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1. Introduction 

The search for organizing principles of visual processing in cortex has proven long and 

fruitful, demonstrating specific types of organization arising on multiple scales (e.g., magno-

cellular / parvo-cellular pathways [1] and ocular dominance columns [2]). One of the more 

important larger scale organizing principles of visual cortical organization is the visual field 

map (VFM): neurons whose visual receptive fields lie next to one another in visual space are 

located next to one another in cortex, forming one complete representation of contralateral 

visual space [3]. Each VFM subserves a specific computation or set of computations; locating 

these VFMs allows for the systematic exploration of these computations across visual cortex 

[4, 5]. It has been suggested that this retinotopic organization of VFMs allows for efficient 

connectivity between neurons that represent nearby locations in visual space, likely 

necessary for such processes as lateral inhibition and gain control [6-9]. This chapter will 

discuss the primary neuroimaging techniques used for measuring human VFMs, our current 

understanding of the organization of visuospatial representations across human visual 

cortex, the present state of our knowledge of white matter connectivity among these 

representations, and how these measurements inform us about the functional divisions of 

visual cortex in human.  

2. Neuroimaging methods for measuring human visual field maps  

VFMs are routinely measured in the in vivo human brain using functional magnetic 

resonance imaging (fMRI) (e.g., [10-15]). The fMRI paradigms for these measurements take 

advantage of knowledge gleaned from electrophysiological measurements of visual cortex 

in animal models about the structure and stimulus preferences of VFMs. In monkey, as in 

human, visual information travels from the retina through the lateral geniculate nucleus 

(LGN) of the thalamus to primary visual cortex (area V1) in the posterior occipital lobe [16]. 
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Primate visual cortex has been parcellated into multiple visual areas defined by their unique 

cytoarchitectonic structures, connectivity, functional processing, and visual field topography 

[14, 17-20]. In the more anterior areas of the occipital lobe and in the parietal and temporal 

lobes, the definitions and functions of many of these areas are still being investigated. These 

areas were first demonstrated in monkey, and it has been possible to identify several 

homologous visual areas in human posterior occipital cortex (e.g., [12, 21]).  

In human measurements, the most compelling evidence for visual areas is the VFMs, also 

commonly called retinotopic maps. In short, a VFM is a visual area with a complete 

representation of visual space, where neurons that represent adjacent locations on the retina 

(and visual space) are also adjacent in cortex [12]. Because many computations are required 

to create our visual experience, our brains have many specialized VFMs which perform one 

or more of those computations across the entire visual scene (e.g., motion perception 

happens throughout our visual field, not just in the upper left quadrant). By taking 

advantage of the knowledge of the retinotopic organization of visual input, multiple cortical 

VFMs can be measured using fMRI with respect to the two orthogonal dimensions needed to 

identify a unique location in visual space: eccentricity and polar angle. This chapter will 

review two of the most powerful fMRI techniques for very detailed measurements of VFM 

in individual subjects: travelling wave retinotopy (TWR) [10] and population receptive field 

(pRF) modeling [22].  

2.1. The standard paradigm: Travelling wave retinotopy 

TWR has been the gold standard for visual field mapping since its development in the mid 

1990‘s (Figure 1) [10, 23-26]. This technique uses two types of periodic stimuli that move 

smoothly across a contiguous region of visual space to measure the orthogonal dimensions 

of polar angle and eccentricity. One stimulus is designed to elicit each voxel‘s preferred 

polar angle by presenting a high-contrast, flickering checkerboard stimulus shaped like a 

wedge that spans the fovea to periphery along a small range of specific polar angles (Figure 

2A). The wedge stimulus rotates either clockwise or counterclockwise in discrete even steps 

around the central fixation point to sequentially activate distinct polar angle representations 

of visual space. The second stimulus is designed to elicit each fMRI voxel‘s preferred 

eccentricity by presenting a stimulus shaped like a ring, which expands or contracts in 

discrete even steps between the central fovea and the periphery (Figure 2B). The 

measurement of these two, orthogonal dimensions is vital for the correct definition of VFMs, 

as these two measurements allow for the unique mapping of the responses of the neurons 

within a single voxel in cortex to a unique location in visual space. If only a single 

dimension is measured, the cortical response can only be localized to a broad swath of 

visual space, which does not allow for accurate delineation of VFM boundaries, as discussed 

further below. 

These traveling-wave stimuli are typically comprised of a set of high contrast checkerboard 

patterns that are designed to maximally stimulate primary visual cortex and generally elicit 

an fMRI signal modulation on the order of 1%–3% (Figures 1-2). This modulation is 
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typically 15–20 standard deviations above the background noise. Stimuli comprised of other 

shapes (e.g., faces, objects) have also been used in studies interested in measuring the 

retinotopic organization of higher order visual cortex, but the high contrast checkerboard 

stimulus has proven to drive even these regions well in many studies[26, 27]. 

 

Figure 1. Visual Field Mapping Time Series Analysis. Each row represents the activity and analysis of 

a time series of a single 6-cycle scan of one type of experimental stimuli (expanding rings or rotating 

wedges) for a single voxel. Black dots indicate simulated raw data points of % blood oxygen level-

dependent (BOLD) modulation. The red lines indicate the peak activations per cycle for an imaginary 

set of voxels, which are the measurements used by the traveling wave retinotopy (TWR) analysis. The 

blue dotted line represents a sinusoidal fit of the simulated data points, which are the measurements 

used by population receptive field (pRF) modeling. Rows (A) and (B) represent time series of voxels 

with identical %BOLD modulation, but different peak responses, which indicate different stimulus 

selectivity (different ‘phases’ of response). For example, (A) might represent a voxel with a preferred 

eccentricity tuning of 5° eccentric to fixation, whereas (B) might have a preferred tuning of only 2° 

eccentric to fixation. Rows (A) and (C) represent time series of voxels with identical peak responses, 

indicating identical stimulus selectivity. However, (C) has much lower %BOLD modulation than (A), 

which may be due to two primary factors: differences in local vasculature or broader receptive field 

tuning for (C) than (A). 

In each scan, only one stimulus is presented, and all of visual space is cycled through several 

times with each stimulus (Figure 1). Typically, several scans are then averaged together for 

each stimulus type to increase the fMRI blood oxygen level-dependent (BOLD) signal to 

noise ratio. These stimuli create a travelling wave of cortical activity that travels from one 

end of the VFM to the other along iso-angle or iso–eccentricity lines, giving TWR its name. 

Thus the time, or phase, of the peak modulation varies smoothly across the cortical surface. 

This phase defines the most effective stimulus eccentricity (ring) and polar angle (wedge) to 

activate that region of cortex, giving TWR its description as ‘phase-encoded retinotopy.’ In 
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TWR data, the phase of the response is represented as a color-coded overlay on anatomical 

data (Figure 2). It is important to note that these types of TWR stimuli are not only excellent 

for measuring cortical VFMs, but that they only produce activity in regions that are 

retinotopically-organized.  

 

Figure 2. TWR Measurements. Traveling wave stimuli typically consist of a set of high contrast 

checkerboard patterns that move smoothly and periodically through a range of eccentricities (ring) or 

polar angles (wedge). The inflated cortical surface (inset) is labeled as follows: CC, corpus callosum; 

POS, parietal-occipital sulcus; CaS, calcarine sulcus. An expanded view of this surface near calcarine 

sulcus is overlaid with a color map showing the response phase at each location for polar angle (A) and 

eccentricity experiments (B) (see the colored legend insets). The stimuli covered the central 16° radius of 

visual space. The solid white lines indicate the boundaries of visual area V1 in the calcarine sulcus. For 

clarity, the colored visual responses are only overlaid on locations near the calcarine sulcus, and only 

voxels with a powerful response at a coherence ≥ 0.25 are colored.  

