   C t  and  2(t)=  C   

 

Figure 16. Scheme for linear segments with parabolic blends 

The position of the robot at time t0 is known and using the inverse Kinematic equations of 

the robot, the joint angles at via points and at the end of the motion can be found. 

To blend the motion segments together, the boundary conditions at each point are used to 

calculate the coefficients of the parabolic segments. 

3.2.3.2. Straight line (ta to tb) 

  A B wt ,    
A B w  and   0  

3.2.3.3. Second parabolic blends ( tf – tb to tf  ) 

   2
f f

b

w
(t)= C + (t )

2t
t   (13) 

 
f

b

w
(t)= (t )

t
t  and 

b

w
(t)= -

t
 

  


( )i f f

b

wt
t

w
, 2

b

w
= 

t
C  and 

 
max

2( )f i

f

w
t

  

3.2.4. Soft motion trajectory planning 

In this method we consider the trajectory planning of points generated by a motion 

planning technique. The motion planner calculates the trajectory which the end effector 

must follow in space. However, the temporal characteristics of this movement are 

independent. One important difference between industrial robotic manipulators and service 

robot applications is the human interaction, which introduce safety and comfort constraints. 

In this work, we define soft motions conditions to facilitate this cohabitation. An on-line 

trajectory planner is proposed here. It generates the necessary references to produce soft 
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motion and a control loop that guarantees the end effector’s motion characteristics (jerk, 

acceleration, velocity and position) in the Cartesian space, by using quaternion feedback. 

Two visual feedback control loops are proposed: a visual servoing control loop in a shared 

position - vision schema and a visual guided loop (which is the general case of soft motion 

trajectory) are given by: 

3.2.4.1. The motion with a maximum jerk (Jmax) 

 
        2 3

0 0 max

1 1
( ) t

2 6
t t J t

  (14) 

       2
0 0 max

1
( ) t J

2
t t ,    

0 max( ) Jt  and maxJ(t) = J   

3.2.4.2. The motion with a maximum acceleration (Amax) 

 
       2

0 0 max

1
( ) t

2
t t

  (15) 

     
0 max( )t ,   

max( )t and J(t) = 0  

3.2.4.3. Finally, the equations for the motion with a maximum velocity (Vmax) 

 
    0 max( ) tt

  (16) 

  
max( )t ,  ( ) 0t  and J(t) = 0  

The initial conditions are: 

 (0) 0 ,  (0) 0 ,   0(0)  and    0DD  

Where: D is general traversed angular movement. 

The final conditions are: 

 ( ) 0ft ,  ( ) 0ft and  ( )f Dt  

We have two limit conditions to obtain the traversed angular movement: 

 Condition (1):  

Where max  is reached. It means, max is reached too. Then we have to find the traversed 

angular (Dthr1). The limit times used to calculate (Dthr1) are: 


maxj jT T  , 

maxa aT T  and   0vT  

The angular movement (Dthr1) becomes: 
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  


 
  


2

max max max

max max

Dthr1
J

 

 Condition (2):  

Where only max  is reached. Then we have to find the traversed angular (Dthr2). The limit 

times used to calculate (Dthr2) are: 


maxj jT T ,   0aT  and  0vT  

The angular movement (Dthr2) becomes: 




3
max

2
max

Dthr2 2
J

, 





max

max

max
jT

J
 and 

 

   

       
   

 
max

max max

max max
aT

J
 

The soft motion trajectory planning of 6-DOF surgical robot is divided in to three cases 

depending on the maximum Jerk algorithm as: 

 Case (1) (General case): If   D ≥ Dthr1  


maxj jT T ,  

maxa aT T  and 



 
max

Dthr1
v

D
T  

 Case (2): If   Dthr2 >D ≥ Dthr2   

 0vT ,  
maxj jT T and  

 


  
 


2
max max

max max max

3

4 2a

D
T

J J
 

 Case (3): If   D < Dthr2  

 0vT ,  0aT  and  3

max2j

D
T

J
 

3.3. The robot trajectory planning parameters 

In this work, four different methods are applied here to design the joints trajectories third 

order polynomial, fifth order polynomial, linear segments with parabolic blends and soft 

motion trajectory. The trajectories have the same initial and final angles and different four 

duration times (5, 10, 20 and 60 s) are applied to choose the best duration time give the 

correct dynamic response. As well but they differ in the acceleration and the jerk. After 

designing the joints trajectories, the hub torques of the robot actuators can be simulated 

using MATLAB. The parameters of six joints were obtained using inverse kinematics 

analysis as shown in Table 4. 

