
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 0

Issues on Communication Network Control

System Based Upon Scheduling Strategy

Using Numerical Simulations

Oscar Esquivel-Flores, Héctor Benítez-Pérez and Jorge Ortega-Arjona

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48578

1. Introduction

Nowadays, industry has successfully used Network Control Systems (NCS) therefore several
lines of research have arisen. A NCS is a current application of a Real-Time Distributed
Systems (RTDS), composed of a number of nodes capable of developing a complete control
process. In these systems several nodes exchange information through a communication
network to achieve specific control goals, nevertheless network traffic increases. This
affects the overall system performance. Several approaches have been developed to
satisfy requirements of both control and communication performance. Particularly, some
methodologies focus on saving bandwidth, one of such methodologies is network scheduling.
The objective of this methodology is the accurately use of the computing resources. NCS
research is categorized into two main parts [5]:
1. Control of network: Study and research on communications and networks to make them

suitable for real-time NCS, e.g. routing control, congestion reduction, efficient data
communication, networking protocol.

2. Control over network: This area deals with control strategies and control systems design
over the network trying to minimize the effect of adverse network parameters on NCS
performance such as network delay.

These systems have many challenges to maintain the the Quality of Service (QoS) and Quality
of Control (QoC). In the networks, QoS is the idea that transmission rates, error rates, and
other characteristics can be measured and improved. The QoS can be degraded due to
congestion and interference.

1.1. Architecture and overview of a NCS

There are two general NCS configurations, Direct structure and Hierarchical structure [14].
Direct structure consists of a controller and a remote system containing a physical plant,
sensors and actuators. The controller and the plant are physically located at different points
and are directly linked by a data network in order to perform remote closed-loop control. Fig.
1 presents a schematic diagram of a direct structure of a NCS [15].

©2012 Esquivel-Flores et al., licensee InTech. This is an open access chapter distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Chapter 3

2 Will-be-set-by-IN-TECH

Figure 1. Schematic diagram of a direct structure of a NCS

1.2. Effect of sampling period on NCS

Network scheduling deals with to elect a sampling rate, aiming to reduce the number of data
transmitted over the network . The effectiveness of the control system depends on such a
sampling rate [8–10]. A region is acceptable in networked control performance terms if it is
contained within two sampling rate boundaries, which can be statistically determined.

The use of a common-bus network architecture and a particular network protocol introduces
different forms of time delay uncertainties between, sensors, actuators and controllers [8].
Hence, it is quite important to explore different network protocols and network scheduling
strategies, before to implement the RTDS, in order to obtain a desired control performance.

For networked control, the minimum transmission frequency (fm) is necessary to guarantee
good system performance without decreasing the network performance. As the transmission
frequency increases the system performance improves; however, the load on the network
also increases until a maximum transmission frequency (fh) is reached, then the system
performance decreases because the network performance is overloaded.

This phenomenon represents non-linear situations with respect to sudden changes in state of
the network, failure situations, or saturation in the channel or traffic, among others. However;
it is possible to propose a linear model in the context of proper use of the network, thereby
deferring the modeling of nonlinearity in these systems until future work.

The main objective of this work is to explore several issues on communication network
scheduling of a RTDS, besides to implement a particular network scheduling strategy to
evaluate its effectiveness using numerical simulations. This is presented using a simulated
case study, based upon a 2-DOF helicopter simulation benchmark [13]. This simulation
provides an approximation to system response, in which, for demonstration purposes, the
main results are obtained for a typical fault scenario. Thus, for this simulation, a scheduling
strategies is implemented using TrueTime [1, 2] performing dynamic scheduling. Several
researches have focused on control over network, shared-network control systems have
special interest.

50 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 3

2. Real-time simulation tool TrueTime

This section gives a brief overview of TrueTime simulator and exposes basic examples to
initialize typical TrueTime blocks.

According to Cervin et al., nowadays simple embedded control systems often contain a
multi-tasking real-time kernel and support networking, besides time control algorithm and
control software designs need to be considered together. Thus new computer-based tools
for real time and control design are needed [1]. Networked control loops consist of sensor,
actuator and control calculations residing on different nodes; within the individual nodes
the controllers are implemented as one or several tasks on microprocessor with a real-time
operating system, this operating system typically uses multiprogramming to execute various
tasks. Communication bandwidth and CPU time can be considered as shared resources
for which the task compete. Different sources of temporal nondeterminism as execution
times of the tasks or communications delays affect the control performance, nevertheless
this nondeterminism can be reduce by the accurate choice of implementation platforms.
The constraints of the implementation platform must be considered in systems with limited
computer resources [1], therefore some tools are available to analyze and simulate the effects
of temporal constrains affects control performance.