The design of TWR presents all eccentricities or polar angles at a given frequency per scan 

(typically 6-8 cycles per scan), which allows the use of a Fourier analysis. TWR only 

considers activity that is at this signal frequency, excluding low-frequency physiological 

noise, among other things. The statistical threshold for cortical activity arising from the 

TWR stimulus is commonly determined by coherence, which is equal to the amplitude of the 

BOLD signal modulation at the frequency of stimulus presentation (e.g., 6 stimulus cycles 

per scan), divided by the square root of the power over all other frequencies except the first 

and second harmonic (e.g., 12 and 18 cycles per scan). These harmonic frequencies 

commonly can be considered signal in such analyses, but we often take a conservative 

approach and simply exclude their values from the calculation of coherence. Including these 

frequencies as noise would lead to an artificially high average for the noise frequencies in 
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the Fourier analysis, incorrectly reducing overall coherence. For each stimulus condition 

(e.g., wedge or ring), each voxel is independently assigned a coherence value, thus 

measuring the strength of the response of that voxel to the stimulus. Only voxels with a 

coherence above a chosen threshold (typically 0.15 to 0.30 coherence) are further evaluated 

to determine the organization of cortical visuospatial representations into specific VFMs. 

2.2. An innovative approach to measure the organization of human visual cortex: 

Population receptive field modeling 

Once it became clear that there were limits to the ability of TWR to deal with VFMs with 

large RFs, researchers at Stanford University decided to improve VFM measurements by 

developing a new method that models the pRFs of each voxel within VFMs [22]. This model 

relies on the logic that, because VFMs are retinotopically organized, the population of RFs in 

each voxel of a VFM is expected to have similar preferred centers and sizes, allowing their 

combined pRF to be estimated as a single, two-dimensional Gaussian RF. Despite the fact 

that there is some variability in the neural RFs of each voxel in terms of their preferred 

centers and sizes, termed RF scatter, the pRF provides a good, if somewhat slightly larger, 

estimate of the individual neural RFs in the voxel. The advantages of the method are 

generally stated in comparison to TWR, as the field standard for measuring VFMs. The pRF 

method provides an accurate estimate of not only the preferred center for each voxel’s pRF 

(as in TWR), but also its size (Figures 3, 4). In addition, the method does not require two 

distinct stimuli to measure orthogonal dimensions of visual space as in TWR, cutting down 

on the total number of scans necessary per subject.  

 

Figure 3. Measurements of an Individual Voxel. (A) A typical voxel recorded from a popular 3 Tesla 

MRI scanner is on the order of 1 mm3, though often slightly larger (2-3 mm3). (B) Within each typical 

voxel, there are on the order of ~1 million neurons, depending on the size of the voxel. For voxels in 

retinotopic visual cortex, the neurons each have similarly located spatial receptive fields (black outlines) 

with preferred centers (black dots). (C) Traveling wave retinotopy (TWR) takes advantage of the fact 

that nearby neurons in retinotopic cortex have similar preferred centers in order to estimate a 

population preferred center for the population of neurons in a given voxel. (D) Population receptive 

field (pRF) modeling takes advantage of the fact that nearby neurons in retinotopic cortex have similar 

receptive fields in order to estimate not only a preferred center, but also a pRF for the population of 

neurons in a given voxel. 
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To accomplish this, the pRF model first creates a very large database of possible pRF sizes and 

centers that cover the field of view of the stimulus (Figure 4). Then, the model convolves each 

of the pRF possibilities with a standard hemodynamic response function (HRF). Finally, the 

model uses a least-squares fitting method to iteratively test each of the pRF possibilities for 

each voxel independently against the actual data collected. Whichever pRF best fits the data is 

then assigned as the pRF for that voxel. Only voxels that contain activity above a chosen 

threshold of variance explained as determined by the model are included for further analysis.  

 

Figure 4. Population Receptive Field Modeling. The parameter estimation procedure for the 

population receptive field (pRF) model is shown as a flow chart. The example stimulus aperture is a 

moving bar stimulus. Adapted from Figure 2 in [22]. 

Although it is technically possible to use any stimulus that systematically traverses the 

entire field of view, typically the stimulus takes one of two forms. First is a slightly modified 

version of the TWR stimuli, in which neutral gray blank periods are inserted at an off-

frequency from the stimulus frequency (i.e., 4 instead of 6-8 cycles/scan, so they are 

separable in the Fourier analysis). The second and increasingly common stimulus is a high-

contrast flickering checkerboard bar stimulus that steps across the field of view in the 8 

cardinal directions, again with several interspersed neutral gray blank periods. The neutral 

gray blank periods allow for an estimation of a voxel’s response to any visual stimulus 

versus just the preferred visual stimulus, which is crucial for the accurate measurement of 

pRF sizes. In theory, one could also tile visual space using any stimulus of interest, if the 

aforementioned stimuli do not drive the area well. Since the checkerboard stimuli were 

designed to drive activity in early visual cortex, it is possible other stimuli containing more 

complex may perform better in higher-order VFMs. 

The pRF method has the additional benefit of measuring other neuronal population 

properties, such as receptive field size and laterality. These pRF measurements can 
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demonstrate differences in the internal receptive field structures between, for example, a 

hemifield map in primary visual cortex (V1) and a hemifield map in lateral cortex (e.g., LO-

1; [28]). With the traveling wave method, both maps look very similar, as only the peak time 

series responses are measured. However, the underlying properties of the neuronal 

populations within these two maps are actually quite different, with finely tuned neurons in 

V1 and more broadly tuned neurons in lateral cortex. The models of the underlying 

neuronal properties from the pRF method can measure these receptive field differences, as 

well as the amount of input from ipsi- and contralateral visual fields (e.g., [29]). The human 

pRF size estimates for V1/V2/V3 reported by Dumoulin and Wandell [22] agree well with 

electrophysiological receptive field measurements at a range of eccentricities in 

corresponding locations within primate VFMs. 

These pRF methods have successfully been used by a small group of labs to (1) investigate 

the normal organization of human visual cortex (e.g., [12, 29, 30]), (2) measure 

developmental plasticity in achiasmatic and sight recovery patients [31, 32], and (3) examine 

cortical reorganization in aged-related macular degeneration [33]. Because pRF Modeling 

has proven so successful, it is likely that it will eventually replace TWR as the standard 

method for measuring VFMs. Moreover, pRF modeling has an excellent future in the 

measurement of the details of pRFs, which is particularly important for the measurement of 

visual plasticity in humans. So far, the technique has primarily used a two-dimensional 

Gaussian profile for the pRF estimates, but researchers are working on the use of center-

surround Gaussian pRFs, multiple location pRFs, and non-classical pRF shapes, which may 

allow for better pRF estimation as time continues. In the future, it is likely that pRF 

Modeling will be very successful when used in isolation, but also excellent to use in 

conjunction with other techniques. 

2.3. Functional MRI data acquisition and analysis for individual subjects  

The size of each VFM across the cortical surface varies significantly across individuals [22]. 

In fact, the size of primary visual cortex, V1, can vary by at least a factor of 3 in size, 

independent of overall brain size. This means that the locations of each specific VFM are 

necessarily shifted across individuals with respect to the underlying structural anatomy. 

