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1. Introduction

Early in 1968, Veselago[1] predicted that a new type of artificial metamaterial, which possesses
simultaneously negative permittivity and permeability, could function as a lens to focus
electromagnetic waves. These research direction was promoted by Pendry’s work[2, 3] and
other latter works [4–26]. They show that with such a metamaterial lens, not only the radiative
waves but also the evanescent waves, can be collected at its image, so the lens could be
a superlens which can break through or overcome the diffraction limit of the conventional
imaging system. This beyond-limit property gives us a new window to design devices.

It is well-known that evanescent wave plays an important role in the beyond-limit property
of the metamaterial superlens. Furthermore, evanescent waves become more and more
important when the metamaterial devices enter sub-wavelength scales[27, 28]. Therefore,
the quantitatively study of pure evanescent waves in the metamaterial superlens is very
significant. However, the quantitatively effects of pure evanescent wave in the metamaterial
superlens have not been intensively studied, since so far almost all studies were only
interested in the image properties with global field[8, 9], which is the summation of radiative
wave and evanescent wave. On the other hand, many theoretical works were performed
to study the metamaterial superlens, employing either finite-difference-time domain (FDTD)
simulations[16] or some approximate approaches[29, 30]. However, one cannot obtain the
rigorous pure evanescent wave by these numerical methods, since the image field of the
metamaterial superlens obtained by FDTD is global field, and other approximate approaches
cannot be rigorous.

In reviewing these existing efforts, we feel desirable to develop a rigorous method that can
be used to study quantitatively the transient phenomena of the evanescent wave in the image
of the metamaterial superlens. In this paper, we will present a new method based on the
Green’s function[7, 8] to serve this purpose. Our method can be successfully used to calculate
the evanescent wave, as well as the radiative wave and the global field. The main idea of
our method can be briefly illustrated as follows. Since the metamaterial superlens is a linear
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system, so all dynamical processes can be solved by sum of multi-frequency components. And
each frequency component can be solved by sum of multi-wavevector components. So we
can use Green’s function of multi-frequency components to obtain the strict numerical results.
Therefore, our method based on the Green’s function is strict, and it is quite a universe method
in any linear system, for example, it can be used to study the two dimensional (2D) and three
dimensional (3D) metamaterial superlens.

The content of the chapter is organized as follows. We mainly focus on the details of our
theory and method in Section 2. After that, in Section 3, we will calculate the field of the
image of a NIR superlens by using our method, including radiative waves, evanescent waves,
SEWs, and global field. The method will be confirmed by using FDTD simulations. In Section
4, we will present our study on the group delay of evanescent wave in the superlens by using
our method. Finally, conclusions are presented in Section 5.

2. Theoretical method

In this section, we will focus on the theoretical details of our method. First, a time-dependent
Green’s function will be introduced. Then, based on the Green’s function, the method to
obtain evanescent waves as well as radiative waves will be presented.

2.1. A time-dependent Green’s function

First, we would like to introduce a very useful time-dependent Green’s function for the
solution of inhomogeneous media. The time-dependent Green’s function can be applied to
study the dynamical scattering processes[7, 22]. In the inhomogeneous media, the problem
we study can be solved by Maxwell equations:

∇× �E(r, t) = −µ(r)µ0
∂

∂t
�H(r, t),

∇× �H(r, t) = ǫ(r)ǫ0
∂

∂t
�E(r, t) +�J(r, t),

(1)

where �J(r, t) = σ(r, t)�E(r, t) is the current density and σ(r, t) is the conductivity. We rewrite
Eq.(1) as:

∇×∇× �E(r, t) + ǫ(r)µ(r)ǫ0µ0
∂2

∂t2
�E(r, t) = −µ(r)µ0

∂

∂t
[σ(r, t)�E(r, t)] (2)

To solve Eq.(2), we introduce a dynamic Green’s function
→→
G (r, r′; t, t′), which satisfies:

(

∇×∇×+ǫ(r)µ(r)ǫ0µ0
∂2

∂t2

)

→→
G (r, r′; t, t′) = δ(r − r′)δ(t − t′)