TrueTime [1, 2, 6, 7, 12] is a simulator for networked and embedded control system based
on Matlab/Simulink, it has been developed at Lund University since 1999 [2]. TrueTime
can be used as an experimental platform for research on dynamic real-time control systems.
For instance, it is possible to study compensation schemes that adjust the control algorithm
based on measurements of actual timing variations [1]. TrueTime make it possible to study
more general and detailed timing models of computer-controlled systems. TrueTime can be
used: to investigate how timing nondeterminism affects the system behavior, to develop new
outlines to adjust control parameters dynamically, to experiment new approaches as codesign
of control and network scheduling and to simulate control systems based on event-driven task
[1].

The simulator software consists of a Simulink block library, the kernel block simulates a
Real-Time kernel executing user-defined task and interrupt handlers. To communicate kernel
blocks (nodes) several network blocks may be used, thus it makes quite simple to develop
networked control system simulations.

2.1. The kernel block

A computer node is simulated using TrueTime kernel block, this node has a generic real-time
kernel, A/D and D/A converters, and network interfaces. An initialization scrip is used to
configure the block, in this script it is possible to create several objects as task, timers, interrupt
handlers, semaphores, etc., this objects establish the software executing in the computer
node. The kernel continuously calls the code functions of the tasks and interrupt handlers.
Either Matlab m-files code or C++ language may be used to write initialization scripts and
the code functions, the main advantage to use C++ is the speed, nevertheless m-file code
is very easy to use. Several scheduling policy is able to use in TreTime kernel block, these
can be fixed-priority scheduling and earliest-deadline-first scheduling and custom scheduling
policies [2].

51
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

4 Will-be-set-by-IN-TECH

The task is the main construction in the TrueTime environment, this object is used to simulate
periodic and aperiodic activities, for example controller and I/O tasks can be periodic and
communication and event-driven controller can be aperiodic tasks. A set of attributes and
a code function define a task; attributes as name, release time, worst-case execution time,
budget, relative and absolute deadlines, priority (if fixed priority scheduling is used), period
(if the task is periodic). Release time and absolute deadline are attributes constantly updated
bye the kernel during simulation, while period and priority are kept constant, although can
be changed by callas to kernel primitives trough execution [1]. An example of the definition
of a task is shown below:

function sensor_init(arg)

% Initialize TrueTime kernel

ttInitKernel(1, 0, ’prioFP’); %Inputs,Outputs,FixedPriority

% Create sensor task

offset = 0;

prio = 1;

period = 0.010;

ttCreatePeriodicTask(’sens_task’, offset, period, ...

prio, ’senscode’, data);

The kernel primitive ttInitKernel() initializes a sensor node. The kernel is initialized
by specifying the number of A/D and D/A channels and scheduling policy. The built-in
priority function prioFP specifies fixed-priority scheduling. Rate monotonic prioRM,
earliest deadline first prioEDF, and deadline monotonic prioDM scheduling are additional
predefined scheduling policies [6].

Interrupts can be generated in two ways: An external interrupt is associated with one of the
external interrupt channels of the computer block; when the signal of the corresponding
channel changes value the interrupt triggers. The usefulness of this type of interrupt lies
to simulate distributed controllers that execute when measurements arrive on the network.
Internal interrupts work to construct timers, when a timer expires the interrupt is triggered. A
user-defined interrupt handler is scheduled when an external or internal interrupt occurs. An
interrupt, as a task, handles works but it is scheduled on a higher priority level. An interrupt
handler is defined by name, a priority and a code function [1]. An example of a definition of
a interrupt handler is as follows:

%Initialize the network

ttCreateInterruptHandler(’nw_handler1’, prio, ’msgRcvSensor’);

ttInitNetwork(4, ’nw_handler1’); % node #4 in the network

Cervin et al. [1, 2] mentions that simulated execution occurs at three distinct priority levels:
the interrupt (highest priority), kernel and task (lower priority) levels. The execution may be
preemptive or non-preemptive. At interrupt level, interrupt handlers are scheduled according
to fixed priorities. At task level, dynamic-priority scheduling may be used. At each scheduling
point, the priority of task is given by user-defined priority function which is a function of the
task attributes, this makes it easy to simulate different scheduling policies. Predefined priority
functions exist for most of the commonly used scheduling schemes.