This shift appears to be increasingly variable as measurements move anterior from primary 

visual cortex into regions of visual cortex that subserve higher-order computations (e.g., 

object recognition), the very regions that are also the most difficult to measure with TWR 

due to the larger RFs of the neurons here. Thus, averaging fMRI VFM data across subjects 

problematically blurs VFM data to a degree that should be unusable and may even 

obliterate VFM organization all together. Similarly, simply using coordinates from a 

standardized template (e.g., Talairach or MNI coordinates) to accurately estimate the 

location of any VFMs beyond area V1 in individual or group averaged data is not possible. 

The only accurate approach is to measure VFM in individual subjects. We will review here 

an example of one of several straightforward approaches for individual subject VFM data 

collection and analysis.   



 
Visual Cortex – Current Status and Perspectives 36 

To optimize these VFM experiments, several types of fMRI scans are obtained for each 

subject. First, one acquires a high-resolution structural anatomy of the whole brain (e.g., 1 

mm3 resolution). Several types of pulse sequences are available, such as MPRAGE, a fast 

gradient echo T1- weighted inversion pulse sequence. The goal in this scan is to maximize the 

image contrast between white and gray cortical matter, important for the subsequent 

analysis. These anatomical data provide a basic coordinate frame for representing the fMRI 

data for each subject. Second, functional T2*-weighted BOLD contrast images are acquired for 

the VFM measurements. We commonly use a gradient echo pulse sequence with a SENSE 

factor of 1.5 that provides whole brain coverage with slices approximately parallel to the 

calcarine sulcus (home of V1) and a 1.8 x 1.8 x 3 mm slice resolution (no gap). Each functional 

scan typically lasts will approximately 3-4 minutes, and we acquire 4-8 scans per stimulus 

type (e.g., wedge, ring, bar) to average together. In addition, one lower resolution anatomical 

inplane image is acquired before each set of functional scans, with the same slice prescription 

as the functional scans but with a higher spatial resolution (e.g., 1 mm x 1 mm x 3 mm 

voxels). These T1-weighted slices are physically in register with the functional slices and can 

then be used to align the functional data with the high-resolution anatomy data [34].  

For analysis of such functional imaging data for individual subjects, several neuroimaging 

software packages are available that can be used. We use a Matlab-based signal processing 

software package called mrVista, which was developed by the Wandell lab at Stanford 

University and is now widely used for such neuroimaging analysis [35, 36]; mrVista is open-

source software and is publicly available online at http://white.stanford.edu/software/. With this 

software, the location of the cortical gray matter for each subject is identified (‘segmented’) in 

the high-resolution anatomical scan using the mrVista automated algorithm followed by hand-

editing to minimize errors for individual subject analyses [36]. Gray matter is then grown from 

the segmented white matter to form a 3-4 mm layer covering the white matter surface. To 

improve sensitivity, only data from this identified gray matter are analyzed. The gray matter is 

then rendered in 3D close to the white matter boundary or unfolded into a continuous, flat sheet 

to allow visualization of functional activity within the sulci. During preprocessing of the 

functional data, linear trends are removed from the fMRI time series, but no spatial smoothing 

is applied to the data to better preserve the details of the VFM organization. Motion correction 

algorithms can then be applied between scans in each session as well as within individual scans 

(mrVista uses a mutual information motion correction algorithm [37]); however, motion 

correction algorithms may themselves create artifacts, so should not be routinely applied if not 

needed. If motion correction fails, then scans with motion artifact greater than one voxel can be 

discarded. After registration to the high-resolution anatomy, the functional activity can be 

visualized either in its original coordinate frame (inplanes), on the segmented gray matter in 

anatomical volume slices, or on inflated or flattened representations of the cortical surface to 

allow for optimal definition of VFM boundaries.  

2.4. Defining visual field map boundaries 

VFMs are defined by the following criteria: 1) both a polar angle and an eccentricity gradient 

must be present, 2) the polar angle and eccentricity gradients are orthogonal to one another, 

and 3) a VFM represents a complete contralateral hemifield of visual space (Figure 5; e.g., [5, 
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11]). The organization of retinotopic VFMs is typically determined by manually tracing the 

boundaries of quarter-field or hemifield representations (Figure 2). These boundaries are 

located at the position where the measurements of visual field angle reverse direction or, for 

regions on the end of visually responsive cortex, end at an angular meridian or at the 

periphery of a VFM [5, 11]. For boundaries in a reversal, the boundary is drawn to split the 

reversal evenly between the two maps, unless additional functional data (e.g., motion 

localizer) is present to suggest otherwise.  

 

Figure 5. Orthogonal Dimensions of Visual Field Maps. Top Left: Eccentricity visual space legend. Each 

color represents an iso-eccentricity line in the left visual hemifield. Top Right: Polar angle visual space 

legend. Each color represents an iso-polar angle line in the left visual hemifield. (A) Eccentricity gradient for 

a visual field map (VFM). Note the gradient running from the center to more peripheral eccentricities runs 

from right to left. This gradient would be orthogonal to the polar angle gradient in (C), such that each iso-

eccentricity line has a representation of the full range of polar angles. (B) A VFM. The combination of the 

orthogonal gradients in (A) and (C) form one complete representation of a hemifield of visual space. This 

forms one half of a complete VFM, the corresponding half being located in the opposite hemisphere of the 

brain. Because the hemifield represented is the left, this map would be located in the right hemisphere. The 

black outer border indicates that each of the two gradients is located in the same portion of cortex. (C) Polar 

angle gradient for a VFM. Note that the colors of the cartoon in (C) are inverted with respect to the polar 

angle visual space legend at top. The inverted cartoon is meant to more accurately represent the inverted 

representation of visual space in early visual cortex. For example, in primary visual cortex (V1), the lower 

quarterfield of visual space is represented on the dorsal (upper) surface of the occipital lobe, and vice 

versa. (D) Two adjacent eccentricity gradients running in opposite directions, with adjacent representations 

of the central visual hemifield. (E) When the gradients in (D) are combined with adjacent polar angle 

gradients such as that in (F), two complete representations of the hemifield of visual space are formed. (F) 

Two adjacent polar angle gradients running in the same direction, with each iso-polar angle line for each 

gradient lying adjacent to one another. Note that if one only measured polar angle information, one would 

not have the corresponding eccentricity information to know whether that portion of cortex truly 

contained one (as in (B)), two (as in (E)), or more complete representations of that hemifield of visual space. 
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In addition to expert manual definition of VFMs, one can also use an automated tool to help 

give an objective definition of the boundary reversals between VFMs. Only a few of these 

tools are currently available, however. One such algorithm identifies VFMs by minimizing 

the error between an expected visual map (atlas) and the observed data [38]. In this tool, the 

atlas is coarsely aligned with the data and then elastically deformed. The search algorithm 

minimizes the weighted sum of deviations between the predicted and measured maps and 

the force of the elastic deformation. This algorithm is applied to both angle and eccentricity 

maps simultaneously to obtain a fit between these retinotopic measurements and templates 

of the two expected VFMs. This automated approach thus give more objective 

determinations of the boundaries of hemifield and quarter field visual angle representations 

or of the periphery edge of eccentricity representations, which can then be used to define 

specific VMFs.  

In cortical regions that have undetermined or ambiguous maps, this algorithm can be used 

to try a variety of possible templates of map organization (i.e., quarterfield map vs. 

hemifield map). Further, larger scale patterns of the organization of VFM across regions of 

cortex can be tested. By determining the error between the atlas template prediction and the 

actual angle and eccentricity measurements, the best fit template of VFM organization for a 

particular region can be estimated [11]. These atlas estimates can also be used to average 

map data across our subjects within a particular region of visual cortex [28]. The fitted atlas 

template additionally provides definitions of iso-angle and iso-eccentricity lines within each 

map, which can further be examined to compare patterns of VFM organization across the 

subject population [5, 11, 39]. 