→→
I (3)

where
→→

I is a unit dyad. In this system, when r and r′ is given,
→→
G (r, r′; t, t′) is just a function

of (t − t′) in time domain, so it yields

→→
G (r, r′; t, t′) =

→→
G (r, r′; t − t′). (4)
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Therefore, Eq.(3) becomes:

(

∇×∇×+ǫ(r)µ(r)ǫ0µ0
∂2

∂t2

)

→→
G (r, r′; t − t′) = δ(r − r′)δ(t − t′)

→→
I (5)

If
→→
G (r, r′; t − t′) is known, then the �E field can be found as

�E(r, t) = −µ0

∫ →→
G (r, r′; t − t′) ·�J(r′, t′)dr′dt′ (6)

By Fourier transforming Eq.(5) from time domain to frequency domain, we obtain

(

∇×∇×−µ(r, ω)ǫ(r, ω)ǫ0µ0ω2
)→→

G (r, r′; ω) = δ(r − r′)
→→

I (7)

where ǫ(r, ω) and µ(r, ω) are the relative permittivity and the relative permeability of the

dispersive material at a frequency ω, respectively, and
→→
G (r, r′; ω) is the Green’s Function in

the frequency domain, which satisfies

→→
G (r, r′; t − t′) =

1

2π

∫

dω
→→
G (r, r′; ω)e−iω(t−t′) (8)

By Fourier transforming the electric field �E(r, t) in time domain to the frequency domain, we
obtain �E(r, ω), satisfying

�E(r, t) =
1

2π

∫

dωe−iωt�E(r, ω) (9)

Considering the general properties:

ǫ(r,−ω) = ǫ(r, ω)∗,

µ(r,−ω) = µ(r, ω)∗,
(10)

and
→→
G (r, r′;−ω) =

→→
G (r, r′; ω)∗. (11)

Substituting Eq.(8), Eq.(9), Eq(10) and Eq.(11) into Eq.(6), we can obtain

�E(r, ω) =
→→
G (r, r′; ω) · �E(r′, ω). (12)

Eq.(12) exhibits the role of
→→
G (r, r′; ω) that

→→
G (r, r′; ω) is a propagator for the field in the

frequency domain between r and r′. Here we have supposed that σ(r′, t) = 1 in the source
region for simplicity. If �E(r′, ω) is the exciting source’s electric field in the frequency domain,
i.e., �Es(r′, ω) = �E(r′, ω), then Eq.(12) can be rewritten as:

�E(r, ω) =
→→
G (r, r′; ω) · �Es(r

′, ω) (13)

where �Es(r′, ω) is the spectrum of the exciting source.

39Electrodynamics of Evanescent Wave in Negative Refractive Index Superlens
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So the field �E(r, t) can be obtained by the inverse Fourier transformation:

�E(r, t) =
1

2π

∫

dωe−iωt�E(r, ω), (14)

where ω0 is the working frequency of the exciting source.

Figure 1. The shematic of the three-layer inhomogeneous medium.

Now the remaining problem is to solve Eq(7) to get
→→
G (r, r′; ω). With the exciting source

Es(r′, t) (whose spectrum is Es(r′, ω)), after obtain
→→
G (r, r′; ω), then we can calculate �E(r, ω)

directly by Eq.(12).

As a typical example, the time-dependent Green’s function for the three-layer inhomogeneous
media is presented, which is shown in Fig.1. The inhomogeneous media of the system can be
described by:

ǫ(r)ǫ0, µ(r)µ0 =

⎧

⎨

⎩

ǫ0, µ0 z > d
ǫr

l ǫ0, µr
l µ0 0 < z < d

ǫ0, µ0 z < 0
(15)

→→
G (r, r′; ω) is related to the transmission coefficient and/or reflection coefficient which are

dependent on the boundary conditions of each layer. Here, we only consider the Green’s

function in the region that z > d. Under these conditions,
→→
G (r, r′; ω) has been obtained in

