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1. Introduction 

Linear time-invariant time delay systems (LTI TDS) have usually been assumed to contain 
delay elements in input-output relations only. All the system dynamics has been hence 
modeled by point accumulations in the form of a set of ordinary differential equations. The 
Laplace transform then results in a transfer function expressed by a serial combination of a 
delayless term and a delay element. However, this conception is somewhat restrictive in 
effort to fit the real plant dynamics because inner feedbacks are often of the time-distributed 
or delayed nature.  

Anisochronic (or hereditary) TDS models, on the other hand, offer a more universal dynamics 
description applying both integrators and delay elements either in lumped or distributed 
form so that delays appear on the left side of a differential equation which is no longer 
ordinary (ODE) but rather functional (FDE) - this brings the concept of internal (or state) 
delays. In contrast to undelayed systems, the main difference in dynamics is that their 
spectra are infinite in general. In the further text, an abbreviation TDS means LTI TDS 
containing state delays with or without input-output delays. 

Already in (Volterra, 1928) differential equations incorporating the past states when 
studying predator-pray models were formulated. The theory of these models has been then 
developed by many outstanding authors, see e.g. (Bellman & Cooke, 1963), (Krasovskii, 
1963), (Kolmanovskii & Nosov, 1986), (Zítek, 1983), (Górecki et al., 1989), and especially 
(Hale & Verduyn Lunel, 1993) and (Nicolescu, 2001), to name a few. Aftereffect 
phenomenon is included in many processes, e.g. in chemical processes (Zítek & Hlava, 
2001), heat exchange networks (Zítek, 1997), in models of mass flow in sugar factory 
(Findeisen et al., 1970), in metallurgic processes (Morávka & Michálek, 2008), etc. Plenty of 
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references to examples of processes with internal delays, covering a wide range of human 
activities (e.g. biology, chemistry, economics, communication and information technologies, 
etc.) are introduced in (Kolmanovskii & Myshkis, 1999; Niculescu 2001; Richard, 2003). 
Capabilities and advantages of this class of models and controllers for modeling and process 
control were broadly discussed in (Manitius & Olbrot, 1979). TDS models can be used not 
only for description of those systems embodying internal delays but they are successfully 
capable to fit the dynamics of high-order systems and processes even without apparent 
delays (Zítek & Víteček, 1999; Vyhlídal & Zítek, 2001; Simuenovic, 2011), which simplifies 
the processes description. 

Using the Laplace transform applied to FDEs of TDS, input-output models in the single-
input single-output (SISO) case can be expressed by the transfer function in the form of a 
fraction of so-called quasipolynomials (El’sgol’ts & Norkin, 1973) which can be viewed as 
polynomials in complex variable s over the ring of exponentials polynomials (or over a ring 
of linear combinations of real numbers and exponential functions in s). The concept of 
pseudopolynomials (Brethé & Loiseau, 1998), meromorphic functions (Zítek & Kučera, 2003) 
or a special ring (Gluesing-Lueerssen, 1997; Conte & Perdon, 2000), instead of 
quasipolynomials, can be used as alternatives; however, from the description point of view 
all these models are equivalent – their significance emerges while controller design. 

Delay in the feedback control significantly deteriorates control performance, namely 
stability and periodicity, and makes controller design more complex – mainly if delays are 
not approximated or ignored. Therefore, design a suitable control law for such systems is a 
challenging task solved by various techniques and approaches; a plentiful enumeration of 
them can be found e.g. in (Richard, 2003). Due to the complexity of many direct methods, 
one can approximate an infinite-dimensional model by a finite-dimensional one to obtain a 
rational transfer function which can be handled by any standard control approach for 
undelayed plants. Similarly, in case of delayed (anisochronic) controllers obtained by 
controller design without delay approximation, one way how to implement these control 
laws on discrete-time-working machines such as PLC or PC is to find a delayless (i.e. finite-
dimensional) approximating model followed by a discretization (e.g. by the z-transform 
with a holder). 

This chapter aims two problems. First, output controller design for TDS models in a special 
ring is introduced. Second, resulting anisochronic controllers are approximated using 
various techniques for rational approximation of transfer function of TDS, which is the 
crucial part of the chapter. Hence, let us to make a brief insight into the two tasks. 

Some authors, e.g. in (Brethé & Loiseau, 1998), pointed out that the use quasipolynomials 
does not permit to effectively handle some stabilization and control tasks, such as internal 
stability, controller properness etc. Hence, the quasipolynomial (meromorphic) description 
of TDS can be extended to a fractional one where a transfer function can be viewed as a field 
of fractions over a ring.  The ring of stable and proper quasipolynomial (RQ) meromorphic 
functions (RMS) (Zítek & Kučera, 2003; Pekař & Prokop, 2010; Pekař & Prokop, 2011a, 2011b; 
Pekař et al., 2011) is a suitable candidate. Although the ring can be used for a description of 
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even neutral systems (Hale & Verduyn Lunel, 1993) after some definition adjustment, only 
systems with so-called retarded structure are considered as the admissible class of systems 
in this paper. Contrary to some other algebraic approaches, the ring enables to handle 
systems with non-commensurate delays, i.e. it is not necessary that all system delays can be 
expressed as integer multiples of the smallest one. Control philosophy in this ring then 
utilizes the Bézout identity, to obtain stable and proper controllers, along with the Youla-
Kučera parameterization for reference tracking and load disturbance rejection. 