3. Multiple visual field maps span human visual cortex 

This section will review current human VFM organization and some of the controversies 

surrounding these measurements.  

3.1. Visual field maps in medial occipital cortex 

Three hemifield representations of visual space known as V1, V2, and V3 occupy the medial 

wall of occipital cortex in humans (Figures 2, 5, 6; for a review, see [12]). V1 is very reliably 

located in the calcarine sulcus, bounded on either side by the unique split-hemifield 

representations of V2 and V3 on the cuneus and lingual gyrus. V1 is known as “primary 

visual cortex,” because it receives direct input from the retino-geniculate pathway and is the 

first place in the retino-geniculo-cortical pathway where information from the two eyes is 

combined. Not only that, but V1 is an important site of basic calculations of orientation, color, 

and motion. Each computation is performed across the entire visual field, yet V1 appears at 

the level of fMRI measurements to be a single, smooth representation of visual space. One 

can think of V1 as several VFMs laid on top of one another, each of which performs a single 

computation (one overlapping map each for color, orientation, and motion). To accomplish 

this organization, a very intricate mosaic of neurons subserving these computations allows 

for each computation to be performed over each portion of visual space. These mosaics, 
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including ocular dominance columns, pinwheel orientation columns, and blobs/interblobs 

have been the subject of much study and argument (e.g., [2, 40, 41]). It remains to be seen 

how many maps throughout the visual hierarchy have similarly complex mosaics. 

V1, V2, and V3 each contain a foveal representation positioned at the occipital pole, with 

progressively more peripheral representations extending into more anteromedial cortex, 

forming complete eccentricity gradients (Figure 2; e.g., [12, 13, 15, 23]). The region where the 

individual foveal representations meet at the occipital pole is commonly referred to the as 

the foveal confluence [42]. Despite the apparent merging of these foveal representations into 

one confluent fovea in fMRI measurements of eccentricity gradients, distinct boundaries 

between V1, V2, and V3 have been shown to be present even within this most central foveal 

representation [42, 43].  

 

Figure 6. Medial Occipital Cortex. The anatomical region containing early visual areas V1, V2, and V3 

is shown within the black dotted circle on an inflated rendering of the cortical surface of a single left 

hemisphere from one subject. Gray represents sulci, and white represents gyri. Cu, cuneus; CaS, 

calcarine sulcus; LiG, lingual gyrus; POS, parieto-occipital sulcus; ColS, collateral sulcus.  

The boundaries between each map are delineated by reversals in polar angle gradients 

(Figure 2, 5; e.g., [12, 13, 15, 23]). V1 has a contiguous polar angle gradient. In contrast, V2 

and V3 have split-hemifield representations (quarterfields), which are denoted by their 

locations dorsal or ventral to V1 (V2d, V2v, V3d, V3v). For each map, the lower visual 

quarterfield is represented on the dorsal surface, and the upper visual quarterfield is 

represented on the ventral surface. The quarterfields of V2 and V3 are connected at the 

fovea for each map, but are otherwise distinct. Although some details differ between the 

macaque and human V1, V2, and V3 maps (for example, the surface area of macaque V1 is 

roughly half that of human V1), they are arguably the most similar between the species in 

terms of structure and function [14, 17, 19, 20, 44, 45]. Beyond these three maps, even as 

early as hV4, the anatomical and topographical details of the maps diverge [11, 46]. As a 

practical matter, due to their relatively consistent anatomical locations and unique 

concentric organization, these three maps form the first landmarks identified in visual field 

mapping analyses [10, 13]. However, as noted above, these three maps can differ 
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significantly in size across individuals. While V1 is always positioned along the calcarine 

sulcus in normal individuals, an increase in V1 size will necessarily shift the locations of V2 

and V3 with respect to the specific underlying anatomy.  

3.2. Visual field maps in ventral occipitotemporal cortex  

Beyond V3v, the organization of VFMs in human cortex no longer follows that of macaque. 

This divergence should not be surprising given that the two species diverged from a 

common ancestor approximately 25 million years ago [47]. While the fourth visual area of  

 

Figure 7. Comparison of Human and Macaque Monkey Occipital Cortex. (A) 3D renderings of human 

(top) and macaque monkey (bottom) cortex are shown for a single right hemisphere. Cortical sheet is 

rendered at the white-gray boundary to allow visualization into the sulci. Hemispheres are scaled to 

relatively match in size. Scale bar is 1 cm. (B) Cartoon representations of flattened sections of cortex are 

centered on the occipital pole and show eccentricity gradients of human (top) and macaque (bottom) for 

visual field maps (VFMs) in posterior occipital cortex. Black lines denote boundaries between VFMs. Each 

color represents the location in visual space that best drives this region of cortex (see color legend inset for 

left visual field eccentricity). (C) Cartoon representations now show polar angle gradients of human (top) 

and macaque (bottom) for VFMs in posterior occipital cortex. Each color represents the location in visual 

space that best drives this region of cortex (see color legend inset for left visual field polar angle). Arrows 

(center) depict the approximate anatomical orientation for the cartoon representations in (B) and (C).  
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macaque remains a split-hemifield adjacent to area V3, human V4 (designated hV4 because 

of the unclear homology to macaque V4) is positioned as a complete hemifield on the 

ventral occipital surface adjacent to V3v (Figure 7). Several additional VFMs containing 

representations of complete, contiguous hemifields lie anterior to hV4 roughly along the 

fusiform gyrus (Figure 11). These maps are named and numbered for their anatomical 

locations: VO-1 and VO-2, for ventral-occipital, and PHC-1 and PHC-2, for 

parahippocampal cortex (Figure 8).  

The differences between human and macaque organization at the fourth visual area initially 

led to much controversy in the field regarding the organization of V4 in human, as some 

researchers sought a similar pattern of organization for the fourth visual area between 

human and macaque. To understand this controversy, it is important to review some of the 

history of measurements in this region.  

One of the early lines of investigation into the ventral surface focused on measurements of 

both color and retinotopic organization. Zeki and colleagues measured responses to an 

isoluminant pattern modulated in chromatic contrast in two regions of ventral 

occipitotemporal cortex: V4 and V4 alpha [48, 49]. McKeefry and Zeki [50] then 

demonstrated that the posterior color-responsive region of V4 was at least coarsely 

retinotopically organized and represented the entire contralateral hemifield. However, they 

did not locate this map with respect to other neighboring VFMs.  

 

Figure 8. Ventral Occipitotemporal Cortex. The anatomical region containing ventral visual areas V2v, 

V3v, hV4, VO-1, VO-2, PHC-1, and PHC-2 is shown within the black dotted circle on an inflated 

rendering of the cortical surface of a single left hemisphere from one subject. CaS, calcarine sulcus; LiG, 

lingual gyrus; ColS, collateral sulcus; FuG, fusiform gyrus; PHG, parahippocampal gyrus. Other details 

as in Figure 6. 

