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1. Introduction 

Mammalian fertilization involves a concerted interplay between the male and female 

gametes that ultimately results in the creation of new life. However, despite the 

fundamental importance of gamete interaction, the precise molecular mechanisms that 

underpin and regulate this complex event remain to be fully elucidated. Such knowledge is 

crucial in our attempts to resolve the global problems of population control and infertility. 

The current world population has surpassed 7 billion people, and continues to grow at a 

rate of approximately 200 000 each day (UN, 2009). Alarmingly, the majority of this 

population growth is occurring in developing nations, and is driven in part by an unmet 

need for effective and accessible contraceptive technologies. Indeed, a recent study by the 

Global Health Council revealed that of the 205 million pregnancies recorded worldwide 

each year, 60-80 million of these are deemed to be unplanned or unwanted (Guttmacher, 

2007). These concerning statistics highlight the inadequacies of our current armory of 

contraceptives and demonstrate the need for the development of novel methods for fertility 

control. By virtue of its specificity and its ability to be suppressed in both males and females, 

sperm interaction with the outer vestments of the oocyte, a structure known as the zona 

pellucida (ZP), represents an attractive target for the development of novel contraceptives. 

However, the realization of such technologies is predicated on a thorough understanding of 

the molecular mechanisms that underpin this intricate binding event.  

Such knowledge will also contribute to the development of novel diagnostic and therapeutic 

strategies for the paradoxical increase in male infertility that is being experienced by Western 

countries. Indeed, male infertility has become a distressingly common condition affecting at 

least 1 in 20 men of reproductive age (McLachlan and de Kretser, 2001). In a vast majority 
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(>80%) of infertile patients sufficient numbers of spermatozoa are produced to achieve 

fertilization, however the functionality of these cells has become compromised, making 

defective sperm function the largest single defined cause of human infertility (Hull, et al., 1985, 

Ombelet, et al., 1997). Biologically, a major cause of impaired sperm function is a failure of 

these cells to recognize the surface of the egg. Defective sperm- zona pellucida interactions is 

thus a major cause of fertilization failure in vitro and bioassays of sperm- zona pellucida 

interaction are able to predict male infertility in vivo with great accuracy (Arslan, et al., 2006).  

In this review we explore our current understanding of the mechanisms that are responsible 

for sperm- zona pellucida interactions. Consideration is given to well-established paradigms 

of receptor-ligand binding with an emphasis on the emerging evidence for models involving 

the participation of multimeric receptor complexes and the maturation events that promote 

their assembly.  

2. Sperm-zona pellucida interactions 

2.1. The mammalian zona pellucida 

The zona pellucida (ZP) is a porous extracellular matrix that surrounds the oocyte (Dunbar, 

et al., 1994, Wassarman and Litscher, 2008). In the most widely accepted models of gamete 

interaction, the zona pellucida plays a critical role in tethering spermatozoa, and inducing 

the release of their acrosomal contents (Bleil and Wassarman, 1983). Binding to the zona 

pellucida is a highly selective and carefully regulated process that serves as an inter-species 

barrier to fertilization by preventing adherence of non-homologous sperm to eggs (Hardy 

and Garbers, 1994).  

Although all mammalian eggs are enclosed in a zona pellucida matrix, it’s thickness (~1-

25μm) and protein content (~1-10ng) varies considerably for eggs derived from different 

species (Wassarman, 1988). In mice, the zona pellucida comprises three major sulfated 

glycoproteins designated ZP1 (200kDa), ZP2 (120kDa) and ZP3 (83kDa). Current evidence 

suggests that these proteins assemble into a non-covalently linked structure comprising 

ZP2-ZP3 dimers that polymerize into filaments and are cross-linked by ZP1 (Greve and 

Wassarman, 1985, Wassarman and Mortillo, 1991). In addition to orthologues of the three 

mouse zona pellucida proteins [hZP1 (100kDa), hZP2 (75kDa) and hZP3 (55kDa)], the 

human zona pellucida comprises a fourth glycoprotein, hZP4 (65kDa) (Bauskin, et al., 1999, 

Lefievre, et al., 2004), which is thought to be dysfunctional in the mouse (Lefievre, et al., 

2004). The biological significance of the increased complexity in the zona pellucida of 

humans awaits further investigation. Given that the mouse remains the most widely studied 

model for understanding sperm- zona pellucida interaction, this species will serve as the 

focus for the following discussion. 