Ref.[7].
→→
G (r, r′; ω) is different in different spatial dimensions. For three-dimension, we can

rewrite
→→
G (r, r′; ω) as follows:

→→
G (r, r′; ω) =−

iσ(r′, ω)

8π

∫

1

kz
e−ikzz[TTE(k‖)(J0(k‖x)− J2(k‖x))

+
k2

z

k2
TTM(k‖)(J0(k‖x) + J2(k‖x))k‖dk‖],

(16)

40 Optical Devices in Communication and Computation
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where J0(z) and J2(z) are the usual zeroth-order Bessel function and second-order Bessel
function, respectively, and k2

‖
+ k2

lz = ǫr
l µr

l (ω/c)2, k2
‖
+ k2

z = (ω/c)2 are the dispersion relation

in the region (0 < z < d) and the region (z < 0, z > d) respectively. Here, TTE and TTM are the
transmission coefficients for TE wave (�H polarized) and TM wave (�E polarized), respectively,
which are respectively given by

TTE(k‖) =
4△e−ikzd

(△+ 1)2e−iklzd − (△− 1)2eiklzd
, (17)

and

TTM(k‖) =
4△′e−ikzd

(△′ + 1)2e−iklzd − (△′ − 1)2eiklzd
, (18)

where △ =
klz

kzµr
l

and △′ =
klz

kzǫr
l

.

σ(r′, ω) is the conductivity in source region, i.e.,�J(r′, ω) = σ(r′, ω)�Es(r′, ω). σ(r′, ω) has been
assumed to be σ(r′, ω) = 1. So Eq(16) becomes:

→→
G (r, r′; ω) =−

i

8π

∫

1

kz
e−ikzz[TTE(k‖)(J0(k‖x)− J2(k‖x))

+
k2

z

k2
TTM(k‖)(J0(k‖x) + J2(k‖x))k‖dk‖],

(19)

For the 2D case, the wave vector k‖ = kx, we have

→→
G (r, r′; ω) = −

i

4π

∫

eikx x

kz
TTE(kx)e

ikzzdkx. (20)

And for the 3D case, we have

→→
G (r, r′; ω) = −

i

2k
TTE(0)e−ikz. (21)

After
→→
G (r, r′; ω) is obtained, we can obtain the field in the frequency domain in the region

z > d by Eq.(12). And then by the inverse Fourier transformation, the field in time domain
can be obtained.

2.2. The Green’s function for radiative waves and evanescent waves

Now, we will apply a time-dependent Green’s function for a radiative wave and an evanescent
wave. This Green’s function can be directly developed from the Green’s function introduced
in the Sec.2.1. The schematic model is shown in Fig.1. As we know, the plane solution wave for
the electric field in vacuum is of the form Ez(r||, z, t) = Ez0exp(i(k||r|| + kzz − ωt)), where k||
and kz are wave numbers along the xy plane and z directions respectively, and they satisfy the
dispersion relation as follows: k2

||
+ k2

z = ω2/c2, where c is the light velocity in the vacuum. In

the case of k2
||
< ω2/c2, kz is real, corresponding to the radiative waves along the z direction.

While if k2
||

> ω2/c2, kz is imaginary, corresponding to the evanescent waves along the z
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direction. Similarly, in the slab region, the real or imaginary klz corresponds to the radiative
wave or the evanescent wave along z direction, respectively.

For simplicity, we first consider the 2D system, in which k|| = kx. The global field of
image region is the superposition of radiative waves and evanescent waves. We can rewrite
Eq.(20),Eq.(13) and Eq(14) as follows:

→→
G (r, r′; ω; kmin, kmax) = −

i

4π

∫ kmax

kmin

eikx x

kz
TTE(kx)e

ikzzdkx, (22)

�E(r; ω; kmin, kmax) =
→→
G (r, r′; ω; kmin, kmax) · �Es(r

′, ω), (23)

and

�E(r; t; kmin, kmax) =
1

2π

∫

dωe−iωt�E(r; ω; kmin, kmax), (24)

where kmin < kx < kmax is the integral range. The integral range is of great significance,
since different integral range corresponds to different wave. For example, the integral range
[kmin → −∞, kmax → ∞] is for global field, and the range [kmin = −ω/c, kmax = ω/c] is for
radiative wave. Obviously, for linear system, the integral range can be chosen arbitrarily.