Hadjikhani et al. [51] also measured retinotopic and color organization along this region, 

describing two ventral retinotopic regions. The first was an upper quarterfield map, which 

they referred to as V4v. This putative V4v abutted the central visual field representation of 

V3v with an eccentricity map parallelingV1/V2/V3. Unlike the measurements of McKeefry 

and Zeki [50], they saw no adjacent lower quarterfield map that would form a complete 

contralateral hemifield. Instead, they described a hemifield map with an eccentricity 

representation that ran perpendicular to the putative V4v quarter field and called this VFM 
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V8. Using harmonic stimuli that alternated in luminance and chrominance, they also 

showed color responsivity within V8, although this stimulus type also would stimulate 

regions responsive to variations in luminance. Following the model of macaque cortex, 

Tootell and Hadjikhani [21] searched for a quarterfield map in dorsal occipital cortex to pair 

with their putative V4v. They failed to find the map and concluded that it did not exist. 

They did not resolve why an isolated quarterfield map would exist, a strange organization 

which would necessitate that whatever computation was subserved by putative V4v was 

only performed on one quarterfield of visual space.  

With improvements in measurement techniques, we clarified the retinotopic organization of 

this ventral region [11, 46]. Our experiments defined three VFMs in ventral occipital cortex: 

hV4, VO-1, and VO-2, which we showed to be involved in the color and object processing 

pathways. HV4 is a hemifield map on the posterior fusiform gyrus that directly abuts the 

upper hemifield representation of V3v and shares a common eccentricity orientation with 

the confluent foveal representations of V1, V2, and V3 (Figures 7, 8). Anterior to the 

peripheral representation of hV4 is a distinct group of VFMs with a shared foveal 

representation separate from that of V1, V2, V3, and hV4. We have termed this organization 

of a discrete group of VFMs a ‘clover leaf’ cluster, as described in more detail in Section 4 

below. This ‘clover leaf’ cluster contains at least two full hemifield representations of visual 

space: VO-1 and VO-2. The posterior portion of VO-1 is adjacent to the relatively peripheral 

visual field representation of hV4 and also abuts the peripheral V3v representation on the 

lingual gyrus. The posterior border of VO-1 represents the lower vertical meridian, and the 

anterior region represents the upper vertical meridian. This anterior upper vertical meridian 

reverses into the VO-2 hemifield map. The eccentricity gradient of VO-1 and VO-2 runs 

from the shared foveal representation on the fusiform gyrus anteromedially towards the 

more peripheral representation along the collateral sulcus and more anterior fusiform gyrus. 

Our recent measurements have suggested that additional maps (e.g., VO-3, VO-4) may be 

identified within this ‘clover leaf’ cluster in the future [52-54]. 

Our findings regarding hV4 and its neighbors have since been supported by measurements 

from several independent studies [28, 29, 39, 55-58]. Hansen et al. [57] initially continued the 

search for a hV4 organization more homologous to the split-hemifield of macaque V4 by 

proposing that a small section of dorsal lateral occipitotemporal cortex represented the 

inferior vertical meridian of hV4. This organization then left an hV4 division on the ventral 

surface that represented the full upper visual quarterfield adjacent to V3v plus some 

additional part of the visual field into the lower visual quarterfield. However, this 

organization conflicts with the now widely accepted dorsal occipitotemporal organization of 

LO-1 and LO-2 described below [28, 29, 39]. Further, additional measurements have now 

repeatedly confirmed 1) the full hemifield span of the ventral hV4 hemifield and 2) 

demonstrated that artifacts from a regional draining vein may in some subjects interfere 

with the accurate measurement of this section of hV4 [30]. 

Beyond hV4, VO-1, and VO-2, Arcaro et al. [55] defined two additional VFMs in this region 

that overlap with the parahippocampal place area, PHC-1 and PHC-2. Like the VFMs of the 

VO cluster, PHC-1 and PHC-2 also share a distinct foveal representation and appear in our 
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data to be two VFMs within another distinct ventral ‘clover leaf’ cluster [52]. PHC-1 is 

located just anterior to VO-2, running from the fusiform gyrus into the parahippocampal 

gyrus (Figure 8). Both PHC-1 and PHC-2 represent a full contralateral hemifield of visual 

space, with the representation of the upper vertical meridian denoting the boundary 

between PHC-1 and PHC-2.  

3.3. Visual field maps in lateral occipitotemporal cortex 

In contrast to the posterior medial occipital VFMs, the lateral occipital cortex, with the 

object-responsive lateral occipital complex (LOC), has been much more difficult to measure 

in terms of retinotopic organization (Figure 9). This region was initially thought to be non-

retinotopic or only to contain an ‘eccentricity bias’ (e.g., [21, 59, 60]). Recently, two VFMs, 

called LO-1 and LO-2 for ‘lateral occipital’, were described along the dorsal aspect of the 

LOC (Figure 11). LO-1 lies just anterior to V3d, reversing from the upper vertical meridian 

representation at the boundary into its representation of a full hemifield of visual space [28, 

61]. LO-2 is located just inferior to LO-1, with the lower vertical meridian represented at the 

shared boundary of these two maps. The foveal representations of these two VFMs are 

located with the confluent foveal representations of V1, V2, V3, and hV4 on the occipital 

pole. 

 

Figure 9. Lateral Occipitotemporal Cortex. The anatomical region containing lateral visual areas LO-1, 

LO-2, and the hMT+ cluster is shown within the black dotted circle on an inflated rendering of the 

cortical surface of a single left hemisphere from one subject. STS, superior temporal sulcus; ITS, inferior 

temporal sulcus; LOG, lateral occipital gyri; AnG, angular gyrus; IPS, intraparietal sulcus; TOS, 

transverse occipital sulcus; OP, occipital pole. Other details as in Figure 6. 

In addition, regions just inferior to these maps have been shown to be responsive to 

lateralized visual stimuli, but have not yet been divided into specific VFMs [27, 62-64]. In 
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macaque, there has been increasing electrophysiological evidence that neurons in 

homologous regions may maintain a high degree of retinotopic sensitivity [65]. It is important 

to note again that the presence of organized representations of visual space in this region can 

still allow for the stimulus size and position invariance frequently described across the object-

responsive LOC. PRF sizes are expected to be large across this region, but may maintain just 

enough dispersion of pRF centers to allow for slightly different preferred tuning of responses 

to visual space. Thus, the responses to object stimuli from this cluster could remain both 

invariant to stimulus size and position over a wide field of view while retaining visuospatial 

information. With LO-1 and LO-2, the definition of additional VFMs spanning LOC would 

form the lateral half of an occipital pole ‘clover leaf’ cluster and would provide a concrete, 

visuospatial framework for reliably localizing specific computational regions within lateral 

object-responsive cortex [5, 12, 66, 67]. This inferior region of the LOC merges with the most 

lateral lower vertical meridian representation of hV4 [11] and is also subject to issues with the 

‘venous eclipse’ fMRI artifact due to the presence of a draining vein here that has a somewhat 

variable position across subjects within this region [30]. This artifact has likely significantly 

contributed to the difficulties in measuring organized VFMs within this region.  

Anterior to LOC, along the banks of the inferior temporal sulcus, lies the TO cluster, also 

known as hMT+ (Figure 9). Amano et al. [29] were able to provide the first clear 

measurements of VFMs in the human motion-selective MT complex (hMT+) using the pRF 

methods described above [68]. They named these two new hemifield VFMs TO-1 and TO-2, 

for temporal-occipital areas 1 and 2. These maps are positioned just anterior to the LO maps 

and share another distinct foveal representation. The representations of visual of space 

across these maps run anteriorly from the lower vertical meridian at the posterior border of 

TO-1, to the shared upper vertical meridian at the border of TO-1 and TO-2, to the lower 

vertical meridian at the anterior border. Following measurements by Huk et al. [68] that 

demonstrated retinotopic organization within the MT subdivision and differentiated human 

MT and human MST using dissociable motion stimuli, it is likely that TO-1 is the same as 

human MT, and TO-2 is the same as human MST.  