The flowchart representing the sequence of generating the trajectory planning is shown in 

the Figure 17. 
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Link# 1 2 3 4 5 6θ୧(degree) -180° -90º 0 -180° -90º -180° θ୤ (degree) 180° 90º 180° 180° 90º 180° 

L (mm) 0 50 15 36 0 39.5 θሷ ୧ ( degree /s2) 5 5 5 5 5 5θሷ ୤  ( degree /s2) -5 -5 -5 -5 -5 -5 θሶ୫ୟ୶( degree /s) 135 70 70 135 70 135 θሷ୫ୟ୶ ( degree /s2) 80 40 40 80 40 80 J୫ୟ୶ ( degree /s3) 160 80 80 160 80 160 t୧ (s) 0 0 0 0 0 0t୤ (s) 5 5 5 5 5 5

Table 4. Full robotic mobility information used in trajectory planning 

 

Figure 17. The flowchart of the trajectory planning 

Where: Position.1 for first methods of trajectory planning and Position .2 for Soft motion 

trajectory planning. 

4. The dynamic model 

4.1. Introduction to the dynamic model of robot 

Manipulator dynamics is concerned with the equations of motion, the way in which the 

manipulator moves in response to torques applied by the actuators, and external forces. The 
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history and mathematics of the dynamics of serial-link manipulators are well covered in the 

literature. The equations of motion for an n-axis manipulator are given by [25]: 

   Q=M(q) q + C(q.q  ) q + G(q)   (17) 

These equations of motion can be derived by six methods, namely the Newton's second law 

method, D'Alembert method, Lagrange method, Hemilton method, Lagrange-Euler method 

and Newton-Euler method. But not all previous methods can be used to derive the 

equations of motion for the robot subject of this work. That is not all methods can easily 

derived the equations of motion for a robot having multi-degree of freedom. 

4.2. Dynamic equations for multiple-degree of freedom  robots  

As we have stated, the dynamic equation for two-degree of freedom system is much more 

complicated than a one-degree of freedom system. Similarly, these equations for multiple-

degree of freedom robot are cumbersome and complicated, but can be found by calculating 

the kinetic and potential energies of the links and joints [25]. For the robot considered in this 

work the robot has 6-DOF and the most appropriate method to derive the equations of 

motion is likely to be Lagrange-Euler technique. 

4.2.1. Derivation of the equations of motion by Lagrange-Euler technique  

The Lagrange-Euler technique is utilized here to calculate the kinetic energy, potential 

energy and to derive the dynamic equations in symbolic form using the MATLAB symbolic 

toolbox for the six-degree of freedom robot. The equations of motion are given in a concise 

form similar to that given in [25]. 

4.2.1.1. The total kinetic energy 

The total kinetic energy of multiple-degree of freedom robot is given in a concise form as: 

 
  

    2
i

1 1 1 1

1 1
K = ( )

2 2

n i i n

ip i ir p r iact i
i p r

Trace U J U T q q I q   (18) 




 


0
0i

ip P i
P

T
U Q T   , 




 


0
0i

ir r i
r

T
U Q T  ,  ,ir ri iP PiU U U U  and 

 
 
   
 
  

0 1 0 0

1 0 0 0
( )

0 0 0 0

0 0 0 0

iQ revolute  , 

 
 
   
 
  

0 0 0 0

0 0 0 0
( )

0 0 0 1

0 0 0 0

iQ prismatic  

But in our case all joints in the robot arm used in surgical applications are considered 

revolute joints where PQ = rQ = Q. 
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4.2.1.2. The potential energy 