From Eq.(22) to Eq.(24), we can directly calculate the radiative wave and evanescent wave. In
the case of radiative wave (k2

x < ω2/c2), the integral range is [kmin = −ω/c, kmax = ω/c], so

the radiative wave Green’s function
→→
G rad(r, r′; ω) satisfies

→→
G rad(r, r′; ω) =

→→
G (r, r′; ω; kmin = −ω/c, kmax = ω/c)

= −
i

4π

∫ ω/c

−ω/c

eikx x

kz
TTE(kx)e

ikzzdkx

(25)

for radiative waves.

In the case of evanescent wave (k2
x > ω2/c2), the integral range is kx>|ω/c|, so the evanescent

wave Green’s function
→→
G eva(r, r′; ω) satisfies:

→→
G eva(r, r′; ω) = 2 lim

kmax→∞

→→
G (r, r′; ω; kmin = ω/c, kmax)

= −
i

2π
lim

kmax→∞

∫ kmax

ω/c

eikx x

kz
TTE(kx)e

ikzzdkx

(26)

for evanescent waves.

And for the global field, the global field Green’s function
→→
G glob(r, r′; ω) satisfies:

→→
G glob(r, r′; ω) =

→→
G rad(r, r′; ω) +

→→
G eva(r, r′; ω) (27)

Additionally, we can also focus our observation on the subdivided evanescent wave (SEW), with
a certain integral range [kmin = ka

x, kmax = kb
x]. The SEW, with a certain integral range, can

42 Optical Devices in Communication and Computation
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also be obtained from Eq.(22) to Eq.(24) such that

→→
G SEW(r, r′; ω)|

kmax=kb
x

kmin=ka
x
=

→→
G (r, r′; ka

x, kb
x)

=−
i

4π

∫ kb
x

ka
x

eikx x

kz
TTE(kx)e

ikzzdkx.

(28)

As an typical example, a SEW with an integral range [kmin = 1.1ω/c, kmax = 1.2ω/c], whose
Green’s function can be obtained easily from Eq.(28) as:

→→
G SEW(r, r′; ω)|kmax=1.2ω/c

kmin=1.1ω/c = −
i

4π

∫ 1.2ω/c

1.1ω/c

eikx x

kz
TTE(kx)e

ikzzdkx.

In this way, we can obtain the Green’s function for the SEW with any integral range.
Obviously, evanescent wave could be regarded as the superposition of SEWs. Therefore, we
have

→→
G eva(r, r′; ω) = ∑

SEWs

→→
G SEW(r, r′; ω). (29)

From Eq.(28), Eq.(26), Eq.(25), and Eq.(27), one can obtain the SEW Green’s function
→→
G SEW(r, r′; ω), the evanescent wave Green’s function

→→
G eva(r, r′; ω), the radiative wave

Green’s function
→→
G rad(r, r′; ω), and the global field Green’s function

→→
G glob(r, r′; ω),

respectively. Substituting them to Eq.(23) and Eq.(24) respectively, we can obtain the field
of the SEW, the evanescent wave, the radiative wave, and the global field, respectively.

For the 3D system, obviously, the methods to get Green’s function for the SEW, the evanescent
wave, the radiative wave, and the global field are respectively very similar with the above
discussion, i.e., just replace kx by k|| and let k2

||
= k2

x + k2
y in Eq.(28), Eq.(26), Eq.(25), and

Eq.(27), respectively.