2.2. The biochemistry of sperm-zona pellucida recognition 

Sperm- zona pellucida interaction encompasses a complex sequence of events that relies on 

each gamete having achieved an appropriate level of maturity. Spermatozoa that approach 
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the oocyte have undergone a behavioral and functional reprogramming event within the 

female reproductive tract, termed capacitation (see section 2.3.1.3), which ultimately endows 

the cells with the competence for fertilization. Notwithstanding recent evidence to the 

balance of evidence favors a model for sperm- zona pellucida interaction that involves three 

distinct stages: the first comprises primary binding of acrosome-intact spermatozoa to the 

zona pellucida, this is then followed by secondary binding of acrosome-reacted 

spermatozoa to the zona pellucida, and finally penetration of the acrosome-reacted sperm 

through the zona pellucida and into the perivitelline space (Florman and Storey, 1982, Inoue 

and Wolf, 1975, Saling, et al., 1979, Swenson and Dunbar, 1982).  

 

Figure 1. Putative models of sperm-zona pellucida binding. (I) The glycan model proposes that sperm 

binding is initiated via O-linked glycans that are attached at residues Ser332 and Ser334 of ZP3. After 

fertilization, these residues are deglycosylated thereby preventing further sperm adhesion. (ii) The 

supramolecular structure model is based on the premise that the physical structure of the matrix 

formed by the three zona pellucida glycoproteins is critical for the binding of sperm. Following 

fertilization, ZP2 is processed in such a way that it prevents further sperm adhesion. (iii) The hybrid 

model incorporates aspects of both the glycan model and the supramolecular model and proposes that 

O-linked glycosylation is a critical determinant of sperm recognition. However, the key O-glycans 

reside on residues other than Ser332 and Ser334. Furthermore, the modification of ZP2 that accompanies 

fertilization renders these O-glycans inaccessible to sperm. (iv) In contrast, the domain-specific model 

proposes that sperm bind with a variety of N-linked glycans attached to ZP3 and/or the peptide 

backbone of the glycoprotein depending upon its glycosylation status. The concepts proposed in this 

figure are adapted from those of Visconti and Florman, 2010 and Clark, 2010. 
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The initial stages of primary binding involve a relatively loose, non-species specific 

attachment that serves to tether spermatozoa to the surface of the oocyte (Schmell and 

Gulyas, 1980, Swenson and Dunbar, 1982). This weak binding is rapidly followed (within 10 

minutes) by an irreversible tight binding event (Bleil and Wassarman, 1983, Hartmann, et 

al., 1972) that resists physical manipulation (Hartmann, et al., 1972, Inoue and Wolf, 1975) 

and is commonly species-specific. In the mouse, this latter event appears to involve binding 

of the spermatozoon to ZP3. This model emerged from early experiments performed by 

Bleil and Wassarman using crudely purified native zona pellucida that demonstrated that 

mouse ZP3 is responsible for acting as both a primary sperm ligand, preferentially binding 

the plasma membrane overlying the acrosome of acrosome-intact sperm, as well as an 

inducer of the acrosome reaction (Bleil and Wassarman, 1980a, Bleil and Wassarman, 1980b, 

Bleil and Wassarman, 1986, Vazquez, et al., 1989, Yanagimachi, 1994b). Purified mouse ZP3 

was also shown to competitively inhibit binding of spermatozoa to homologous eggs in vitro 

(Bleil and Wassarman, 1980a, Endo, et al., 1987, Florman, et al., 1984, Florman and 

Wassarman, 1985, Leyton and Saling, 1989). The bioactive component of ZP3 responsible for 

mediation of sperm binding was initially traced to specific O-linked carbohydrate moieties 

that decorate the protein (Florman and Wassarman, 1985, Litscher, et al., 1995). In support of 

this model, complete deglycosylation, or selective removal of O-linked oligosaccharides 

eliminated the ability of ZP3 to interact with spermatozoa (Florman and Wassarman, 1985). 

In addition, the O-linked oligosaccharides released by these procedures were able to bind 

directly to spermatozoa and competitively inhibit their ability to adhere to the zona 

pellucida (Florman and Wassarman, 1985). Furthermore, genetically engineered chimeric 

mouse oocytes expressing human ZP3, acquire the same O-linked glycans as mouse ZP3 

and bind mouse, rather than human, spermatozoa (Rankin et al., 1996; Hoodbhoy and Dean, 

2004). Mutagenesis studies of ZP3 suggested that that the key O-linked adhesion glycans for 

sperm are attached to either Ser332 and/or Ser334 residues (Chen, et al., 1998) located within 

the C-terminal portion of the ZP3 polypeptide chain. 

Notwithstanding such compelling evidence in favor of this classical model it has 

increasingly been drawn into question by a number of recent observations from genetically 

manipulated mouse models. For instance, female mice bearing targeted deletions of key 

glycosyltransferase enzymes responsible for the addition of O-linked glycans produce 

oocytes that display normal sperm binding characteristics (Ellies, et al., 1998). Furthermore, 

in a series of elegant experiments, transgenic mice have been produced in which the 

putative sperm binding residues were mutated (Ser329, 333, 334→  Ala, Ser331→  Val, Ser332→  Gly) 

to eliminate potential O-linked glycosylation sites at Ser332 and Ser334 (Gahlay et al. 2010). 