The potential energy of multiple-degree of freedom robot may be given in a concise from as: 

 
 

    0

1 1

[ ( )]
n n

T
i i j j

j j

P P m g T Xr   (19) 

   0T
x y zg g g g  

4.2.1.3. Robot equations of motion 

The equations of motion of multiple-degree of freedom robot be given in a compact form as: 

 
  

      
( )

1 1 1

n n n

i ij j i act i ijk j k i
j j k

T D q I q D q q D   (20) 


 

max( , )

( )
n

T
ij pj p pi

p i j

D Trace U J U , 


 
max( , , )

( )
n

T
ijk pjk p pi

p i j k

D Trace U J U ,  



 
1

n
T

i p pj p
p

D m g U r ,  



 


0Pi

Pik Pi k k
k

U
U U Q T   

   
 
 

  
   

  
 
 
  

( )

2
( )

2
( )

2

XX YY ZZ
XY XZ i i

XX YY ZZ
XY YZ i i

i

XX YY ZZ
XZ YZ i i

i i i i i i i

I I I
I I m X

I I I
I I m Y

J
I I I

I I m Z

m X m Y m Z m
 

 

Link # 1 2 3 4 5 6 

Iact (Nmm) 10000 10000 10000 10000 10000 10000 

m (kg) 6.055 6.055 6.055 6.055 6.055 6.055 

L (mm) 0 50 15 36 0 39.5 

g (m/s2) 9.81 9.81 9.81 9.81 9.81 9.81 

R (mm) 75 75 75 75 75 75 

Ixx (1/12)*mi*(3*(R2)+(Li/4)2)

Iyy (1/12)*mi*(3*(R2)+(Li/4)2)

Izz mi * R2

Ixy 0

Ixz 0

Iyz 0

X Li/2

Y 0

Z 0

Table 5. Full robotic mobility parameters 
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For the MATLAB simulation, the parameters of the robotic arm are given in table 5. The 

flowchart for the algorithm employed to calculate the torque history for each actuator based 

on the derived equations of motion (Equation 20) is shown in the Figure 18. The simulated 

results for the actuators torques change depending on the method of trajectory planning 

used to calculate the torque. For example the simulated results for the actuators torques 

calculated by the Third-Order Polynomial trajectory planning are presented in section 3. It 

can be seen that the torque history over the selected period of time (5, 10, 20 and 60 s) has 

considerable fluctuations. 

 
Figure 18. The flowchart of the dynamic model 

5. The dynamic response  

5.1. Introduction to the dynamic response and dynamic response analysis 

The results presented in this chapter are those of chapters IV and V that is the trajectory 

planning and dynamic modeling respectively as they are very much related to each other. 

The results are divided into two sections. The first one is for the trajectory planning of the 

surgical robot which is divided into four parts, each represents a method from four chosen 

different methods for trajectory planning. As mentioned in chapter IV the joints limits for 

some of the joints are similar as the joints (1, 4, and 6) and (2, 5). Only the trajectory planning 

of similar joints will be represented. It should be noted that the results of trajectory planning 

for all methods were derived using four different times (5, 10, 20 and 60 s) in order to select 
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the best time which gives the best and smooth orientation, velocity, acceleration (i.e. the 

inertia of the robot link) and torque. The dynamic modeling results are dependent on the 

trajectory planning results. This requires the results of the dynamic modeling to be 

represented after the trajectory planning results i.e. after comparison of the results of the 

trajectory planning and selecting the best time to be used. 

Finally, a comparison of the results is held to choose the best method that gives the smooth 

set trajectory planning and best performance of the robot under investigation.The 

simulation results were obtained using MATLAB.  

5.2. The trajectory planning analysis  

As previously stated that trajectory planning was derived using four methods of the 

trajectory planning to select the best method that gives the smooth set trajectory planning 

and best performance of the robot under investigation. 

The trajectory planning results is presented in two ways. The first one shows the trajectory 

planning of the first joint of robot derived using four different times and the second one 

shows the torque history for the first joint and a comparison between the four times of the 

first joint of robot in terms of the orientation, velocity, acceleration and the torque history to 

select the best time that can be used to derive the trajectory planning and torque history for 

all joints of robot model. 