3. Electromagnetic waves in the image of the superlens

In this section, we will discuss the image’s field of a 2D metamaterial superlens, which is
shown in Fig.2. The thickness of the metamaterial slab is d, which is placed at the xy-plane
between z = d/2 and z = 3d/2. The source is set in the object plane at (z = 0). Obviously, the
image will be formed in the image plane at z = 2d. The source is the quasi-monochromatic
random source with the field expressed as Es(r, t)=Us(r, t)exp(−iω0t), where Us(r, t) is a
slow-varying random function, ω0 = 1.33 × 1015/s is the central frequency of our random
source (the details of the random source can be seen in Ref.[29]). The exciting source Es(r, t)
is a quasi-monochromatic field with the central frequency ω0, whose electric field �Es(t) and
frequency spectrum �Es(ω) are shown in Fig.3(a) and Fig.3(b), respectively. In this paper, only
the TM modes are investigated (the TM modes have the electric field perpendicular to the
two-dimensional plane of our model).

The inhomogeneous media of the metamaterial superlens system are described by:

43Electrodynamics of Evanescent Wave in Negative Refractive Index Superlens
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Figure 2. The schematic diagram of our model.

ǫ(r), µ(r) =

⎧





⎨





⎩

ǫ0, µ0 z > 3/2d

ǫ0ǫr
l , µ0µr

l 1/2d < z < 3/2d

ǫ0, µ0 z < 1/2d

(30)

The negative relative permittivity ǫr
l and the negative relative permeability µr

l of metamaterial
are phenomenologically introduced by the Lorenz model. The negative relative permittivity
ǫr

l and the negative relative permeability µr
l are satisfied as follows:

ǫr
l (ω) = µr

l (ω) = 1 + ω2
p/(ω2

a − ω2 − i∆ω · ω) (31)

where ωa = 1.884 × 1015/s and ∆ω = 1.88 × 1014/s are the resonant frequency and the
resonant line-width of the “resonators" in the metamaterial respectively, and ωp = 10 × ωa is
the plasma frequency. At ω = ω0, we have ǫr

l = µr
l = −1.0 + i0.0029.

In order to excite the evanescent wave strong enough in the image of the metamaterial
superlens, the distance d/2 between the source and the superlens should be small enough.
Here we choose d = λ0/2, where λ0 = 1.42µm is the wavelength corresponding to the central
frequency ω0.

For this metamaterial superlens system, it is very easy to obtain
→→
G glob(r, r′; ω),

→→
G eva(r, r′; ω), and

→→
G SEW(r, r′; ω) from Eq.(26) to Eq.(28), respectively. Let r = 2d and

r′ = 0, and thus the Green’s functions for the image will be obtained. After that, we can
obtain the global field, the evanescent wave and the SEW of the image via:

�Eglob(2d, t) =
1

2π

∫

dωe−iωt�Eglob(2d, ω)

�Eeva(2d, t) =
1

2π

∫

dωe−iωt�Eeva(2d, ω)

�ESEW(2d, t) =
1

2π

∫

dωe−iωt�ESEW(2d, ω)

(32)
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Figure 3. (a) Electric field of the source. (b) Spectrum of the source (top) and the image obtained by
using our method (bottom) in units of ω0. (c) Electric field of the image vs time. The global field
calculated by using our method (top) and by using FDTD (bottom). (d) The evanescent wave of the
image calculated by using our method. (e) Two typical SEWs of the image.

respectively, where

�Eglob(2d, ω) =
→→
G glob(2d, 0; ω) · �Es(ω)

�Eeva(2d, ω) =
→→
G eva(2d, 0; ω) · �Es(ω)

�ESEW(2d, ω) =
→→
G SEW(2d, 0; ω) · �Es(ω).

(33)

The numerical results calculated by our method are shown in Fig.3. Fig.3(c)(up, the blue one),
(d) and (e) show the global field, the evanescent wave, and two typical SEWs respectively. The
integral kx range of the two SEWs are [kmin = 1.1ω/c, kmax = 1.2ω/c] (shown in Fig.3(e)(up,
the black one)), and [kmin = 1.3ω/c, kmax = 1.4ω/c] (shown in Fig.3(e)(down, the blue one)),
respectively.