52 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 5

The code associated with task and interrupt handlers is scheduled and executed bye the kernel
while simulation progresses. The code may be divided in segments, which can interact with
other tasks and with the environment at the beginning of each code segment. The simulated
execution time of each segment is returned by the code function and can be modeled as
constant, random, or even data-dependent [1]. During the simulation the kernel saves the
current segment and calls the code functions with proper arguments. Execution resumes
in the next segment when the task has been running for the time associated with previous
segment [7]. An example of a sensor code is given bellow:

function [exectime, data] = senscode(seg, data)

switch seg,

case 1,

% Receive data from analog input

data.y = ttAnalogIn(1);

exectime = 0.0005;

case 2,

% Shows the current time

ttCurrentTime

% Send message (80 bits) to node 3 (controller)

ttSendMsg(3, data, 80)

exectime = 0.0004;

case 3,

exectime = -1; % finished

end

This function implements a simple sensor node. In the first segment, the plant is sampled
using a execution time of .5 ms. In the second segment, the control signal is sent to
the controller node. The third segment indicates the end of execution by returning a
negative execution time. The structure data represent the local memory and is used to
store the measured variable between calls to the different segments. The kernel primitives
ttAnalogIn and ttAnalogOut can be perform A/D and D/A conversion. Besides A/D
and D/A conversion, a large set of kernel primitives exist which can be called from code
function [12].

Monitors and events support sincronization between tasks. Monitors are used to guarnatee
mutual exclusion when accessing comon data. Events are associated with monitors to
represent condition variables [1].

Different output graphs are generated by truetime blocks. Each computer block will produce
two graphs: A computer graph will display the execution trace of each task and interrupt
handler during the simulation. If the signal is high, it means that the task is running. A
medium signal indicates that the task is ready but not running, a low signal means that the
task is idle. Otherwise a monitor graph shows which tasks are holding and waiting on the
different monitors during simulation [1].

2.2. The network block

The TrueTime network block simulates the physical layer and the medium-access layer
of several local-area networks. CSMA/CD (Ethernet), CSMA/AMP (CAN), Round Robin

53
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

6 Will-be-set-by-IN-TECH

(Token Bus), FDMA, TDMA (TTP), Switched Ethernet, WLAN (802.11b), and ZigBee (802.15.4)
are some types of network supported [2]. The network blocks are mainly configured
using blocks dialogs. Some parameters common to all types of networks are bit rate, the
minimum frame size, and the network interface delay. For each type of network there are
some parameters that specifie the number of nodes, data rate (bits/s), preprocessing delay,
minimum frame size, maximum frame size, frame overhead, etc. The network blocks may
be used having one kernel block for each node in the network. The tasks into the kernels
can send and receive arbitrary Matlab structure arrays over the network using ttSendMsg

and ttGetMsg kernel primitives. This way is to quite flexible but requires to program some
routines to configure the system. An useful network scheduler viewer shows the network
activity for all nodes involved. An overview of all Truetime’s primitives can be found on [12].

3. Frequency transmission scheduling

In this section a formal definition of task model is provided and it gives an overview of the
control of frequency transmission in a distributed systems and how it impacts over quality
performance.

3.1. Task model

Chen et al. [3] gives a formal definition of system model of a typical distributed systems
consisting of a set of processors and a set of tasks. A distributed system are characterized
as follows. A set of processors Ω = {S1, S2, ..., Sm} where Ω is the processor set, Si is the
i − th processor and m is the total number of processors. In this model, all processors are
assumed to be identical to assure same execution time for each task on different processors.
It is also supposed that enough processors are provided. A set of primary copy of real-time
tasks Φ = {τ1, τ2, ..., τn}, where τi = {ci, pi} , i = {1, 2, ..., n}. Here Φ is the set of tasks, τi is
the i − th task, n is the number of tasks which are periodic, independent and preemptive, ci

denotes the execution time of τi, pi denotes the period of task τi.

3.2. Control of frequency transmission

An approach to schedule a real time distributed system based upon modifications on
frequency transmission of individual components in the system is presented in [4], this
shows that scheduling of a distributed system can be accomplished through modifications on
transmission frequencies into a region where the system performance is not affected. A linear
time invariant model in which the coefficients of the state matrix are the relations between
the transmission frequencies of each agent and through a feedback controller to modify
transmission frequencies bounded between maximum and minimum values of transmission.
This approach drives the frequency transmission based on three parameters: minimum
frequency (fm), maximum frequency (fh) and real frequency (fr). Frequency transmission
dynamics can be modeled as a linear time-invariant subsystem which state variables are
transmission frequencies of the sensor nodes involved on the system. Note that for each
primary task of a sensor Si, i = 1, ..., m frequency can be expressed as fi = 1/pi. There
is a relationship between nodes’ frequencies an external input frequencies which serves as
coefficients of the linear system. Therefore it is possible to control the NCS through the input
vector u such that the outputs y are nodes’ frequencies into a region L bounded by maximum
and minimum transmission frequencies, see Fig. 2.