Final controllers, in most cases, evince internal delays. Hence, a special effort to apply the 
control law in discrete time when controllers’ realization on computers must be made. To 
name just a few TDS discretization methods, state space approaches can be found e.g. in 
(Engelborghs & Roose, 2002) based on the so-called solution operator, or in (Breda et al., 
2005) via the so-called infinitesimal generator, or using Taylor series expansion of the state 
vector in a neighborhood of the working point (Hofreiter, 2003). Input-output approaches 
include e.g. utilization of delta transform operators (Middleton & Goodwin, 1990; Zítek & 
Petrová, 2002). Nevertheless, all these methods consider a “very small” sampling period. An 
equivalent discrete-time model via the z-transform with a holder ought to be found when 
the sampling period is “higher”. To utilize the z-transform, one has to find a finite-
dimensional continuous model. This task is the primary aim of this chapter, i.e. to 
approximate an infinitesimal model of an anisochronic controller such that the final finite-
dimensional model can be subjected to the z-transform. 

In recent decades a huge number of papers and works have been focused on model 
reduction or rational approximation of TDS, see e.g. (Makilla & Partington, 1999a, 1999b; 
Battle & Miralles, 2000). A fair overview of some methods and approaches has been 
published in (Partington, 2004). An overwhelming majority of these methods, however, 
deals with input-output delays only ignoring internal or state delays on the left-hand side of 
differential equations, i.e. those transfer functions with exponential terms in the 
denominator. In the contrary, this chapter focuses transfer function rational approximations 
for TDS with internal (state) delays since there are no theoretical analytic results about 
approximations convergence and accuracy for such models up today (distinct from single 
input-output delay which has been deeply analysed by rigorous analytic means many 
times) and one can thus expect interesting numerical comparative results. The basic 
question is whether the higher order approximation yields the better (i.e. more accurate) 
finite dimensional approximating model. The appropriate methods are chosen so that they 
are easy to deal with and anyone can use them effortlessly. Namely, Padé approximation, 
shift operator approximations – Laguerre and Kautz shift - and Fourier analysis based 
method are introduced and benchmarked. The common principle of all approaches consists 
in substitution of exponential terms in the transfer function of TDS with a rational fraction in 
the Laplace complex variable s. 

We made no attempts to deal with analytic mathematical proofs in this chapter. From the 
practical point of view, the efficiency and accuracy of the selected approaches is measured 
and compared via norms in the Hardy space, namely, H∞ and H2 norms, the definitions of 
which and some calculation tricks are presented here as well (Štecha & Havlena, 2000). 
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A Matlab-Simulink user-interface application has been programmed to make a benchmark 
of approximations easier which enables to enter an approximated (nominal) plant transfer 
function, to select methods to be compared and the choice of norms by which the accuracy 
of approximation is calculated. It is also possible to specify an order of the approximation 
for each selected approximation approach. As the outputs, a table of calculated norms and 
the gain Bode plot (that is relevant to the norms) are displayed. Some study cases on 
approximations of anisochronic controllers’ derived by this algebraic method are introduced 
and compared in this contribution. For instance, control of an unstable system describing 
roller skater on a swaying bow (Zítek et al., 2008), or a laboratory heating system (Pekař et 
al., 2009), are taken as quasi-practical examples. 

The chapter is organized as follows. In Section 2 a brief general input-output description of 
TDS is introduced together with the coprime factorization for the RMS ring representation. 
Fundamentals of algebraic controller design in RMS using a simple control feedback scheme 
are presented in Section 3. Section 4 introduces selected rational approximation methods for 
anisochronic controllers’ transfer functions. Definitions and calculation issues regarding to 
norms for approximations’ performance comparison are focused in Section 5. The 
application part of the chapter, i.e. Matlab-Simulink user interface, is described in Section 6. 
Finally, illustrative benchmark examples are presented in Section 7. 

2. TDS models 

Since the chapter applies finite-dimensional approximations of (controllers’) transfer 
functions, there is no point to introduce TDS systems description in the state space, 
regardless of the fact that state-space models appear as a result of system modelling and it 
would be natural to mention them first. For further details about state-space TDS models the 
reader is referred to (Richard, 2003). The second aim of this section is to present the concept 
of fields of fractions as an extension of meromorphic description in the form of 
quasipolynomial fractions, namely the ring of quasipolynomial meromorphic functions, 
RMS, which is suitable to meet some elementary. So-called retarded TDS are primarily 
focused; nevertheless, neutral ones have to be mentioned as well, since it is necessary to 
make the ring definition complete. 

2.1. Input-output quasipolynomial model 

Since the authors’ interest lies in single-input single-output (SISO) TDS and their input-
output models, they are concerned here. Namely, transfer functions in the form of 
quasipolynomial fractions giving rise to the meromorphic representation are taken as initial 
models to be approximated. 

For both lumped (point-wise) and distributed input-output and internal delays in the 
system or model, the Laplace transform of a state space model (considering zero initial 
conditions) can be formulated as follows 
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    
 

b s
G s

a s
  (1) 

where  b s ,  a s  are quasipolynomials of the general form 

    
0 1

exp , 0
ihn

n i
ij ij ij

i j

q s s m s s 
 

     (2) 

where n is the order of a quasipolynomial which usually agrees with the system degree (of a 

state-space model), ijm are real numbers and 0ij   represent delays. If  
1

exp
nh

nj nj
j

m s


  

does not equal a real constant, the system is called neutral; otherwise, the system is retarded. 