5.2.1. Third order Polynomial trajectory planning 

Figures 19 and 20 show comparisons between the orientation, velocity, acceleration, torque 

and four different time ranges (5, 10, 20 and 60 s) of the first joint of the surgical robot. It is 

clearly shown in Figure 19 that the orientation behaviour increases gradualy with the time 

from the initial angle to the final angle and as the time increases the velocity required 

decreases and also the acceleration i.e. the inertia of the robot link decreases. It is also clearly 

shown in Figure 20 that the original torque history has considerable fluctuations. It is clear 

that the highest hub torque is for joint one while actuator torque of joint 6 is the lowest.  

From Figures 19 and 20 the optimum final time required to complete the process for the 

robot can be selected. By inspection of Figure 19 for the trajectory planning of the robot we 

find that for all times the same behaviours i.e. the velocity and acceleration are inversely 

proportional with the times and the orientation behaviour increases gradualy with the time 

from the initial angle to the final angle. The largest time i.e. 60s to complete the results of the 

surgical robot can be selected. Since this time has the lowest acceleration i.e the lowest 

inertia. In Figure 20 for the torque history in the time 60s we find that the torque decreases 

with time and the over shooting decreases gradualy near the steady state time 60s.  

It is seen from Table 4 that the joints angle ranges are very large. So, it is assured that the 

robot accelerations will not exceed the maximum permissible limits for robot’s capabilities if 

the robot is satisfying the trajectory in one segment. 
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Figure 19. The time comparison of third order trajectory planning of the first joint 

 

Figure 20. The comparison between the time and torque of the first joint using third order trajectory 

planning 

For Third-order Polynomial trajectory planning the maximum accelerations for robot’s 

capabilities is given by: 

 
 








max

6( )

( )

f i

f it t
  (21) 

From Figure 19 the robot acceleration needed at the beginning of the motion is 0.62 

(degree/s2) as well as -0.62 (degree/s2) deceleration at the end of the motion. 
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Figure 21. The orientation, angular velocity and angular acceleration for six joint micro-robot using 

Third order Polynomial trajectory planning 

(a) The first, fourth and sixth joints

(b) The second and fifth joints
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But from the equation 6.1 the maximum permissible accelerations for this robot joints is 0.6 

(degree/s2). So to be ensured that robot joint accelerations will not exceed the maximum 

accelerations for robot’s capabilities the robot should satisfy the trajectory planning in two 

or more segments. 

Figures 21a, b and c show the modified trajectories for the six joints, after dividing the 

trajectory in to two segments. 

The joints angle ranges of the initial and final angles are large compared to the values of the 

velocity and accelerations. So it is more suitable to represent the angle-Time relation and 

velocity and acceleration – Time relations in two separate figures. 

5.2.2. Fifth order Polynomial trajectory planning 

Figures 22 and 23 show comparisons between the orientation, velocity, acceleration, and 

torque for four different time ranges (5, 10, 20 and 60 s) of the first joint of the robot. As is 

clearly shown in Figure 22 the orientation behaviour increases gradually with time from the 

initial angle to the final angle for the times (5, 10 and 20 s) only. But for the time 60s the 

orientation increases gradually from the initial angle to 40 degree then decreases to -40 

degree and then increases reaching the final angle. And if the time increases the velocity 

required decreases. This is similar as to what is shown in Figure 23 which presents the 

original torque history that has considerable fluctuations. It is clear that the highest hub 

torque is for joint one while actuator torque of joint 6 is the lowest.  