45Electrodynamics of Evanescent Wave in Negative Refractive Index Superlens
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In order to convince our method, FDTD simulation is also applied to calculate the field of
the image, which is shown in Fig.3(c) (down, the green one). Comparison with the results
calculated by our method and FDTD shown in Fig.3(c), we can see they coincide with each
other very well. In addition, we also calculate the frequency sepctrum of the image by our
method, as shown in Fig.3(b) (down, the red one). Comparing the spectra of source and
image, we can find they are very close to each other. This result also agrees with the Ref.[29].
Therefore, our method is convincible, which can be used to obtain the pure evanescent waves,
the SEWs, and the global field effectively.

4. Group delay time of SEWs and its impacts on the temporal coherence

4.1. Group delay time of SEWs

From Figs.3(c)-(e), we can find that the profile of evanescent wave and that of SEWs look like
that of radiative wave with a group delay time τr. So the field evanescent wave �Eeva(t), as well
as that of SEWs �ESEW(t), can be written as an expression such as �Eeva(SEW)(t)= fa(t)�Erad(t −
τr), where fa(τr) is parameter function of τr. In order to quantitatively study the delay time
τr, we introduce a function y(τi) which satisfies:

y(τi) =
∫

t
dt|�Erad(t)| · |�Eeva(t − τi)|, (34)

where �Erad(t) and �Eeva(t) are the field of radiative wave and the evanescent wave respectively,
τi is an independent variable with the time dimension. Since the profile of the radiative wave
and the evanescent wave are very similar, obviously, the function y(τi) will get the maximal
value when τi = τr. Therefore, the delay time can be defined quantitatively as follows:

τr = [Max(y(τi))]
−1. (35)

Here [· · · ]−1 means the inverse function.

Similarly, we can also study the group delay time of the SEWs. We rewrite Eq.(34) as follows:

y(τi) =
∫

t
dt|�Erad(t)| · |�ESEW(t − τi)|, (36)

where ESEW(t) is the field of the SEW with a certain integral kx range. So we can calculate the
delay time of the SEWs from Eq.(36) and Eq.(35).

In our numerical experiment, in order to calculate the group delay time of the SEWs,
we choose 70 SEWs with integral kx range as [kmx − 0.01ω0/c, kmx + 0.01ω0/c], where
kmx=1.01ω0/c, 1.02ω0/c, · · ·, 1.69ω0/c, 1.7ω0/c , respectively. The delay time of the 70 SEWs
is shown in Fig.4(a). In this figure, we can see that the SEW with larger integral variable kx

will have a larger delay time. Obviously, the function τr = τr(kx) is a continuous-monotone
increasing function, when the integral range [kx − dkx, kx + dkx] is infinitesimal (dkx→0). The
result can be obtained by using a polynomial fitting, as shown in Fig.4(a). Therefore, from
Fig.4(a), we can find that the SEWs with larger integral variable kx corresponds to a larger
delay time, which means the group velocity of SEWs with larger integral variable is smaller
in the superlens system.
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Figure 4. (a) The group delay time τr of SEWs. (b) ρcoh of SEWs.

Since the field profile of SEWs looks like that of a radiative wave, so we can write the field of
the SEW with the integral range [kx − δkx, kx + δkx] as follows:

�ESEW(t) = A(τr(kx))�Erad(t − τr(kx)), (37)

where A(τr(kx)) = B(τr(kx))exp(−2|kz(kx)|d), B(τr) is a slowly-verifying function of τr,
and exp(−2|kz|d) is an exponentially-decreasing function of kz and a general-function of τr.
Obviously, when τr(or kx) becomes larger, A(τr) will trends to become smaller. Then the field
of evanescent wave �Eeva(t) can be obtained by:

�Eeva(t) =
∫

�ESEW(t)dkx

=
∫

A(τr(kx))�Erad(t − τr(kx))dkx.
(38)

The physical meaning of A(τr) and its impacts will be discussed in the following.