Recently, Kolster et al. [39] verified that both TO-1 and TO-2 represent full, organized 

hemifields of visual space, but used a naming scheme homologous to macaque with MT and 

‘putative’ MST (pMST). They also expanded the VFM measurements of this region, showing 

that the TO/hMT+ cluster contains four full hemifields of visual space. The two additional 

hemifields of visual space merge at the confluent fovea of TO-1 and TO-2 and are located 

just inferior to TO-1 and TO-2. They suggest that these VFMs correspond to macaque FST 

and V4t. Human ‘putative’ FST (pFST) is positioned anterior to human ‘putative’ V4t (pV4t), 

and the two VFMs meet an upper vertical meridian representation. Around this cluster, 

MT/V5 (TO-1) then shares a lower vertical meridian border with pV4t, and pMST (TO-2) 

shares a lower vertical meridian border with pFST. A similar clustered organization of these 

motion responsive VFMs in macaque has also recently been demonstrated by Kolster et al. 

[69]. We confirm these measurements with data showing the ‘clover leaf’ cluster 

organization for this group of VFMs in the human MT+ complex [5, 11, 12, 66, 67]. Because 

the homology to monkey has not yet been verified, we prefer the anatomy-based 
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terminology TO-1, TO-2, TO-3, and TO-4 for these VFMs; these would correspond to Kolster 

et al.’s [39] MT, pMST, pFST, and pV4t, respectively.  

Amano et al. [29] and Kolster et al. [39] disagreed, however, on the specific organization of 

the eccentricity gradients between the LO VFMs and the TO/hMT+ VFMs [29, 39]. Amano et 

al. [29] described LO-2 and TO-1 as positioned as a strip of VFMs on the lateral occipital 

surface, with hemifield representations sharing meridian boundaries from V3d, to LO-1, to 

LO-2, to TO-1, to TO-2. In this organization, LO-2 and TO-1 would share a boundary that 

represents the lower vertical meridian. TO-1 and TO-2 would still meet at a discrete foveal 

representation that runs only from the foveal representation to a more superior peripheral 

representation that merges only superiorly with that of LO-2. In contrast, Kolster et al. [39] 

describe the TO maps as a distinct cluster anterior to LOC and the LO maps, which do not 

share any meridian boundaries. With this cluster organization, it is the peripheral 

representation that is shared between the LO and TO maps. Our measurements confirm those 

of Kolster et al. [5, 11, 39, 66, 67]. The four TO maps form a complete ‘clover leaf’ cluster that 

merges with the eccentricity gradients of the LO VFMs at their peripheral eccentricity 

representations. This VFM definition can be seen in the data in Figure 1 of Amano et al. [29], 

but was differently interpreted prior to the measurements of the full TO ‘clover leaf’ cluster.  

Finally, Kolster et al. [39] describe an additional putative new cluster of two VFMs inferior to 

the TO/hMT cluster they term putative human PIT (phPIT) based on possible homology to 

macaque PIT [39]. These are the first measurements of these VFMs in human and have not 

yet been verified by other labs. As techniques improve and we learn more about the effects of 

the venous eclipse artifact in this region [30], we expect that multiple VFMs will be measured 

by multiple labs in this and surrounding regions in future measurements [53, 66, 67].  

3.4. Visual field maps in posterior parietal cortex  

Beyond the medial part of the dorsal lower vertical meridian representation of human V3d, 

lies a series of hemifield VFMs running from the transverse occipital sulcus (TOS) up along 

the medial wall of the intraparietal sulcus (IPS) (Figures 10, 11; e.g., [12, 70]). The first maps 

bordering V3d are V3A and V3B [71-73]. These two maps share another discrete foveal 

representation within the TOS, forming a complete ‘clover leaf’ cluster [5]. V3A has some 

similarities to macaque V3A and is thought to play a role in motion processing; the 

computations subserved by V3B are not yet known [71, 72, 74, 75]. V3B was originally 

described Smith et al. [72] as at least a quarterfield of visual space next to V3A. This definition 

was expanded to cover a while hemifield of visual space by Press et al. [71], who noted that 

this region of V3A had a full hemifield polar angle gradient with an eccentricity gradient 

expanding concentrically from a central position within this hemifield. Such an organization 

necessitates that two representations of visual space are represented; thus, V3A and V3B 

were described in Press et al. [71]as a cluster of two VFMs sharing a distinct fovea. In 

comparing the initial V3B definitions from Smith et al. [72] and later definitions of LO-1 [27-

29], which is just lateral and inferior to V3B, it is possible that the original V3B definitions 

were measuring a part of what was later called LO-1 and not the same hemifield that was 

described in Press et al. [71] as V3B. The field now generally considers V3A and V3B as the 

cluster of two VFMs in the TOS, and LO-1 and LO-2 as the dorsal aspect of the LO [12, 27-29]. 
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Figure 10. Posterior Parietal Cortex. The anatomical region containing dorsal posterior parietal cortex 

visual areas V3A, V3B, and the IPS maps is shown within the black dotted circle on an inflated 

rendering of the cortical surface of a single left hemisphere from one subject. STS, superior temporal 

sulcus; IPS, intraparietal sulcus; POS, parieto-occipital sulcus; TOS, transverse occipital sulcus; OP, 

occipital pole. Other details as in Figure 6. 

Entering into the IPS, the next VFM anterior to the V3A/V3B cluster is IPS-0 (formerly called 

V7) [75, 76]. IPS-0 has a foveal representation distinct from the V3A/V3B cluster and 

represents a full hemifield of contralateral visual space, running from the lower vertical 

meridian representation at the posterior border to the upper vertical meridian 

representation anteriorly. Beyond IPS-0, a series of polar angle representations extends from 

IPS-0 along the medial wall of the IPS. All these polar angler representations have been 

primarily measured using attentionally demanding traveling wave stimuli, consistent with 

the description of this parietal region as having a role in spatial attention [74-79]. These 

representations have primarily been described as reversing smoothly through a strip of 

several hemifield representations from IPS-0 to IPS-5 [70, 76-78, 80-82].  

It is important here to differentiate “polar angle representations” from complete “VFMs.” 

For the initial part of the IPS, VFM IPS-0 (V7) has been relatively well characterized [76, 83]. 

However, VFMs IPS-1 through IPS-5 as well as human LIP (a possible homologous region to 

macaque LIP which has been suggested to align with IPS-1 or IPS-2) have been exclusively 

presented in the literature to date as only polar angle maps [70, 76-82, 84, 85], except for the 

one example we have found of an eccentricity representation in two hemispheres of one 

subject (see Figure 4 in [81]). Swisher et al. [81] note, for example, that “we reliably find a 

continuous gradient of eccentricity response phase along the V7(IPS-0)/ IPS-1 border,” but 

that “the eccentricity representation in IPS-3/4 is less clear.” Some of these studies have 

reported that eccentricity mapping was used in the VFM definitions, but failed to our 
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knowledge, with the one exception, to show anything but the polar angle responses in the 

published data (main or supplemental).  