 

Figure 22. The time comparison of fifth order trajectory planning of the first joint 
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Figure 23. The comparison between the time and torque of the first joint using fifth order trajectory 

planning 

From Figures 22 and 23 the optimum final time required to complete the process for the 

robot can be selected. It is seen from figures that the trajectory planning of the robot for the 

times (5, 10 and 20 s) has the same properties i.e. the velocity is inversely proportional with 

time. The orientation behaviour increased gradualy with the time from the initial angle to 

the final angle. Where the time 60s is omitted from selected. For figure 23 for the torque 

history in the time (5, 10, 20 and 60 s) it is found for  5ft s, the dominant part in the torque 

history is the inertia matrix. Increasing the final time to 10, 20 and 60s shifts the dominant 

term from inertia matrix to Centrifugal and Coriolis matrices. This is due to the vanishing of 

the acceleration at most of the joint trajectory. Another consequence of increasing the final 

time is the dramatic increase in the peak value of the joint torque which requires big 

actuator size for the same task (i.e. the same joint parameters). The time 5s to complete the 

results of the surgical robot can be selected. Since this time has orientation behaviour was 

increased gradualy with the time from the initial angle to the final angle and the torque 

history curves were affected by the inertia of the link of robot. 

Figures 24a, b and c show the trajectories for the six joints of the robot using Fifth order 

Polynomial trajectory planning. 

5.2.3. Linear segments with parabolic blends 

Figures 25 and 26 show comparisons between the orientation, velocity, acceleration, 

torque and four different time ranges (5, 10, 20 and 60 s) of the first joint of the surgical 

robot. It is clearly shown in the Figure 25 that the orientation behaviour increases 

gradually with the time from the initial angle to the final angle and as the time increases 

the velocity required decreases and also the acceleration i.e. the inertia of the robot link 

decreases. It is also clearly shown in the Figure 26 that the original torque history has 

considerable fluctuations. It is clear that the highest hub torque is for joint one while 

actuator torque of joint 6 is the lowest.  
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Figure 24. The orientation, angular velocity and angular acceleration for six joint micro-robot using 

Fifth order Polynomial trajectory planning 

(a) The first, fourth and sixth joints 

(b) The second and fifth joints
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Figure 25. The time comparison of liner segments with parabolic blends trajectory of the first joint 

 

Figure 26. The comparison between the time and torque of the first joint using liner segments with 

parabolic blends trajectory planning 
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inspection of Figure 26 for the torque history in the time 60s we find that the torque decreases 
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Figure 27. The orientation, angular velocity and angular acceleration for six joint micro-robot using 

parabolic blends trajectory planning 

(a) The first, fourth and sixth joints

(b) The second and fifth joints

(c) The third joint
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5.2.4. Soft motion trajectory planning 

Figures 28 and 29 show comparisons between the orientation, velocity, acceleration, jerk, 

torque and four different time ranges (5, 10, 20 and 60 s) of the first joint of the surgical 

robot. It is clearly shown in the Figure 28 that the orientation behaviour increases 

gradually with the time from the initial angle to the final angle and as the time increases 

the velocity required decreases and also the acceleration i.e. the inertia of the robot link 

decreases. It is also clearly shown in Figure 29 that the original torque history has 

considerable fluctuations. It is clear that the highest hub torque is for joint one while 

actuator torque of joint 6 is the lowest.  

 

Figure 28. The time comparison of Soft motion trajectory planning of the first joint 

 

Figure 29. The comparison between the time and torque of the first joint using soft motion trajectory 

planning 
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Figure 30. The orientation, angular velocity and angular acceleration for six joint micro-robot using soft 

motion trajectory planning 

From Figures 28 and 29 we can select the optimum final time required to complete the process 

for the robot. By inspection of Figure 28 we find the trajectory planning three segments they 
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and 60 s) is omitted from selected i.e. the times (10 and 60 s) have properties were not 

satisfactory for trajectory of robot. And by inspection of Figure 29 for the torque history in the 

times (5 and 20 s) we find for  5ft s, the dominant part in the torque history is the inertia 

matrix. Increasing the final time to 20s, shift the dominant term from inertia matrix to 

Centrifugal and Coriolis matrices since the effect of angular velocity will be obviously high. 

This is due to the vanishing of the acceleration at most of the joint trajectory. Another 

consequence is of increasing the final time is the dramatic change in the peak value of the joint 

torque which requires big actuator size for the same task. So we can select  the time 5s to 

complete the results of the robot because the torque history curve was affected by the inertia 

and it has the important segment i.e. maximum acceleration and maximum velocity segments. 