4.2. Impacts of the group delay of SEWs on temporal coherence gain in the image

of the superlens

One of the most interesting impacts of the group delay of SEWs is related to the first-order
temporal coherence gain (CG). Here, we would like to discuss the CG caused by the SEWs
in the image of the superlens. In our previous work [29, 30], we have investigated a
prominent CG of the image by the radiative waves even when the frequency-filtering effects
are very weak. Then, a natural question is what about the role of the evanescent waves
play in the CG of a superlens? In this section, we will show that not only the radiative
waves but also the evanescent waves, and the SEWs that can be responsible for the CG.
Furthermore, we will show that the total CG in the image of a superlens is the weighted
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averaged of evanescent-wave coherence gain (ECG), radiative-wave coherence gain (RCG),
radiative-wave and evanescent-wave coherence gain (RECG).

First of all, let’s consider the contributions of the evanescent waves on the CG. For this, we
calculate the normalized first-order temporal coherence g(1)(r, τ) of the superlens with the
random source Es(t) exciting, which are shown in Fig.5. Here, the normalized first-order
temporal coherence function g(1)(r, τ) is defined by

g(1)(r, τ) =
G(1)(r, τ)

G(1)(r, 0)
=

< �E∗(r, t)�E(r, t + τr) >

< �E∗(r, t)�E(r, t) >
(39)

where G(1)(r, τ) is a coherence function, which is defined by

G(1)(r, τ) =< �E∗(r, t)�E(r, t + τr) > (40)

or

G(1)(r, τ) = lim
T→∞

1

2T

∫ T

−T

�E∗(r, t)�E(r, t + τ)dt, (41)

here < · · · > means the statistic average (ensemble average) and τ is time delay. From
Fig.5, we can see that the temporal coherence of image of evanescent wave, radiative wave
and global field, are all obviously better than that of source. Comparing with the temporal
coherence of source and image, there are three kinds of coherence gain as follows. The first
one is the radiative-wave coherence gain (RCG, this mechanism has been discussed in our
previous work[29, 30]), which is determined by the radiative waves. The second one is the
evanescent-wave coherence gain (ECG), which is determined by the evanescent waves. The
last one is the global field coherence gain (GCG), which is from the global field with the
co-effect of RCG and ECG.
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Figure 5. The first temporal coherence of image and source. The dashed-dotted one is the g(1)(r, τ) of
the source. Others are for the image, i.e., the red one, the black one (and also the green one), and the blue
one are the g(1)(r, τ) of the evanescent waves, the global field, and the radiative waves, respectively.
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To show how the ECG is produced from the interference of the SEWs with different group

delay time, we assume there are only two SEWs, such as �Eα
SEW(t) and �E

β
SEW(t) with the range

[kα
mx − δkα

mx, kα
mx + δkα

mx] and [k
β
mx − δk

β
mx, k

β
mx + δk

β
mx] respectively, which correspond to the

delay time τα
r and τ

β
r , respectively. The two SEWs can be expressed by Eq.(37). We assume

the two SEWs have an integral range very close to each other, i.e., kα
mx ≃ k

β
mx, and so we have

A(τr(kα
mx)) ≃ A(τr(k

β
mx)) and both of them are close to a certain constant A.

From Eq.(38), we have the evanescent wave field:

�Eeva(t) = �Eα
SEW(t) + �E

β
SEW(t)

= A(τr(k
α
mx))�Erad(t − τα

r ) + A(τr(k
β
mx))�Erad(t − τ

β
r )

≃ A · (�Erad(t − τα
r ) + �Erad(t − τ

β
r )),

(42)

then the temporal coherence of the evanescent wave in the image is given by

Geva(τ) =< �E∗
eva(t)�Eeva(t + τ) >

=< �E∗
rad(t − τα

r )�Erad(t − τα
r + τ) + �E∗

rad(t − τ
β
r )�Erad(t − τ

β
r + τ)+

�E∗
rad(t − τα

r )�Erad(t − τ
β
r + τ) + �E∗

rad(t − τ
β
r )�Erad(t − τα

r + τ) >,

(43)

The first two terms are the same as the coherence function of the radiative wave, so they do
not contribute to ECG. The last two terms are from the interference between SEWs, they can be

very large at the condition τ ≃ |τα
r − τ

β
r |. This condition can always be satisfied between SEWs

since τr is a continuous variable. So the relative delay time |τα
r − τ

β
r | of SEWs are responsible

for ECG .