2.2. TDS stability 

A retarded system (1) is said to be asymptotically (exponentially) stable if all poles are located 
in the open left half plane,  0

 , i.e. there is no s satisfying 

    0,Re 0, 0a s s b s    (3) 

Condition   0b s   in (3) is taken into accont if the system contains distributed delays since 
there hence exist common roots of the transfer function numerator and denominator which 
are not system poles. 

A rather more complicated TDS stability conditions are given regarding to neutral systems, 
since there may exist vertical strips of system poles tending to the imaginary axis of infinite 
amplitude. Moreover, these strips can be sensitive to even infinitesimally small deviations in 
delays, i.e. the position of system poles in the real axis is not continuous with respect to 
delays. A neutral system (1) is exponentially stable if there is no s such that 

    0,Re , 0a s s b s     (4) 

for arbitrarily 0  . 

A system is strongly stable if so-called associated difference equation (in state-space 
formulation) remains asymptotically stable when subjected to small variations in delays 
(Hale & Verduyn Lunel, 1993), i.e. a TDS remains formally stable, see details in (Byrnes et al., 
1984; Loiseau et al., 2002). Formal stability, roughly speaking, means that the rightmost 
vertical strip of poles does not cross the imaginary axis. If this holds also under small delay 
changes, the system is strongly stable. A necessary and sufficient strong stability (and thus 
also formal stability) condition in the Laplace transform can be formulated as 

 
1

1
nh

nj
j

m


  (5) 
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according to e.g. (Zítek & Vyhlídal, 2008),  where njm  are real coefficients for the highest s-
power in the denominator  a s  of (1). 

2.3. TDS model over RMS ring 

Algebraic approaches for analysis and control of TDS can be performed either in the state 
space or in the realm of input-output models where fields, modules and rings as principal 
algebraic notions and tools are utilized. Usually, commensurate delays, i.e. those which can 
be expressed as integer multiples of the smallest one, are assumed; however, delays are 
naturally real-valued and thus this assumption is rather restrictive for real applications. 
Non-commensurate or rationally unapproximated delays results in a fraction of 
quasipolynomials as presented above. However, these transfer function representations are 
not suitable in order to satisfy some basic control requirements, e.g. controller feasibility, 
closed-loop (Hurwitz) and formal (strong) stability. 

Rather more general approaches (Vidyasagar, 1985; Kučera, 1993) utilize a field of fractions 
where a transfer function is expressed as a ratio of two coprime elements of a suitable ring. 
A ring is a set closed for addition and multiplication, with a unit element for addition and 
multiplication and an inverse element for addition, i.e. division is not generally allowed. A 
powerful algebraic tool ensuring some basic control requirements, such as internal closed-
loop stability and controller properness, is a ring of stable and proper RQ-meromorphic 
functions (RMS). Since the original definition of RMS in (Zítek & Kučera, 2003) does not 
constitute a ring, some minor changes in the definition were made e.g. in (Pekař & Prokop, 
2009). Namely, although the retarded structure of TDS is considered only, the minimal ring 
conditions require the use of neutral quasipolynomials at least in the numerator as well. In 
this chapter, the ring definition is reformulated once more to comprise models of neutral 
type, distributed delays and formal stability. 

A term  T s  from RMS ring is represented by a proper ratio of two quasipolynomials 
   /y s x s  where a denominator is a quasipolynomial of degree n and a numerator can be 

factorized as  

      expy s y s s   (6) 

where  y s  is a quasipolynomial of degree l and   0. Note that the degree of a 
quasipolynomial means its highest s-power. The element is analytic and bounded in   , 
particularly, there is no pole s0 such that 0Re 0s   (or 0Re , 0,s     for neutral terms, 
more precisely, which can be taken as a generalization) - in other words, all possible roots of 
 x s  in    are those of  .y s  Thus, it lies in the space H (  ) providing the finite norm 

defined as 

  : sup ( ) : Re 0T T s s

   (7) 

It is said that  T s  is H  stable (Partington & Bonnet, 2004). That is, the system has finite 
 2 0,L   to  2 0,L   gain where  2 0,L   norm of an input or output signal  h t  is defined as 
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     2

2
0

: dh t h t t


   (8) 

Notice, for instance, that  T s  having no pole in the right-half complex plane but with a 
sequence of poles with real part converging to zero can be H∞ unstable due to an unbounded 
gain at the imaginary axis. 

Moreover,  T s  is also formally stable which is guaranteed by condition (5) for  x s . 
Unfortunately, strong stability can not be included in the ring definition since the product of 
two strongly stable terms can be strongly unstable. Although neutral TDS that are strongly 
stable can be H  stable, see (Partington & Bonnet, 2004), yet they are not H  (nor BIBO) 
stabilizable, (Loiseau et al., 2002). It can be shown that neglecting formal stability can bring 
the problem with ring axioms in controller design , i.e. H  stability is not sufficient. 