Figures 30a, b and c show the trajectories for the six joints of the robot using soft motion 

trajectory planning. 

5.3. The dynamic response analysis  

As previously stated that the dynamic analysis of the surgical robot was derived using 

Lagrange-Euler technique and the results of the dynamic analysis were depended on the 

method of trajectory planning. In the trajectory planning results were derived using four 

different methods. The dynamic analysis results of surgical robot are divided into four parts 

each part in for each special method of the four different methods which have been derived 

from the trajectory planning. 

Figures 31 to 34 show the original torque history which clearly shown considerable 

fluctuations. It is clear that the highest hub torque is experienced at joint one while actuator 

torque of joint 6 is the lowest.  

5.3.1. The dynamic analysis results using Third order Polynomial trajectory planning 

 

Figure 31. Torque history for Third order Polynomial trajectory planning 
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                                     (c) third joint                                                               (d) fourth joint
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5.3.2. The dynamic analysis results using Fifth order Polynomial trajectory planning 

 

Figure 32. Torque history for Fifth order Polynomial trajectory planning 

5.3.3. The dynamic analysis results using Linear segments with parabolic blends trajectory 

planning 

 

Figure 33. Torque history for Linear segments with parabolic blends trajectory planning 
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5.3.4. The dynamic analysis results using Soft motion trajectory planning 

 

Figure 34. Torque history for Soft motion trajectory planning 

6. Conclusions 

A kinematic and dynamic analysis for a six-degree-of-freedom surgical robot were 

presented in this work. The kinematic model is based on Denavit-Hartenberg representation 

and the workspace of the end-effector is defined by solving the inverse kinematics problem. 

Four different methods were used to derive the trajectory planning for the six joints and 

were designed and employed to calculate the torque history for the six actuators. The 

dynamic equations of motion in symbolic form were derived using the   Lagrange-Euler 

technique and the torque history was obtained using MATLAB for each joint. The proposed 

algorithm is flexible and can be extended to any robot configuration provided that the 

Denavit-Hartenberg presentation was available and the physical limits of joints are defined. 

The original torque history has considerable fluctuations. It was shown that the highest hub 

torque was of joint 1 while actuator torque of joint 6 was the lowest. It should be also noted 

that changing the final time for the joint trajectory changes the torque history considerably. 

The final time required to complete the process was selected depending on the method used 

to derive the trajectory planning as previously stated. 

It was clearly shown in this work that the best method of trajectory planning that gives the 

smooth set trajectory planning and best performance of the robot under investigation was 

the soft motion trajectory planning because the most important reason for this selection was 

the torque history that has the lowest number ever of shooting and the shooting was 

distributed regularly over the period of time unlike the other methods which have a long 

number of shootings and were distributed randomly. Also the reason for selecting this 
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method was the disappearance of the shooting quite before the final time of trajectory i.e. 

the steady state time. T 
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Appendix 

Appendix (A): Notation 

Cj cos θj 

Sj sin θj 

j the total number of joints 

i the total number of coordinates 

n the total number of links 

k and p coefficient (1, 2, 3… n) 

x, y, z local joint coordinates 

X,Y,Z global joint coordinates 

Yi the Kinematics equations of the end effectors 

Xj the joint variables  (θ1, θ2, θ3, θ4, θ5, θ6)  

D the end effector differential translation matrix 

Dθ the joint differential motion matrix 

J the robot Jacobian matrix (i x j) 

θi the initial values of each joint angle  

θf the final values of each joint angle  

tf the time duration 

( )t , ( )t , ( )t , ( )J t  the orientation, angular velocity, angular acceleration and angular 

jerk respectively  

0 0 0, ,   
 

the initial conditions 

Tjpa Jerk positive initial time 

Taca Acceleration constant initial time 

Tjna Jerk negative initial time 

Tvc Velocity constant time 

Tjnb Jerk negative final time 

Tacb Acceleration constant final time 

Tjpb Jerk positive final time 

q  the vector of generalized joint coordinates 

q  the vector of joint velocities 

q
 the vector of joint accelerations 

M the inertia matrix 
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C the Coriolis and centrifugal matrix 