54 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 7

Figure 2. Transmission frequencies bounded by a schedulability region

The objective of controlling the frequency is to achieve coordination through the convergence
of values. Each sensor Si knows its minimum and maximum frequencies based upon
messages sent to controller and it could be estimated its own real transmission frequency.
Let a NCS with a set Ω = {S1, S2, ..., Sl} nodes that performs a set of task τi = {ci, pi} for
i = {1, 2, , n}, a subset of Ω is sensor nodes subset Ωs = {S1, S2, ..., Sm}.

3.3. Network scheduling based on frequency transmission

An approach that modifies the frequency transmission uses fm, fr, fx frequencies. RTDS
dynamics, is modeled as a linear time-invariant system, whose state variables are frequencies
transmission rates of the n nodes that compose the RTDS [4]. Frequency rates of a node
are affected by some external input frequency rates, minimal frequencies of all nodes and
particular ratios serve as coefficients of the linear system. So, it is possible to control the NCS
using the input vector u, such that the output vector y contains the frequency rates of all nodes
within a nonlinear region L, bounded by the maximum and minimum transmission frequency
rates. Let we assume that there is a relationship amongst real frequencies f 1

r , f 2
r , ..., f m

r and
external input frequencies u1, u2, ..., um which serve as coefficients of the linear system:

xk+1 = Axk + Buk,
yk = Cxk. (1)

A, B, C are matrices with appropriate dimensions. A is the matrix of relationships between
frequencies of sensor nodes, B is the scale frequencies matrix, C is the matrix with frequencies
ordered, xk+1 is a real frequencies vector in time t = k + 1, yk is the vector of output
frequencies. The input uk is a function of reference frequencies and real frequencies of the
nodes in the distributed system, hence u = K(fm − fr) where fm, fr are vectors. Then, the
state vector in equation (1) can be written as:

xk+1 = Axk + Buk,
xk+1 = A frk + B (K(fmk − frk)) . (2)

55
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

8 Will-be-set-by-IN-TECH

Note that K is the control gain defined as the basics of a LQR algorithm. Matrices A, B and C
has the proper dimensions and matrix A include the following restriction [11]:

U =
n

∑
i=1

ci/pi ≤ 1,

as a new state of the system (1). For simplicity, frequency transition model will be described
using a sensor node subset Ωs = {S1, S2, S3, S4}. The elements of the matrices for system 2
are defined as follows:

aij =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Λ(f 1
m , f 2

m , f 3
m , f 4

m)
f i
m

i = j

f
j
m

f i
m

i �= j

,

bij =

⎧

⎨

⎩

f i
h i = j

0 i �= j
,

cij =

⎧

⎨

⎩

1 i = j

0 i �= j
.

Note that Λ
(

f 1
m, f 2

m, f 3
m, f 4

m

)

is the greatest common divisor of minimum frequencies, that is
the planning cycle Γ expressed in terms of frequencies of the backup task, for shortening, it
will be written only as Λ. fm, fh, and fr are vectors of respective frequencies.

Considering the execution time ci of each task executing in respective sensor nodes in Ωs as
an additional state, we can rewrite (2) as follows:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1
k+1

x2
k+1

x3
k+1

x4
k+1

x5
k+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Λ
f 1
m

f 2
m

f 1
m

f 3
m

f 1
m

f 4
m

f 1
m

0

f 1
m

f 2
m

Λ
f 2
m

f 3
m

f 2
m

f 4
m

f 2
m

0

f 1
m

f 3
m

f 2
m

f 3
m

Λ
f 3
m

f 4
m

f 3
m

0

f 1
m

f 4
m

f 2
m

f 4
m

f 3
m

f 4
m

Λ
f 4
m

0

c1 c2 c3 c4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f 1
r

f 2
r

f 3
r

f n
r

xc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

f 1
h 0 0 0 0
0 f 2

h 0 0 0
0 0 f 3

h 0 0
0 0 0 f n

h 0
1 1 1 1 1

⎤

⎥

⎥

⎥

⎥

⎦

·

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

K1 0 0 0 0
0 K2 0 0 0
0 0 K3 0 0
0 0 0 K4 0
0 0 0 0 Kc

⎤

⎥

⎥

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

f 1
m

f 2
m

f 3
m

f 4
m

xr
c

⎤

⎥

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎢

⎢

⎣

f 1
r

f 2
r

f 3
r

f n
r

xc

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

,

56 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 9

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1
k

y2
k

y3
k

y4
k

y5
k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

f 1
r

f 2
r

f 3
r

f 4
r

xc

⎤

⎥

⎥

⎥

⎥

⎦

.

xc is a real execution time and xr
c is a reference execution time.