In addition, the ratio is proper, i.e. l  n. More precisely, there exists a real number R > 0 for 
which holds that 

  
Re 0,

sup
s s R

T s
 

   (9) 

2.4. Coprime factorization in RMS 

Let the plant be initially described by the transfer function 

    
 

b s
G s

a s
  (10) 

where  a s ,  b s  are quasipolynomials. Hence, using a coprime factorization, a plant model 
has the form 

    
 

B s
G s

A s
  (11) 

where    , MSA s B s R  are coprime, i.e. there does not exist a non-trivial (non-unit) 
common factor of both elements. Details about divisibility can be analogously deduced from 
notes presented in (Pekař & Prokop, 2009). Note that a system of neutral type can induce 
problem since there can exist a coprime pair    ,A s B s  which is not, however, Bézout 
coprime – which implies that the system can not be stabilized by any feedback controller 
admitting the Laplace transform (Loiseau et al., 2002); for instance when the system is not 
formally stable. More precisely, two coprime elements    , MSA s B s R form a Bézout 
factorization if and only if 

     
Re 0
inf , 0

s
A s B s


  (12) 
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3. Controller design in RMS 

The aim of this section is to outline controller design based on the algebraic approach in the 
RMS ring satisfying the closed loop stability in that sense that all transfer functions in the 
feedback are from the ring (i.e. they lies in H∞ and are proper and formally stable) controller 
feasibility, reference tracking and load disturbance rejection. As a control system, the simple 
feedback loop is chosen for the simplicity, see Fig. 1. 

 
Figure 1. Control feedback scheme 

For algebraic controller design in RMS it is initially supposed that not only the plant is 
expressed by the transfer function over RMS but a controller and all system signals are over 
the ring. Let  W s  be the Laplace transform of the reference signal,  D s  stands for that of 
the load disturbance,  E s  is transformed control error,  0U s  expresses the controller 
output (control action),  U s  represents the plant input affected by a load disturbance, and 
 Y s  is the plant output controlled signal in the Laplace transform. The plant transfer 

function is depicted as  G s , and  RG s  stands for a controller in the scheme. 

External inputs, reference and load disturbance signals, respectively, have forms 

    
     

 ,W D

W D

H s H s
W s D s

F s F s
   (13) 

where  WH s ,  DH s ,  WF s ,  DF s RMS. 

The following important feedback transfer functions can be derived 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) , ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) , ( )
( ) ( ) ( ) ( )

WY DY

WE DE

Y s B s Q s Y s B s P s
G s G s

W s M s D s M s
E s A s P s E s B s P s

G s G s
W s M s D s M s

   

    
 (14) 

where the controller transfer function is factorized as follows 

    
 R

Q s
G s

P s
  (15) 

and the common denominator meromorphic function reads 
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          M s A s P s B s Q s   (16) 

Meromorphic functions  Q s ,  P s  are from RMS and the fraction (16) is (Bézout) coprime. 
The numerator of  M s RMS agrees to the characteristic quasipolynomial of the closed 
loop generally defined in (2). 

A brief description of basic control design steps follows. 

3.1. Closed loop stabilization 

Given a Bézout coprime pair    ,A s B s RMS the closed-loop system is stable if and only if 
there exists a pair    , MSP s Q s R  satisfying the Bézout identity 

         1A s P s B s Q s   (17) 

A particular stabilizing solution of (17), say    0 0,P s Q s , can be then parameterized as 

 
       
       

0

0

P s P s B s Z s

Q s Q s A s Z s

 

 
 (18) 

where   MSZ s R . Parameterization (18) is used to satisfy remaining control and 
performance requirements, such as reference tracking, disturbance rejection etc. 

The proof of the statement above can be done analogously as in (Zítek & Kučera, 2003) 
where a three-step proof for a similar ring was presented. Condition (12) ensures i.a. that 
there can exist the ring inversion of  M s  since it proves that there is no common zero of 
 A s ,  B s  in    (including infinity). 

3.2. Reference tracking 

The task of this subsection is to find   MSZ s R in (18) so that the reference signal is being 
tracked. The solution idea results from the form of  WEG s defined in (14). Consider the limit 

              
 0 0 0lim lim lim lim W

t W s W s WE s
W

H s
e t sE s sG s W s sA s P s

F s       (19) 

where W expresses that the signal is a response to the reference not influenced by other 

external inputs. Limit (19) reaches zero if  0lims WE s    and  WE s  is analytic and 

bounded in the right half-plane, i.e.  WE s  H ( +) – this requirement also satisfies that 

 
0

lim d
t

t We     . Moreover, it must hold that  WEG s  is proper (or, equivalently, 

 WE s  is strictly proper) because of the feasibility (impulse free modes) of  We t . If one 



 
MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 100 

wants to prevent the closed loop stability from the sensitivity to small delays, or to preserve 

formal stability at least, the denominator of  WE s  must be a (quasi)polynomial satisfying 

(5). This implies, in other words, that the reference tracking is fulfilled if  WE s  MSR . 

Alternatively,  WF s  must divide the product    A s P s  in MSR . Hence, all unstable zeros 
(including infinity) of  WF s  must be those of    A s P s  and, moreover, the 
quasipolynomial numerator of  WF s  is formally (strongly) stable. It means that one has to 
set all unstable zeros of  WF s  (with corresponding multiplicities) as zeros of  P s  - if there 
is no one already contained in  B s . Recall that zeros mean zero points of a whole term in 

MSR , not only those of a quasipolynomial numerator. 

Note that the controller approach fails for formally unstable controlled processes since then 
the feedback loop remains formally unstable (neutral term can not be affected by a 
controller). 

3.3. Load disturbance rejection 

The attenuation of the load disturbance signal entering a plant model can be done 
analogously as for reference tracking. Thus, Z(s) is chosen so that  DY s  MSR  which is 

clear from 

 0 0 0
( )

lim ( ) lim ( ) lim ( ) ( ) lim ( ) ( )
( )

D
t D s D s DY s

D

H s
y t sY s sG s D s sB s P s

F s       (20) 

where D  means that the output is influenced only by the disturbance. Or,  DF s  must 
divide the product    B s P s  in MSR . 