G the gravity matrix

Q the vector of generalized force associated
Tg  he gravity matrix (1x4)

xg , yg  and zg
 

the gravity components in x, y and z direction respectively 

jr  
the location of the center of mass of link relative to the frame 

representing the link

Tj the torque on joint (j)

iJ  the inertia matrix

XXI , YYI and ZZI the principal moments of inertia for the link

XYI , XZI  and YZI the parallel moments of inertia for the link

im
 

the mass of the link

iX , iY  and iZ
 

the distance between the X, Y and Z axis to the center of the link 

mass respectively

Appendix (B): MATLAB Code 

%******************************************************************************************************* 

%                                                              Micro-Robot Management  

%                                                   Complete MATLAB Code for kinematic  

%******************************************************************************************************* 

syms th1 th2 th3 th4 th5 th6 L1 L2 L3 L4  

%****************************THE INPUTS OF ROBOT ********************************************* 

L1=input('please enter The length of Link NO(1) (mm)='); 

L2=input('please enter The length of Link NO(2) (mm)='); 

L3=input('please enter The length of Link NO(3) (mm)='); 

L4=input('please enter The length of Link NO(4) (mm)='); 

th1min=input('please enter minth1 (degree)='); 

th1max=input('please enter maxth1 (degree)='); 

th2min=input('please enter minth2 (degree)='); 

th2max=input('please enter maxth2 (degree)='); 

th3min=input('please enter minth3 (degree)='); 

th3max=input('please enter maxth3 (degree)='); 

th4min=input('please enter minth4 (degree)='); 

th4max=input('please enter maxth4 (degree)='); 

th5min=input('please enter minth5 (degree)='); 

th5max=input('please enter maxth5 (degree)='); 

th6min=input('please enter minth6 (degree)='); 

th6max=input('please enter maxth6 (degree)='); 

%******************************************************************************************************* 

th1=th1min:2:th1max;th2=th2min:th2max;th3=th3min:th3max; 

th4=th4min:2:th4max;th5=th5min:th5max;th6=th6min:2:th6max; 

%******************************************************************************************************* 
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c1=cos(th1);c2=cos(th2);c3=cos(th3);c4=cos(th4);c5=cos(th5);c6=cos(th6); 

s1=sin(th1);s2=sin(th2);s3=sin(th3);s4=sin(th4);s5=sin(th5);s6=sin(th6); 

%*************************D.H matrix***************************************************************** 

A1=[c1,-s1,0,L1*c1;s1,c1,0,L1*s1;0,0,1,0;0,0,0,1];A2=[c2,0,s2,L2*c2;s2,0,-c2,L2*s2;0,1,0,0;0,0,0,1]; 

A3=[c3,0,-s3,0;s3,0,c3,0;0,-1,0,0;0,0,0,1];A4=[c4,0,-s4,0;s4,0,c4,0;0,-1,0,L3;0,0,0,1]; 

A5=[c5,0,-s5,0;s5,0,c5,0;0,-1,0,0;0,0,0,1];A6=[c6,-s6,0,0;s6,c6,0,0;0,0,1,L4;0,0,0,1]; 

A01=A1;A02=A1*A2;A03=A1*A2*A3;A04=A1*A2*A3*A4;A05=A1*A2*A3*A4*A5; 

A06=A1*A2*A3*A4*A5*A6; 

%*************The Kinematics equations of the end effectors************************************** 

px= A06(4,1),py= A06(4,2),pz=A06(4,3) 

subplot(1,3,1);plot(xa,ya); 

xlabel('Px');ylabel('Py');grid on 

subplot(1,3,2);plot(xa,z); 

xlabel('Px');ylabel('Pz');grid on 

subplot(1,3,3);plot(ya,z); 

xlabel('Py');ylabel('Pz');grid on 

%*********************************************THE end*********************************************** 

%**********************CREATED BY DR/WAEL A. AL-TABEY*********************************** 
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