Thus

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1
k+1

x2
k+1

x3
k+1

x4
k+1

x5
k+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Λ
f 1
m

f 2
m

f 1
m

f 3
m

f 1
m

f 4
m

f 1
m

0

f 1
m

f 2
m

Λ
f 2
m

f 3
m

f 2
m

f 4
m

f 2
m

0

f 1
m

f 3
m

f 2
m

f 3
m

Λ
f 3
m

f 4
m

f 3
m

0

f 1
m

f 4
m

f 2
m

f 4
m

f 3
m

f 4
m

Λ
f 4
m

0

c1 c2 c3 c4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f 1
r

f 2
r

f 3
r

f n
r

xc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

K1 f 1
h (f 1

m − f 1
r)

K2 f 2
h (f 2

m − f 2
r)

K3 f 3
h (f 3

m − f 3
r)

K4 f 4
h (f 4

m − f 4
r)

K1(f 1
m − f 1

r) + K2(f 2
m − f 2

r)+

K3(f 3
m − f 3

r) + K4(f 4
m − f 4

r)+

Kc(xr
c − xr)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y1
k

y2
k

y3
k

y4
k

y5
k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

f 1
r

f 2
r

f 3
r

f 4
r

xc

⎤

⎥

⎥

⎥

⎥

⎦

.

57
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

10 Will-be-set-by-IN-TECH

4. Real-Time Distributed System

This section exposes the RTDS used for implementation purposes, it is a 2-DOF helicopter
prototype [13]. The following section briefly introduces and describes this 2-DOF helicopter
prototype and its controller design.

The case of study is a prototype of a helicopter system integrated to a CanBus network with
two propellers that are driven by DC motors. The front propeller controls the elevation of
the helicopter nose about the pitch axis (θ) and the back propeller controls the side to side
motions of the helicopter about the yaw axis (ψ). The pitch and yaw angles are measured using
high-resolution encoders. A brief description of the helicopter model is presented, however
detailed information can be found in [13]. The dynamics of the helicopter is developed
based on kinetic and potential energy, this model is used to design a position controller. The
helicopter centre of mass is described in xyz cartesian coordinates with respect the pitch and
yaw angles, see Fig. 3.

Figure 3. Dynamics of the 2DOF helicopter

The Euler-Lagrange equations are used to obtain nonlinear equations of motion for the 2 DOF
Helicopter, which are used to derive the linear state model, and subsequently, to design the
position controller. As the helicopter represents a non-linear system, it is required to perform
a linearization around a point, this linearization point is

[

θ0 = 0, ψ0 = 0, θ̇0 = 0, ψ̇0 = 0
]

.

From this, the linearization of the motion equation is obtained as follows:
(

Jeq,p + mhelil
2
cm

)

θ̈ = KppVm,p + KpyVm,y − Bp θ̇ − mheliglcm, (3)

(

Jeq,y + mhelil
2
cm

)

ψ̈ = KppVm,y + KypVm,p − Bpψ̇ − 2mhelil
2
cmθψ̇θ̇. (4)

Substituing x =
[

θ, ψ, θ̇, ψ̇
]
′

in (3) and (4) and solving for ẋ the following linear model of state
space is obtained:

58 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 11

ẋ =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 0 −

Bp

Jeq,p+mheli l2
cm

0

0 0 0 −
By

Jeq,y+mheli l2
cm

⎤

⎥

⎥

⎥

⎥

⎦

x +

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0

Kpp

Jeq,p+mheli l2
cm

Kpy

Jeq,p+mheli l2
cm

−
Kyp

Jeq,y+mheli l2
cm

−
Kyy

Jeq,y+mheli l2
cm

⎤

⎥

⎥

⎥

⎥

⎦

u,

y =

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎦

x.

where Kpp, Kyy, Kpy, Kyp are the torque-constants used to obtain coupled torques acting on
the pitch and yaw axes; for the state space model the input u and output y vectors are u =
[

Vm,p, Vm,y
]′

and y = [x1, x2, x3, x4]
′

, Vmp is the input pitch motor voltage and Vmy is the input
yaw motor voltage. Notice that, since the output matrix is the identity matrix, all states are
measurable.