 

Figure 11. The Current State of Contiguous Visual Field Maps in Occipital, Parietal, and Temporal Lobes 

of Human Cortex. The figure depicts a cartoon overview of hemifield representations of visual field maps 

(VFMs) in a single right hemisphere if the cortical sheet of that hemisphere were removed from its usual 

position and laid flat. The center of the blue region is centered on the occipital pole, while the purple region 

is in parietal cortex, the red and yellow regions are on the ventral surface of the occipital and temporal lobes, 

and the green region is on the lateral surface of the temporal lobe. Each color except purple represents a 

likely or confirmed ‘clover leaf’ cluster of VFMs. Solid black lines indicate the borders between ‘clover leaf’ 

clusters and dotted lines indicate the borders between hemifield representations within clusters. In the 

purple region, the organization is much less clear, particularly for maps outlined in dotted rather than 

solid black lines (IPS-1, IPS-2, IPS-3, IPS-4, IPS-5, SPL1, and V6A). See main text for more details. 
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While polar angle representations (i.e., IPS-1/2/3/4/5) are excellent indicators that one or a 

number of VFMs may exist in a given location, they do not provide evidence of a unique, 

complete VFM. In the case of the IPS polar angle gradients, there could be any number of 

reversals of eccentricity representations along the polar iso-angle lines. Without obtaining 

clear, reliable orthogonal maps of both dimensions, it is impossible to know exactly how to 

divide up a region into multiple representations of visual space. We encountered such a 

division of what had appeared to be a single hemifield polar angle represenation into 

multiple VFMs given a central foveal representation previously in the segregation of human 

V3A into the 2-map cluster with V3B [71]. In those measurements, what had appeared to 

simply be a large single hemifield representation of V3A, we showed to actually be divided 

into two full hemifield maps of visual space along the centrally positioned foveal 

representation [5]. Current work is suggesting that the parietal cortex anterior to the 

V3A/V3B cluster may also in fact contain several additional ‘clover leaf’ clusters with VFMs 

that share several confluent, discrete foveae along the IPS [86, 87].  

The medial wall of the parietal lobe has also been shown to contain at least three additional 

retinotopically organized regions. One VFM called V6 lies along the parieto-occipital sulcus 

just anterior to the peripheral representation of V3d [88, 89]. V6 represents the contralateral 

hemifield, with an inferior upper vertical meridian running superiorly to the lower vertical 

meridian representation and a distinct eccentricity gradient that extends far into the 

periphery. V6 has been shown to be involved in particular types of motion processing, such 

as pattern and self motion [89]. Adjacent to V6 is another VFM termed V6A [88-90]. Both 

areas are named to represent their expected homology to macaque. Human V6A has 

primarily been measured using visual stimuli that activate the far periphery and is likely 

involved in visuomotor integration [88, 89]. V6A contains at least a coarse representation of 

the contralateral hemifield and a very peripheral eccentricity gradient with expansion the 

representation of > 35° visual angle. The last retinotopic region so far measured here is 

named SPL1 (for superior parietal lobule 1) and is located just medial to the series of maps 

running along the IPS [70, 82, 85]. Although its position appears somewhat variable across 

subjects and publications with respect to the specific IPS maps it borders, it appears to be 

primarily located adjacent to IPS-2, IPS-3 and/or IPS-4. The polar angle gradient of SPL1 

runs from its lower vertical meridian border along these IPS maps inferiorly to its upper 

vertical meridian border. To our knowledge, no eccentricity gradients for this region have 

yet been demonstrated in the literature. Like the other maps along the IPS, SPL1 may also 

play a role in spatial attention.  

3.5. Visual field maps in frontal cortex 

Several topographically organized representations of the contralateral hemifield have also 

been demonstrated in frontal cortex by a few studies using a variety of stimuli including 

TWR, visual spatial attention tasks, and memory-guided saccade tasks [70, 78, 79, 84, 85, 91]. 

These topographic representations of the polar angle of visual space arise in the frontal eye 

fields (FEF), the supplementary eye fields (SEF), dorsolateral prefrontal cortex (DLPFC), and 

precentral cortex (pre-CC), regions involved in complex visual processing of spatial 
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attention and eye movement control (Figure 12). Like many of the measurements shown for 

the IPS region, these frontal regions also lack measurements of orthogonal eccentricity 

representations. It remains to be seen whether these attentional regions contain only very 

coarse eccentricity gradients that is difficult to measure or whether future measurements 

will unveil more detailed eccentricity gradients and possibly multiple VFMs within each 

topographic region.  

 

Figure 12. Frontal Cortex.SFS, superior frontal sulcus; IFS, inferior frontal sulcus; PreCS, precentral 

sulcus; CS, central sulcus; LF, lateral fissure. Other details as in Figure 6.  

It is important to note that the stimulus paradigms used to define these regions do not 

differentiate between retina-centered (retinotopic) and head-, gaze-, body-, or world-

centered (spatiotopic) topographic organization. While the VFMs in the occipital lobe have 

been shown to be retinotopically organized [92], there is more controversy regarding if and 

where the visual system transforms from retinotopic to spatiotopic organization. Spatiotopic 

representations have been suggested to be present in some visuo-motor pathways (for 

review, see [93]), but have also been shown to not be necessary for such transformations 

[94]. Similarly, the native coordinate system of spatial attention has been shown to be 

retinotopic [95, 96], suggesting that retina-centered visuospatial information is propagated 

throughout the visual system.  

4. Organizational patterns of visual field maps across human cortex 

As increasing numbers of VFMs have been defined in human visual cortex, one question 

that has arisen is whether there is an organizing principle for the distribution of these maps 

across visual cortex [5, 11, 58, 60, 69, 97, 98]. A basic approach that has worked for early 

visual cortex has been to define strings of VFMs along contiguous strips of occipital cortex, 

with adjacent portions of the maps representing similar portions of visual space, but 

performing different computations [3]. This configuration of maps again allows for more 

efficient connections between neurons in different maps, such that for a given portion of 
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space, the length of the axons between neurons performing different sets of computations in 

the process of building the visual percept is minimized [6, 7, 99]. As additional VFMs have 

been defined in higher order visual cortex, more complex organizing principles for visual 

cortex have been proposed [5, 11, 58, 60, 69, 97, 98, 100, 101]. One such principle describes 

VFMs as organized into roughly circular clusters that we have termed ‘clover leaf clusters’ 

(Figure 13) [5, 11, 66, 67]. These clusters are hypothesized to each contain multiple VFMs 

which share similar processing properties across that cluster [5, 11, 69]. Several clusters have 

been partially described, and two have been repeatedly mapped in full: V3A/V3B and 

TO/hMT+ clusters [5, 11, 12, 29, 39].  

 

Figure 13. Orthogonal Dimensions of ‘Clover Leaf’ Clusters. Top Left: Eccentricity visual space legend. 

Each color represents an iso-eccentricity line in the left visual hemifield. Top Right: Polar angle visual 

space legend. Each color represents an iso-polar angle line in the left visual hemifield. (A) Eccentricity 

gradients of a typical ‘clover leaf’ cluster, containing 4 complete representations of the left visual 

hemifield. Each eccentricity gradient from the center to periphery of visual space runs physically from 

the center to the periphery of the cluster, such that iso-eccentricity lines form concentric circles about the 

center of the cluster. (B) A typical ‘clover leaf’ cluster with 4 complete representations of a hemifield of 

visual space. Note that, due to the radially orthogonal organization of ‘clover leaf’ clusters, each 

individual map must be shaped like a piece of pie. (C) Polar angle gradients of a typical ‘clover leaf’ 

cluster. Each iso-polar angle line runs from the center to periphery of the cluster like a ‘spoke of the 

wheel’ of the cluster, such that each polar angle gradient runs from one ‘spoke of the wheel’ of the cluster 

around to another ‘spoke’. Note that, due to the fact that polar angle reversals (adjacent spokes with the 

same polar angle preference) denote the boundaries between hemifield representations within a ‘clover 

leaf’ cluster, there must always be an even number of hemifield representations in each ‘clover leaf’ 

cluster. To have an odd number would necessarily require a discrete jump in polar angle representation 

between hemifield representations, which has so far not been observed in human visual field mapping. 