Females from these transgenic lines were shown to retain their fertility both in vitro and in 

vivo, and their oocytes maintained the ability to bind the same number of sperm as wild 

type mice, strongly suggesting that neither Ser332 nor Ser334 are critical for sperm- zona 

pellucida recognition. The latter findings are perhaps best explained by detailed 

glycoproteomic analyses that have revealed Ser332 and Ser334 are in fact unlikely to be 

glycosylated in mouse ZP3 (Boja et al. 2003; Chalabi et al. 2006).  
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These collective findings have led to the proposal of a number of alternative models of 

sperm- zona pellucida adhesion (Fig. 1), including the: (i) original glycan model that 

proposes the importance of O-linked glycosylation at Ser332 and Ser334; (ii) a supramolecular 

structure model in which the sperm binding domain is formed by the complex of the three  

major zona pellucida glycoproteins and regulated by the cleavage  status of ZP2 (Rankin et 

al. 2003), (iii) a hybrid model that incorporates elements of both former models by 

proposing that sperm bind to an O-glycan that is conjugated to ZP3 at a site other than Ser332 

or Ser334 (Visconti and Florman, 2010) and that sperm access to this glycan is regulated by the 

proteolytic cleavage state of ZP2; (iv) domain specific model that envisages a dual adhesion 

system in which sperm protein(s) interact with the glycans and/or the protein backbone of 

ZP3 depending on its glycosylation state (Clark, 2011) and (v) a novel model in which 

gamete recognition is able to be resolved into at least two distinct binding events, the first of 

which involves adherence to oviductal glycoproteins that are peripherally associated with 

the egg coat prior to engaging with a ZP3-dependent ligand (Lyng and Shur, 2009) The 

evidence in support of each of these models of gamete interaction has been reviewed in 

depth previously (Dean 2004; Clark 2010, 2011; Visconti and Florman, 2010). What is clear 

from these studies is that the initiation of gamete interaction is not mediated by a simple 

lock and key mechanism involving a single receptor-ligand interaction. Rather it is likely 

that sperm engage in multiple binding events with a variety of ligands within the zona 

pellucida matrix. An advantage of this complex adhesion system is that it would enhance 

the opportunities of sperm to bind to the oocyte and thus maximize the chance of 

fertilization. It may also account for the myriad of sperm receptors that have been 

implicated in this process (see below). 

2.3. Sperm receptor molecules involved in zona pellucida interaction  

2.3.1. Acquisition of the ability to engage in sperm-zona pellucida interactions 

Prior to interaction with the egg, the sperm cell must undergo a complex, multifaceted 

process of functional maturation (Fig. 2). This process begins in the testes where 

spermatogonial stem cells are dramatically remodeled during spermatogenesis to produce 

one of the most highly differentiated and specialized cells in the body, the spermatozoon. 

After their initial morphological differentiation, these cells are released from the germinal 

epithelium of the testes in a functionally immature state, incapable of movement or any of 

the complex array of cellular interactions that are required for fertilization (Hermo, et al., 

2010a). In all mammalian species, the acquisition of functional competence occurs 

progressively during the cells descent through the epididymis, a long convoluted tubule 

that connects the testis to the vas deferens (Fig. 2B). A remarkable feature of epididymal 

maturation is that this process is driven entirely by extrinsic factors in the complete absence 

of nuclear gene transcription and significant protein translation within the spermatozoa 

(Engel, et al., 1973). The surface and intracellular changes associated with epididymal 

maturation prepare the spermatozoa for their final phase of maturation within the female 

reproductive tract, whereby they realize their potential to bind to the zona pellucida and 

ultimately fertilize the egg (Bailey, 2010, Fraser, 2010, Yanagimachi, 1994a).  
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2.3.1.1. Spermatogenesis 

Spermatogenesis describes the process by which spermatozoa develop from 

undifferentiated germ cells within the seminiferous tubules of the testis. It is characterized 

by three functional stages: proliferation, meiosis and metamorphosis. During the 

proliferation phase, spermatogonial germ cells undergo several mitotic divisions in order to 

renew themselves in addition to producing spermatocytes (Brinster, 2002, de Rooij, 2001, 

Dym, 1994, Oatley and Brinster, 2006). These cells then undergo two meiotic divisions to 

form haploid spermatids. The latter then develop into spermatozoa via an extremely 

complex process of cytodifferentiation and metamorphosis. This includes structural 

modifications to the shape of their nucleus, compaction of the nuclear chromatin, formation 

of an acrosomal vesicle and establishment of a flagellum allowing for the subsequent  

 

Figure 2. Acquisition of spermatozoa’s ability to engage in interaction with the oocyte. (A) 

During spermatogenesis, primordial germ cells undergo several phases of mitotic and meiotic 

divisions in order to produce morphologically mature but functionally incompetent spermatozoa. 