The model makes use of several Simulink and Matlab programs to develop the helicopter
basic dynamics, by running a simulation of the closed-loop response, using the position
controller. Regarding control issues, two controllers are designed: a FF-LQR and a
FF+LQR+I. The FF+LQR regulates the pitch axis of the helicopter, using feed-forward (FF) and
proportional-velocity (PV) compensators, while the yaw axis only makes use of a PV control.
The FF+LQR+I controller uses an integrator in the feedback loop to reduce the steady-state
error, by a feed-forward and proportional-integral-velocity (PIV) algorithms to regulate the
pitch, and only a PIV to control the yaw angle. This work focuses on the FF+LQR+I controller,
as follows. The FF+LQR control converges (θ, ψ, θ̇, ψ̇) → (θd, ψd, θ̇d, ψ̇d) where θd is the desired
pitch angle and ψd is the desired yaw angle, such that:

[

up

uy

]

=

[

K f f
mheli glcmcosθd

Kpp

0

]

.

The addition of an integrator requires to introduce the states ẋ5 = θ and ẋ6 = ψ, so the linear
state-space model is augmented as:

ẋ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0 0 0
0 0 0 1 0 0
0 0 −

Bp

Jeq,p+mheli l2
cm

0 0 0

0 0 0 −
By

Jeq,y+mheli l2
cm

0 0

1 0 0 0 0 0
0 1 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0
0 0

Kpp

Jeq,p+mheli l2
cm

Kpy

Jeq,p+mheli l2
cm

−
Kyp

Jeq,y+mheli l2
cm

−
Kyy

Jeq,y+mheli l2
cm

0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

u,

y =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x.

59
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

12 Will-be-set-by-IN-TECH

Using the adequate Q and R weighting matrices, the control gain is as follows:

k =

[

18.9 1.98 7.48 1.53 7.03 0.77
−2.22 19.4 −0.45 11.9 −0.77 7.03

]

.

Thus, the FF+LQR+I controller is:
[

up

uy

]

=

[

K f f
mheli glcmcosθd

Kpp

0

]

−

[

k11 k12 k13 k14
k21 k22 k23 k24

]

⎡

⎢

⎢

⎣

θ − θd

ψ − ψd

θ̇
ψ̇

⎤

⎥

⎥

⎦

−

⎡

⎢

⎣

k15(θ − θd) +
∫

k16(ψ − ψd)

k25(θ − θd) +
∫

k26(ψ − ψd)

⎤

⎥

⎦
.

5. Experimental approach

In order to study the impact of network utilization on closed control loop, the 2-DOF
Helicopter control model is built as a NCS. Several nodes are connected through a common
communication network. The experiment focuses on network scheduling, and the main
objective is to balance the amount of data sent through the network, in order to avoid latency
and under sampling.

The NCS for the experiment consists of 8 processors. These real-time kernel processors and
the network are simulated using TrueTime [2, 12] based on Matlab/Simulink. The network
used is a CSMA/AMP(CAN) with a transmission rate of 80000 bits/second, and not data loss.
The NCS model is shown in Fig. 4.

Figure 4. Networked Control System to analyze frequency transmission over the network

Four sensor nodes execute periodic tasks to sense control signals, as well as other additional
periodic tasks. Each task has a period pi and time consumption ci (Fig. 4). The sensed

60 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 13

control signals are x = (θ, ψ, θ̇, ψ̇). This model has a controller node, depicted on the left
side (Fig. 4). This controller takes the control law from the FF+LQR module by means
of a task, which activates by event. The time consumption of the controller task is the
maximum average time it takes to compute the control law. The controller node uses the
values from sensors, and sends control outputs up and uy, that correspond to the pitch and
yaw voltages. Two actuator nodes, located on the bottom right corner (Fig. 4), receive signals
from the controller node. Finally, the scheduler node, located on the top right corner (Fig. 4),
organizes the activity of the other seven nodes, and it is responsible for periodic allocation
bandwidth, used by these nodes. Each node initializes, specifying the number of inputs and
outputs of the respective TrueTime kernel block, defining a scheduling policy, and creating
periodic tasks for the simulation. These tasks involve parameters about the periodic times
and the consumption times. The task periodic times define the time interval between tasks,
whereas the consumption times refer to the execution time of the task. Fig. 5 shows the
2-DOF Helicopter model, with a RTDS, where feedback control loop is closed through a
communication network.