Therefore, ECG can always exist in the superlens when two conditions are satisfied: (1)

A(τr(kα
mx)) ≃ A(τr(k

β
mx)); and (2) τ ≃ |τα

r − τ
β
r |. Unfortunately, the two conditions could

not always be satisfied at the same time. When τ ≃ |τα
r − τ

β
r | is large, which also means

the integral variable kα
mx and k

β
mx are far from each other, so the value of |A(τα

r ) − A(τ
β
r )|

will be very large, and thus the former condition could not be satisfied. The condition that
A(τr(kx)) ≃ A(τr(kmx)) is the direct reflection that only the interference of those SEWs with
close integral variable kx can produce the ECG.

Here the integral variable “kx close to kmx" means when kmx is given, for any kx satisfying
|kx − kmx| → δkmx, the condition A(τr(kx)) ≃ A(τr(kmx)) is always satisfied, where δkmx

is a threshold value with small positive value near zero(for example δkmx=0.01). For two
SEWs with the integral range [kmx − δkmx, kmx + δkmx] and [kx − δkx, kx + δkx] respectively,
we can obtain the relative delay time ∆τr(kx) = |τr(kx)− τr(kmx)|. As the discussion above,
the relative delay time ∆τr is responsible to the ECG. When kx is close to kmx, ∆τr(kx) is a
monotonic increasing function of kx in the range [kmx, kmx + δkmx], which gives a threshold
value τd as:

τd(kx) = lim
kx→kmx+δ.kmx

∆τr(kx) (44)
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τd shows the upper-limit of the effective coherent relative delay time that only the ∆τr ≤
τd is the effective responsible to ECG. As ∆τr increasing, when ∆τr > τd, which means
|kx − kmx| > δkmx (i.e. kx and kmx is not close to each other), the difference between
A(τr(kx)) and A(τr(kmx)) becomes greater, and so their interference becomes weaker and
their contribution to the coherence gain will decrease rapidly. While when ∆τr 
 τd, which
means the integral variable kx and kmx are very far from each other, then the SEW with
the much larger integral variable one is too weak to have any effective interference, so their
contribution to the coherence gain trends to be zero.

Therefore, the coherence gain from the interference of SEWs is limited by τd. The SEW with
larger τd corresponds larger coherence gain. In order to study the temperas coherence gain of

SEWs, we introduce a parameter function as: ρcoh(kx) =
dτr(kx)

dkx
, which is shown in Fig.4(b).

The physical meaning of ρcoh(kx) is very clear, which gives a relation

τd(kx) ≃ ρcoh(kx) · δkx (45)

when δkx → 0, we can get τd = ρcohδkx. Thus, τd is proportional to ρcoh. From Fig.4(b)
we can see that ρcoh is an increasing function of kx, so the SEWs with larger integral variable
kx correspond larger τd and stronger ECG, and so the field of the SEWs with larger integral
various kx will have better temporal-coherence g(1)(τ).
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Figure 6. g(1)(τ) of SEW1, SEW2, and SEW3, comparing with g(1)(τ) of evanescent wave.

To convince it, three SEWs (SWE1,SWE2,SWE3)with the different integral kx range [kmin =
1.0ω/c, kmax = 1.15ω/c], [kmin = 1.15ω/c, kmax = 1.3ω/c] and [kmin = 1.3ω/c, kmax =
1.45ω/c] respectively are chosen to calculate the normalized first-order temporal-coherence
function g(1)(τ), which are shown in Fig.6. In this figure, we can see the temporal-coherence
of SWE3 with the largest integral variable is the best (black), the temporal coherence of SWE2

with the second largest integral variable(red) is the second best, and the temporal coherence
of SWE1 with the smallest integral variable is the worst, which is expected.
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5. Conclusion

In conclusion, based on the Green’s function, we have numerically and theoretically obtained
the evanescent wave, as well as the SEWs, separating from the global field. This study could
help us to investigate the effect of an evanescent wave on a metamaterial superlens directly
and give us a new way to design new devices.
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