One has to be careful when deciding about the form of  Z s  since both divisibility 
conditions must be fulfilled simultaneously. A detailed procedure of reference tracking and 
disturbance rejection briefly described above was presented e.g. in (Pekař & Prokop, 2011). 

4. Selected transfer function rational approximations 

Selected easy-handling transfer function rational approximation methods based on the 
substitution of exponential elements by a rational function are described in this section. The 
emphasis is put on the engineering usability of the methods. 

4.1. Padé approximation 

In the second half of the 19th century, a French mathematician Henry Padé devised a simple 
and, nowadays, one of the most used and favorite rational approximations which is based 
on the comparison of derivatives of the approximating and approximated functions in zero. 

More precisely, let  F s  with  0 0F  be analytic in the neighborhood of zero. Then, the n-
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n Padé approximation is the function      /n ns N s D s   where  nN s ,  nD s  are 

polynomials of the nth order with  0 1nD   and it holds that        0 0 , 1,...,2i iF i n   . 

Padé approximation of    expF s sT  , 0T  is given by the following relation (Partington, 
2004) 

 

0

( )
exp( )

( )

(2 )!
( ) ( )

(2 )!

n
k

k

P s
sT

P s

n n k
P s sT

k n


 

  
  

 


  (21) 

where n is the order of the approximation. Obviously, one can approximate another 
function, e.g. the whole transfer function.  

A method called diagonal Padé approximation, which is distinguished by some authors, see 
(Battle & Miralles, 2000; Richard, 2003) can be expressed as 

 
   

 

   
   
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P s

n k
P s sT

k n k

 



 


 (22) 

However, it is easy to verify, that (21) and (22) represent the same approximations. In fact, 

 
 
   

 
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 

 
 (23) 

and  !/ 2 !n n  is the common factor of both, the approximating numerator and denominator, 

hence, the fractions are the same. 

4.2. Shift operator approximations 

Approaches based on operator shifting yields from the fact that a delay term  exp sT  can 

be perceived as a shift operator and can be subjected to Maclaurin series expansion.  
Moreover, the variable s can be vied as a derivative operator. 

Hence 

 

   

             

       

2 3

2 2 3 3

2 3

:

exp : ...
2 6

d d d d
exp : exp 1 ...

d d 2 6d d

sf t f t

T T
sT f t f t T f t Tf t f t f t

T T
sT f t T f t T f t

t t t t



         

  
              

 (24) 
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A concise overview of some important shift operator approaches follows. 

4.2.1. Laguerre shift 

The eventual relation for this shift operator approximant is given by the formula 

  
1

2exp
1

2

n
sT

nsT
sT

n

 
 

   
  
 

 (25) 

where n is the order of the approximation again, see (Makilla & Partington, 1999a) for more 
details. The Laguerre shift is successfully used in robust control. 

4.2.2. Kautz shift 

As presented in (Makilla & Partington, 1999a), the nth order Kautz shift reads 

  

2

2

1
1

2 2 2
exp

1
1

2 2 2

n

sT sT
n n

sT
sT sT

n n

           
        

 (26) 

In the source referenced above, there has been analytically proved for input-output delays 
that the Kautz shift approximation is asymptotically twice more accurate than the Laguerre 
one. 

4.2.3. Padé shift 

This type of shift approximation is based on the second order Padé approximation (Makilla 
& Partington, 1999b; Battle & Miralles, 2000) and it is also called Padé-2. It can be formulated 
e.g. as follows 

  

2

2

1
1

2 3 2
exp

1
1

2 3 2

n

sT sT
n n

sT
sT sT

n n

           
        

 (27) 

4.2.4. Fourier analysis based method 

This approximation methodology results from the analysis of the delay-in-feedback step 
response or, generally, the response to the input of the form   , , 0ku t t t k  . It has been 
found that the feedback system response is a superposition of a periodic and an aperiodic 
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signal. The Fourier series expansion of the periodic part of the response gives the resulting 
approximation.  

To demonstrate the initial idea more precisely, consider a single delay term  exp sT  in the 
simple negative feedback loop. Then the whole feedback transfer function  W s  reads 

 
exp( )( )

( )
( ) 1 exp( )

sTY s
W s

U s sT


 
 

 (28) 

Hence 

      y t y t T u t T      (29) 

and  the output  y t  is assumed to be a superposition of a polynomial  q t  and a periodic 
part p(t) 

      y t q t p t   (30) 

Inserting (30) into (29) yields 

    y t T y t   constant  (31) 

From the Fourier series expansion of  p t  and some further nontrivial calculations, the 
following final relation can be obtained 

  
   

3 3
2 2 2 2
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1 1 2 1 1
2 4 2 12 1
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W s Ts T s
T s nn 

  
 

  (32) 

The exponential term can be then approximated by the inverse of (28) as 

    
 exp

1

W s
sT

W s
 


 (33) 

The reader is referred to (Battle & Miralles, 2000) for more details about the derivation and 
methodology. 

5. Approximation performance evaluation using norms 

The accuracy of rational approximation methods and approaches has been usually 
measured and evaluated via conscientious and rigorous mathematic analytic proofs. The 
derivation of such results has been facilitated by the fact that delays in input-output relation 
only, ignoring the effect of internal delays, have been considered.  This is the main gap 
which ought to be healed up; however, no analytic methods are used in this chapter 
anyway. 
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Transfer function norms in the Hardy space known from robust control for unstructured 
uncertainty measurement instead of any complex analytic method for the comparison of 
approximation accuracy are used in this contribution since this conception is sufficient for 
particular cases and for engineering practice. Moreover, analytic derivations of accuracies 
for internal delays would be much more difficult than those for input-output ones. 