Figure 5. Networked control integrated into closed control loop of the 2DOF Helicopter

Changes on the real-time task parameters of the RTDS commonly impact on network
utilization, and therefore, on the control performance [8, 9]. The problem to tackle, thus, is
to find a proper way to schedule the common communication network of the RTDS, based
on managing an accurate sampling period, capable of keeping both, the network load and
required integrated performance.

A criteria to quantify the system’s quality performance is the integral of the absolute value of
the error (commonly expressed as IAE) is used:

IAE =
∫ t f

t0

|e(t)| dt ≈
k f

∑
k=k0

|r(kh)− y(kh)| (5)

where r(t) is reference signal or setpoint, y(t) is system output signal, t0(k0) and t f (k f) are
the initial and final continuous(discrete) times of evaluation period [15].

61
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

14 Will-be-set-by-IN-TECH

5.1. Numerical simulations

In this section numerical simulations using the Network scheduling strategy based on
Frequency Transmission are exposed. The network scheduling strategy dynamically adjusts
the frequencies, considering the participation of several nodes of the NCS. These scheduling
approach shows a way to manage the network resources, especially with a limited network
bandwidth. These techniques avoid network delays during transmission. Numerical
simulations shows that the dynamical changes of this strategy improve the RTDS response
under fault scenarios.

The relationship amongst IAE and sampling periods of the primary sensing tasks is shown in
Fig. (6). When the network transmits data without overloading or under sampling the output
signals of pitch and yaw angles are similar to induced reference signal, so that the value of IAE
is small. In contrast, when the transmission rate of sensor task set exceeds the upper bound
data transmission rate the system becomes unstable, IAE increases accordingly.

Figure 6. Values of the IAE using different sampling periods

The sensing periods was fixed in 10 miliseconds, sampling during the time simulation with
this rate. In a fault-free scenario the pitch and yaw singnals track the reference signal, this
behaviour is presented in Fig. 7

It is assumed that in a fault scenario the change in periods of tasks may be produced, this
induces a network utilization that possibily can not be supported by the bandwidth or perhaps
stops data tranmission continuity. The effect of a fault over the RTDS is shown in the Fig. 8.
In this case the periods of sensor tasks produce a low sampling resulting in loss of control.

For the particular case study was made off-line analysis of the frequencies with which can be
transmitted without increasing the value of the IAE for the sensing tasks. These ranges serve
as parameters for the calculation of new transmission frequencies using the proposed model.

When fault occurs a signal is transmitted to the scheduler, this signal contains the id of sensor
with fail and the parameters of the tasks on execution before the failure. The scheduler uses
the frequency range and time of execution of the sensor tasks that has just entered, scheduler
knows frequencies ranges of the tasks that continue without fail. This information feeds
frequency transition model to compute a new frequency transmission range through a LQR

62 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 15

Figure 7. Pitch and yaw signals in a fault-free scenario

0 5 10 15 20 25

-40

-30

-20

-10

0

10

20

Time

D
eg

re
e

Pitch Signal

0 5 10 15 20 25
-15

-10

-5

0

5

10

15

20

Time

D
eg

re
e

Yaw Signal

Figure 8. Pitch and yaw signals in a fault scenario

control scheme, new frequencies are assigned to the sensor nodes in which the task period is
changed therefore the effect of fault scenario is minimized balancing the amount of data sent
over the network.

Numerical simulations were performed using the values of the maximum, minimum, and real
frequencies besides the computational time, the values used for the sensor nodes are shown
in the table 1.

Figure 9 shows the frequencies controlled, this control bounds the frequency into a
schedulability region where the IAE is low.

Figure 10 shows system behavior during 30 seconds using frequency transition model.
Nominal frequencies start in schedulability region during 8 secs, system transmits with this

63
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

16 Will-be-set-by-IN-TECH

Node Max. Freq. Min. Freq. Real Freq. Consume
1 70 280 40 0.002
2 50 260 250 0.002
3 50 250 100 0.002
4 55 300 50 0.002

Table 1. Maximum, minimum, and real frequencies besides the computational time

Figure 9. Frequencies bounded into a schedulability region usign a frequency transmission controller

rate. In second 9 fault appears with a change of context, system transmits with this frequency
until second 18. In second 19 frequency transition model change frequencies of backup tasks.