The VFMs within a ‘clover leaf’ clusters are organized such that the central fovea is 

represented in the center of the cluster, with more peripheral representations of space 

represented in more peripheral positions in the cluster in a smooth, orderly fashion. The 

representation of any given polar angle of space for any given VFM extends out from the 
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center to the periphery of the cluster, effectively spanning the radius of the cluster like a 

spoke on a wheel. We refer to this type of organization – one dimension of space (polar 

angle) represented radially from center to periphery of a cluster and the other dimension 

(eccentricity) represented in concentric, circular bands from center to periphery – as being 

radially orthogonal. Furthermore, we expect that these clusters have consistent locations 

relative to one another, but that the maps within each cluster may be oriented somewhat 

differently. Finally, VFMs within each ‘clover leaf’ clusters are proposed to perform similar 

types of computations. This broad scale organizational pattern of VFM is currently under 

investigation by several groups [5, 7, 12, 39, 66, 67, 69], and we expect it to extend across 

human visual cortex. 

5. Additional measurements to refine human visual field map definitions 

5.1. White matter connectivity among human visual field maps 

In order to fully investigate visuospatial processing in the human brain, it is important to 

measure not only patterns of functional VFM organization across cerebral cortex, but also 

the organization of the white matter tracts connecting these functional regions. Feedforward 

and feedback information from each VFM must be passed on to other maps up and down 

the hierarchy of visual processing [18]. The retinotopic human visual system processes 

portions of visual space in parallel, requiring connections for one type of processing in any 

particular location of the visual field to be passed to the same location of visual space in the 

next VFM for the next step in visual processing [102]. An elegant solution to this 

connectivity problem would be to maintain visuospatial organization in the white matter 

tracts between clusters. Such a solution allows for molecular cues to guide and maintain the 

relative structure of VFMs. Any other solution would necessarily require a breakdown of  

 

Figure 14. White matter connections in human visual cortex. (a) An example of separate sets of 

diffusion tensor imaging fibers estimated among maps in parietal cortex. Fibers originated from a 5 mm 

seed point located in the dorsal polar angle gradients IPS-1. Fibers colored red illustrate intra-

hemispheric U-fibers connecting neighboring locations in left intraparietal sulcus (IPS). Blue and green 

fibers depict 2 subsets of a group of inter-hemispheric fiber tracks that connect to the contralateral IPS.  
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the organization inherent in connections coming out of a cluster into some other 

organization, and a rebuilding of the organization inherent in connections going into the 

next cluster, which is more costly, difficult, and complicated. The MR protocol of diffusion 

tensor imaging (DTI) is beginning to provide such measurements of connectivity among 

VFMs early in the visual processing hierarchy (Figure 14). 

DTI is based upon a computer-assisted analysis of multiple diffusion-weighted images and 

uses a Gaussian model of diffusion, called an ellipsoid or ‘tensor’, to measure the mobility of 

water molecules within human tissue [103]. Traditional DTI measurements include 

fractional anisotropy (FA) and mean diffusivity (MD); custom software packages allow one 

to now also estimate the shapes, properties and destinations of white matter fiber tracts 

from DTI data (e.g., [104, 105]; http://white.stanford.edu/software/). The combination of 

DTI and fiber-tracking algorithms that combine tensors with similar principal diffusion 

directions can produce estimates of the major fiber bundles in the brain of individual 

subjects [106, 107]. FA, MD, and estimated fiber track locations and densities can be 

compared across individuals and between groups of subjects [108].  

DTI has now successfully been used to measure the organization of the human optic tracts 

and optic radiations from the retina to the LGN to V1 [50, 109]. These measurements of the 

initial visual tracts match those measured by other methods [12, 110] and are now being 

used in studies examining how the optic radiations differ in specific patient populations 

(e.g., [32]). In cortex, DTI measurements have further demonstrated that the retinotopic 

organization of V1 is maintained in connections between homologous VFMs across 

hemispheres, with upper and lower visual field sections running together through the 

splenium of the corpus callosum [108, 111, 112]. These emerging measurements of white 

matter connectivity among VFMs will aid us both in refining our definitions of specific VFM 

boundaries throughout the visual processing hierarchy, especially in regions with more 

ambiguous VFM measurements, and in expanding our understanding of specific 

computational pathways.  

5.2. Integration of visual field maps with other functional measurements in 

human visual cortex 

The findings from combined structural and functional measurements have a profound 

impact on the study of vision in the brain. Any visual area that is organized retinotopically 

is subject to the constraints common to all VFMs in the human brain. Many areas of the 

brain have been considered “non-retinotopic” or containing only an “eccentricity bias,” 

because laboratories using the field standard TWR were not able to demonstrate complete, 

precise retinotopic organization (e.g., [21, 97, 113]). Typically, this has been interpreted to 

mean that the early portion of the visual system is the only part that is retinotopic, and, at 

some point midway in the hierarchy, there must be a fundamental change in the way that 

the visual system is constructed. Not only is this a major theoretical claim, which would 

require a potentially complex transformation from a retinotopic framework to some other 

non-spatial organization, but it side-steps the basic fact that properties such as retinal-size-
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invariant object recognition can occur in VFMs without any cost. It is possible that the 

majority of higher order visual areas are retinotopic, maintaining retinotopically organized, 

dispersed receptive field centers despite increasingly large receptive field sizes. Why would 

we evolve an entirely different way to deal with one type of visual information when the 

simple solution of using large receptive fields and population codes within VFMs does not 

require a change in organization or connectivity? We contend that any failure to 

demonstrate retinotopic responses in a visually responsive area must be first carefully 

evaluated as a failure of the measurement methodology. This is a question whose answer is 

vital to understanding higher-order cognition, which need not abandon the visuospatial 

knowledge gained from low-level visual processing.  

6. Conclusion  

Our understanding the visuospatial organization of human visual cortex is crucial for our 

further exploration of the computations subserved by these visual pathways. Because every 

human brain shares common functional topography that is somewhat variably located 

anatomically, it is vital to correctly localize common functional areas in individual subjects 

in order to then study which specific computations are carried out by each area. The 

widespread technique of mapping anatomy to a common atlas not only destroys 

information about individual subjects, but also blurs data from adjacent areas within each 

subject, making it impossible to differentiate computations in adjacent areas. 

This chapter has reviewed the primary measurement techniques for investigating the 

organization of human visual cortex as well as the present state of knowledge of the 

visuospatial representations across cortex. Until recently, the best technique for localizing 

visual field maps was TWR, which is excellent at identifying the centers of pRFs in fMRI 

voxels. Now, that technique has been surpassed by pRF modeling, which measures not only 

pRF centers, but the spread of each pRF. Both techniques have been used to successfully 

localize numerous visual field maps, most of which have been confirmed by numerous 

laboratories. However, it would be a mistake to assume that the current organizational 

model is entirely correct or complete. Some polar angle gradients still need to have 

eccentricity gradients measured in order to correctly determine the number of VFMs in parts 

of cortex such as posterior parietal cortex. Other maps simply need confirmation in the form 

of replication by independent laboratories. Perhaps most importantly, the current 

organizational model will need to be reconsidered in the face of evidence that VFMs are 

organized into ‘clover leaf’ clusters. These data will surely be updated as additional 

measurements both expand the known retinotopic representations in human visual cortex 

and clarify the current VFM definitions. 
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