First of all, define the objective to be minimized in various meanings. The difference 
between the nominal G  and approximated Ĝ  transfer functions is taken as a measured 
expression MG , i.e. 

 ˆ
MG G G   (34) 

We chose two the most used norms in the Hardy space, namely, H2 and H norms, which 
are effective to express the proximity of transfer functions in the frequency domain. The 
definitions and some basic properties are then followed by some calculation tricks when 
dealing with the norms. 

5.1. H2 norm 

The H2, sometimes called quadratic, norm of a stable strictly proper transfer function is 
defined as 

   2

2

1
j d

2
G G  







   (35) 

The norm is finite for strictly proper stable systems having no pole on the imaginary axis, 
and the meaning of H2 is energy of G . A generalized strict properness can be expresses as 
follows 

  
Re 0,

lim sup 0
R s s R

G s
  

  (36) 

Note that for TDS with distributed delays, there can exist a denominator root (or roots) of G
which is not the system pole. 

In computer practice, i.e. working with discrete samples, the integral in (36) is calculated as 
a sum within a finite range of nonnegative frequencies, max0,     . Due to the symmetry, 
the resulting value is doubled finally. The value of max  can be chosen so that the frequency 
gain is “small enough”.  

Residual expansion can be used when analytic (and continuous) calculation of
2

G , (Štecha 
& Havlena, 2000).  It holds that 
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   (37) 
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where is  are (stable) system poles and resuduum of a complex function  F s  reads 

    
 

    
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1 d
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1 ! dii

m
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          
 (38) 

where m is the multiplicity of a pole. 

5.2. H∞ norm 

The H-infinity ( H ) norm is defined as 

  sup jG G




  (39) 

i.e. it expresses the supreme of the amplitude (gain) frequency characteristics of G , see Fig. 
2. If the system is asymptotically (exponentially) stable and provides a finite H∞ norm, it is 
said that it is H∞ stable and lies in the space H (  ) of functions analytic and bounded in 
the right-half complex plane. 

The norm is also called L2 gain, That is, the H∞ stable system has finite  2 0,L   to  2 0,L   
gain where  2 0,L   norm of an input or output signal  h t  is defined as 

     2

2
0

: dh t h t t


   (40) 

The frequency characteristics supreme can be easily found by standard analytic means, or 
by mapping the values of  jG   when using digital computers. 

 

Figure 2. The meaning of H  norm as the frequency characteristics supreme 
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Note, for instance, that a transfer function having no pole on the imaginary axis but a 
sequence of poles with real part converging to zero can have an infinite H∞ norm due to an 
unbounded gain, see (Partington & Bonnet, 2004). 

6. Matlab-Simulink user interface 

The main application part of this chapter consists in development of a simulation program 
that can evaluate the quality of approximations. A user-friendly interface in Matlab-
Simulink environment has been hence developed by the authors in order to provide testing 
and comparison of approximation approaches introduced above. The source code can be 
found in (Pekař & Kurečková, 2011). 

Fig. 3 displays the working environment of the application. In the upper part of the user 
interface, one is allowed to enter a nominal plant transfer function as a numerator and 
denominator quasipolynomials. The user must be careful since the syntax scheme which is 
indicated by grey font (or by the help hint) in the edit box must be kept. 

 
Figure 3. Matlab-Simulink user interface and working environment 
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Then, a user can select one or more approximation methods to be compared and check the 
choice of norms by which the accuracy of approximation is calculated. It is also possible to 
specify an order of the approximation for each selected method.  

By clicking the button Get approximation accuracy, the programme returns a table of 
calculated norms in the text form. A graphical comparison of amplitude frequency 
responses for all chosen approximations is obtained by clicking the button Plot amplitude 
characteristics. 

Final approximation controller transfer functions are returned to the Matlab workspace to 
the command line. 

7. Benchmark examples 

The aim of this section is to verify introduced approximation methods using the user 
interface. The approximation accuracy with respect to the order of an approximation is a 
very attractive question as well. As will be seen from the following examples, some rather 
surprising results can be obtained. 

As mentioned above, results of the benchmark ought to be primarily used by the authors for 
the rational approximation of controllers with internal delays (also called anisochronic) as a 
first step of controllers’ discretization via the z-transform, for the computer implementation. 

Three examples of algebraic controller design with rational approximations using the user 
interface follow. The first one gives results for anisochronic controllers design in control of a 
hypothetic simple stable LTI with stepwise reference, to demonstrate mainly the design 
procedure. The second one presents the approximation of an anisochronic controller for an 
attractive unstable system of a skater on a swaying bow. The third example deals with control 
of a laboratory circuit heating system, as a typical real-life representative of retarded TDS. 

7.1. Stable system with stepwise reference 

Let the plant be described by the transfer function of a stable first order TDS model with 
both internal and input-output delays as 

    
   exp
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 (41) 

Condition  0,2a   ensures the asymptotic stability of the model. 

Coprime (Bézout) factorization is the first step of controller design in RMS ring as follows 
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where  m s  is an appropriate stable (quasi)polynomial of the first order (due to the 
coprimeness). A suitable form of  m s  is contentious and depends on user’s requirements, 
let   0 0, 0m s s m m   . 