0 5 10 15 20 25 30
-50

0

50

Time

D
e
g
re

e

Pitch signal

0 5 10 15 20 25 30
-20

0

20

40

60

Time

D
e
g
re

e

Yaw signal

Figure 10. Pitch and yaw signals in a fault scenario using frequency transmission model

64 Numerical Simulation – From Theory to Industry

Issues on Communication Network Control System Based Upon Scheduling Strategy Using Numerical Simulations 17

Figure 11 shows the computer network as well

Figure 11. Sensing activiity and the related use of the computer networking using the Truetime toolbox

6. Conclusions

This work show a study of network scheduling strategy using numerical simulations. A
simulation of a particular RTDS, a 2-DOF helicopter, is built using TrueTime as real-time
simulation tool. A network scheduling strategy based on changes of frequency transmission
rates is implemented in order to expose the advantages of using dynamic scheduling in an
ad-hoc implementation for the network of a NCS. The use of numerical simulations aid to
explore several considerations in design and analysis of a NCS.

Author details

Oscar Esquivel-Flores, Héctor Benítez-Pérez and Jorge Ortega-Arjona
Universidad Nacional Autónoma de México, México

7. References

[1] Cervin, A., Henriksson, D., Lincoln, B., Eker, J. & Årzen, K.-E. [2003]. How does
control timing affect performance? analysis and simulation of timing using jitterbug
and truetime, Control Systems, IEEE 23(3): 16 – 30.

[2] Cervin, A., Ohlin, M. & Henriksson, D. [2007]. Simulation of networked control systems
using truetime, Proc. 3rd International Workshop on Networked Control Systems: Tolerant to
Faults, Nancy, France.

[3] Chen, H., Luo, W., Wang, W. & Xiang, J. [2011]. A novel real-time fault-tolerant
scheduling algorithm based on distributed control systems, Computer Science and Service
System (CSSS), 2011 International Conference on, pp. 80 –83.

65
Issues on Communication Network Control System Based

Upon Scheduling Strategy Using Numerical Simulations

18 Will-be-set-by-IN-TECH

[4] Esquivel-Flores, O., Benítez-Pérez, H., Méndez Monroy, E. & Menéndez, A. [2010].
Efficient overloading techniques for primary-backup scheduling in real-time systems,
ICI Express Letters Part B: Applications 1(1): 93–98.

[5] Gupta, R. & Chow, M.-Y. [2010]. Networked control system: Overview and research
trends, Industrial Electronics, IEEE Transactions on 57(7): 2527 –2535.

[6] Henriksson, D., Cervin, A., Andersson, M. & Årzén, K.-E. [2006]. Truetime: Simulation
of networked computer control systems, Proceedings of the 2nd IFAC Conference on Analysis
and Design of Hybrid Systems, Alghero, Italy.

[7] Henriksson, D., Redell, O., El-Khoury, J., Cervin, A., Törngren, M. & Årzén, K.-E. [2006].
Tools for real-time control systems co-design, in H. Hansson (ed.), ARTES – A network for
Real-Time research and graduate Education in Sweden 1997–2006, Department of Information
Technology, Uppsala University, Sweden.

[8] Lian, F.-L., Moyne, J. & Tilbury, D. [2001]. Time delay modeling and sample time
selection for networked control systems. International Mechanical Engineering Congress and
Exposition, Proceedings of ASME-DSC, Vol. XX.

[9] Lian, F.-L., Moyne, J. & Tilbury, D. [2002]. Network design consideration for distributed
control systems, Control Systems Technology, IEEE Transactions on 10(2): 297 –307.

[10] Lian, F.-L., Yook, J., Otanez, P., Tilbury, D. & Moyne, J. [2003]. Design of sampling and
transmission rates for achieving control and communication performance in networked
agent systems, American Control Conference 2003, Proceedings of , Vol. 4, pp. 3329 – 3334.

[11] Liu, C. L. & Layland, J. W. [1973]. Scheduling algorithms for multiprogramming in a
hard-real-time environment, J. ACM 20(1): 46–61.

[12] Ohlin, M., Henriksson, D. & Cervin, A. [2007]. TRUETIME 1.5 Reference Manual.
[13] Quanser [2006]. Quanser 2 DOF Helicopter. User and Control Manual, Quanser.

Innovate-Educate.
[14] Tipsuwan, Y. & Chow, M.-Y. [2003]. Control methodologies in networked control

systems, Control Engineering Practice 11(10): 1099 – 1111.
[15] Xia, F. & Sun, Y. [2008]. Control and Scheduling Codesign. Flexible Resource Management in

Real-Time Control Systems, Springer.

66 Numerical Simulation – From Theory to Industry