Consider the simplest practical case that both external inputs are from the class of step 
functions, hence 

    
 

 

 
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 
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w d

w d
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W s D s
s sF s F s

m s m s
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where  wm s  and  dm s  are arbitrary stable (quasi)polynomials of degree one, say, for the 

simplicity, 0s m  again,        , , ,W W D D MSH s F s H s F s R  and 0w  and 0d  are real constants. 

Find a stabilizing particular solution by (17). Set e.g. 0 1Q   which yields 
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 (44) 

Now parameterize the solution according to (18) to obtain controllers asymptotically 
rejecting the load disturbance and tracking the stepwise reference 
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The numerator of P(s) has to have at least one zero root. Moreover, it is appropriate to have 
P(s) in a simple form, which is fulfilled e.g. when  
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providing 
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Thus, final controller’s structure is the following 
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exp
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 (48) 

The obtained control structure can be easily compared with the well-known Smith predictor 
structure and note that the controller is of the anisochronic type because of delay in the 



On Finite-Dimensional Transformations of  
Anisochronic Controllers Designed by Algebraic Means: A User Interface 109 

transfer function denominator. It is naturally possible to take  m s  as a quasipolynomial 
instead of polynomial; however, this option would make a controller more complicated. The 
importance of  m s  reveals from the closed loop transfer function 

    
 

 0

0

exp
WY

Y s m s
G s

s mW s


 


 (49) 

i.e.  m s  appears as a characteristic (quasi)polynomial of the closed loop. 

Model (41) can to fit the dynamics of a high order undelayed system; for instance, a tenth 
order system governed by the transfer function 

  
 10

1

2 1
sG s

s



 (50) 

can be estimated by model (41) with 26.5 10 , 15.3, 6.7a b       , see (Zítek & Vyhlídal, 
2003; Pekař & Prokop, 2008) for details. Hence, let the system has these parameters and 

0 0.5m  .  

Let  1,2,3,4,5n  , where n is the order of the approximation method, and test the 
accuracies for all methods introduced above. The best results for each of them measured by 
H∞ and H2 norms with the corresponding order are displayed in Table 1. 

Obviously, the best result for H∞ is given alongside by the Padé approximation and 
Laguerre shift of the first order, whereas, amazingly, higher orders make results worse. The 
Fourier analysis based methods yields almost the same score for all studied orders. The 
benchmark results for the H2 norm with max 15   introduced in Table 1 are almost identical 
with those for H∞, i.e. the Padé approximation and Laguerre shift of the first order are the 
best and the Fourier analysis based methods gives almost the same results for all orders. The 
corresponding gain frequency responses for the approximations of orders as in the last 
column in Table 1 are displayed in Fig. 4. 
 

Method H n H2 n 

Padé approx. 0.243 1 0.237 1 

Laguerre shift 0.243 1 0.237 1 

Kautz shift 0.408 5 0.299 3 

Padé shift 0.277 1 0.29 1 

Fourier analysis 0.38 1 0.354 5 

Table 1. Comparison of rational approximations of (49) measured by H∞ and H2 norms 

The approximating transfer function by Padé approximation and Laguerre shift with n = 1 is 
given by (51), which agrees with a conventional PID controller 
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Figure 4. Bode magnitude plots of nominal and approximating models for (48) 

7.2. Control of the roller skater on a swaying bow 

Consider an unstable system describing roller skater on a swaying bow, (Zítek et al., 2008), 
governed by the transfer function 
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see Fig. 5, where  y t is the skater’s deviation from the desired position,  u t  expresses the 
slope angle of a bow caused by force P, delays ,   means the skater’s and servo latencies, 
respectively, and b, a are real parameters. Skater controls the servo driving by remote signals 
into servo electronics. 

Let the model parameters be b = 0.2, a = 1, 0.3  s, 0.1  s, as in the literature, and design 
the controller structure analogously as in the previous subsection 7.1. Consider that the 
reference and load disturbance are in the form of step-wise functions. Then the final 
controller has the structure given by the following transfer function 
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 (53) 
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where p2, p1, p0, q3, q2, q1, q0  are free parameters, see details in (Pekař & Prokop, 2011b). 
Using a quasi-optimal tuning algorithm, the parameters were set as 

 3 2 1 0 2 1 04.7587, 2.1164, 2.6252, 0.4482, 0.4636, 0.529, 4.6164q q q q p p p        (54) 

and e.g. 0 5m  . 

 
Figure 5. The roller skater on a swaying bow 

The comparison of the best controller rational approximations can be found in Table 2. 
Again, the method based on the Fourier series expansion very slowly approaches the limit 
value of the H2 norm ( 7.811 ) with the increasing n. The only method evincing the better 
asymptotical results with the higher order approximation is the Kautz shift. Again, the Padé 
and Laguerre approximations of the first order give very good results with the 
approximating controller transfer function 
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 (55) 

 
Method H n H2 n 
Padé approx. 5.6674 1 8.577 1 
Laguerre shift 5.6674 1 8.577 1 
Kautz shift 6.0847 5 9.7446 5 
Padé shift 6.0668 1 9.674 1 
Fourier analysis 5.6674 1 7.8114 5 

Table 2. Comparison of rational approximations of (53) measured by H∞ and H2 norms 
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Fig. 6 displays Bode magnitude plots for the best orders for H2 (the last column in Table 2), 
which verifies a very good performance of all the approaches. 

 
Figure 6. Bode magnitude plots of nominal and approximating models for (53) 

7.3. Control of a circuit heating plant 

The laboratory heating plant, a photo and a sketch of which, respectively, are displayed in 
Fig. 7, was assembled at the Faculty of Applied Informatics of Tomas Bata University in Zlín 
in order to test control algorithms for systems with dead time. The original description of 
the apparatus and its electronic circuits can be found in (Dostálek et al., 2008). 

  
Figure 7. Bode magnitude plots of nominal and approximating models for (53) 
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The heat transferring fluid (namely distilled water) is transported using a continuously 
controllable DC pump {6} into a flow heater {1} with maximum power  P t  of 750 W. The 
temperature of a fluid at the heater output is measured by a platinum thermometer giving 
value of  HO t . Warmed liquid then goes through a 15 meters long insulated coiled 
pipeline {2} which causes the significant delay in the system. The air-water heat exchanger 
(cooler) {3} with two cooling fans {4, 5} represents a heat-consuming appliance. The speed of 
the first fan can be continuously adjusted, whereas the second one is of on/off type. Input 
and output temperatures of the cooler are measured again by platinum thermometers 
giving  CI t , resp.  CO t . The expansion tank {7} compensates for the expansion effect of 
the water. 

Originally, it was intended to control input delays only; however, it was shown that the 
plant contains internal delays as well. A detailed mathematical model was presented in 
(Pekař et al., 2009). A linearized model of the relation between the power to the heater  P t  
and  CO t  can be expressed by the transfer function 

    
 

   
 

0 0 0
3 2

2 1 0 0

exp exp

exp
DCO

D

b s b ss
G s

P s s a s a s a a s

 



     
    

 (56) 

where all real parameters in the model are complex algebraic functions of physical 
quantities in the circuit and input and output steady states, see details in the literature. It 
was determined that for a certain working point, the parameters are  

 
6 7 4

0 0 2 1 0
5

0 0

2.334 10 , 2.146 10 , 0.1767, 0.009, 1.413 10 ,

7.624 10 , 1.5, 131, 143
D

D

b b a a a

a   

  


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 (57) 

The controller structure obtained by controller design in MSR  yields 
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 (58) 

Table 3 displays the best values for approximations at their orders  1,2,3,4,5n  . H2 norm 
is measured within the frequency range 0.001;0.5      with the discretization step 

0.001  . 
 

Method H n H2 n 
Padé approx. 27994.7 4 1197.3 5 
Laguerre shift 28528.6 3 1194.3 2 
Kautz shift 28365.9 2 1196.4 2 
Padé shift 28650.2 3 1198.7 1 
Fourier analysis 28760.9 1 1205.1 1 

Table 3. Comparison of rational approximations of (56) measured by H∞ and H2 norms 
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Immense values of H∞ norm are caused by a pair controller poles which is very close to the 
imaginary axis ( 0.0002 0.094jis   ) and the controller is obviously unstable. Padé 
approximation of the 4th order provides the best value for H∞, whereas Laguerre shift of the 
2nd order gives the best approximation measured by H2 norm. Again, this example indicates 
that the higher order of the approximation does not mean the more accurate result 
automatically. 

The comparison of Bode magnitude plots for the best orders (which are placed in the last 
column in Table  3) for H2  can be seen in Fig. 8. 

To conclude study cases above, it is startling that the best approximations measured by H2 
and H∞ norms are mostly given by the well known and widely used Padé approximation of 
the first (or a low) order. By simulations, the higher order of an approximation does not 
generally yields the more accuracy finite dimensional model, which is in the contradiction 
with a general expectation and analytic results for rational approximations for TDS with 
input-outputs delays. Comparative Bode plots above indicate the usability and a very good 
efficiency of selected methods. 

 
Figure 8. Bode magnitude plots of nominal and approximating models for (58). 

8. Conclusion 

This chapter intended to propound the reader a methodology for algebraic controller design 
for systems with internal delays, followed by a comparison of several easy-handling 
techniques for rational (i.e. finite-dimensional) approximation of anisochronic (i.e. infinite-
dimensional) controllers – or their transfer functions, more precisely. 
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The first, controller design, part was based on the solution of the Bézout identity, to obtain 
stable and proper controllers, along with the Youla-Kučera parameterization for reference 
tracking and load disturbance rejection, in RMS ring. 

The second, controller approximation, part of this chapter intended to use five quite simple 
methods, namely Padé approximation, Laguerre, Kautz shift and Fourier analysis based 
method, how to approximate a delay exponential term in the transfer function. Two norms 
in the Hardy space, namely, H2 and H∞ norms were used as a measure for the accuracy and 
efficiency of the approaches since there are no rigorous analytic results about the 
approximation efficiency and accuracy in the literature and these norms are usually 
sufficient in technical practice. Approximation methods were selected so that they are 
serviceable also for people with basic mathematical background knowledge. The authors 
plan to use approximated controllers in their digital implementation on PC or PLC. 

Matlab with Simulink was a very useful assistant here. The authors programmed a simple 
user interface which enables the user to enter a nominal transfer function and select 
approximation methods to be used and their orders. As a result, the program returns the 
accuracies in both text and graphical forms. 

Simulation experiments with the program were made. Control of a simple stable TDS, 
control of unstable TDS of a skater on the swaying bow and control of a laboratory circuits 
heating plant were benchmark examples. The results were very interesting and startling 
because the habitual Padé approximation proved to be very good and, moreover, the higher 
order approximation did not automatically mean the better result for systems with internal 
delays. 
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