Of particular importance is the process of spermiogensis, whereby spermatids undergo a process of 

cytodifferentiation that culminates in the production of  spermatozoa. In the course of this dramatic 

transformation an acrosomal vesicle is formed in the anterior region of the sperm head and a 

flagellum develops posteriorly. The plasma membrane is also remodeled to produce zona pellucida 

(ZP) and hyaluronic acid (HA) binding sites. (B) Upon leaving the testis, spermatozoa traverse the 

epididymis and acquire the ability for forward progressive movement and to adhere to the zona 

pellucida surrounding the oocyte. These changes occur as a result of the reorganization of specific 

lipids and proteins. (C) However, it is not until the spermatozoa undergo a final phase of 

maturation termed ‘capacitation’ in the female reproductive tract that they realize the potential for 

zona pellucida interaction via the induction of hyperactivated motility along with the sequential 

loss of decapacitation factors (DFs), formation of membrane rafts and activation of key signaling 

cascades.  
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development of motility. The latter series of modifications that produce terminally 

differentiated spermatozoa from spermatids is referred to as spermiogenesis. Of particular 

importance to fertilization, is the formation of the acrosome during this stage. As seen by 

light microscopy, acrosomal development begins with the production of small proacrosome 

granules derived from the Golgi apparatus that lies adjacent to the early spermatid nucleus. 

These subsequently fuse together to form the acrosome, a large secretory vesicle  that 

overlies the nucleus (Leblond and Clermont, 1952). There is also evidence to suggest that, in 

addition to the Golgi apparatus, the plasma membrane of the cell and endocytotic 

trafficking may also play a fundamental role in the formation of the this exocytotic vesicle 

(Ramalho-Santos, et al., 2001, West and Willison, 1996). Once formed, the acrosome remains 

associated with the nucleus of the spermatid, and subsequently the spermatozoa for the 

remainder of its life, and is of critical importance during fertilization due to its ability to aid 

in the penetration of the zona pellucida surrounding the ovulated oocyte. This function is, in 

turn, attributed to the hydrolytic enzymes enclosed within the acrosome. Notwithstanding 

recent evidence to the contrary, it is widely held that the release of these enzymes occurs 

upon engagement of sperm binding to the zona pellucida and facilitates localized   digestion 

of the zona matrix, thereby facilitating sperm penetration through this barrier and providing 

access to the oocyte. The acrosomal enzymes are mostly derived from the lysosome, 

although several are unique to this organelle (Tulsiani, et al., 1998). In general terms, the 

acrosome can be divided into compartments, the first of which contains soluble proteins 

such as didpetididyl peptidase II and cystein-rich secretory protein 2 (Hardy, et al., 1991). 

The second compartment is known as the acrosomal matrix and contains the insoluble 

fraction of the enzymes including apexin (Kim, et al., 2001, Noland, et al., 1994, Westbrook-

Case, et al., 1994), acrosin and acrosin-binding protein (Baba, et al., 1994b), and sp56, which 

has been previously implicated in the ability of sperm to interact with the zona pellucida 

(Buffone, et al., 2008a, Buffone, et al., 2008b).  

In addition to the formation of the acrosome during spermiogenesis, the sperm develop a 

cytoplasmic droplet as well as undergoing plasma membrane remodeling events. The 

cytoplasmic droplet was first described by Retzius in 1909 as being a portion of germ cell 

cytoplasm that remains attached to the neck region of elongating spermatids. In most 

species, the cytoplasmic droplet migrates along the midpiece from the neck to annulus 

and is transiently retained by spermatozoa as they migrate through the epididymis 

(Cooper and Yeung, 2003), while in others it remains on the spermatozoa in the 

epididymis and is not shed until the time of ejaculation (Cooper, 2005, Harayama, et al., 

1996, Kaplan, et al., 1984, Larsen, et al., 1980). The precise function of this residual 

cytoplasm remains elusive although its retention beyond ejaculation is associated with 

poor sperm function. For example, the cytoplasmic droplet on human spermatozoa is 

associated with poor sperm motility (Zini, et al., 1998), abnormal head and midpiece 

morphology (Gergely, et al., 1999, Gomez, et al., 1996, Huszar and Vigue, 1993), lower 

fertilizing capacity (Keating, et al., 1997) and reduced zona pellucida binding (Ergur, et 

al., 2002, Huszar, et al., 1994, Liu and Baker, 1992). The mechanism by which these 

abnormal sperm exhibit reduced function is attributed to disturbed membrane 
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remodeling (Huszar, et al., 1997) and higher extents of lipid peroxidation (Aitken, et al., 

1994, Huszar, et al., 1994, Ollero, et al., 2000). The latter is most likely due to the high 

levels of ROS produced by the cytoplasmic droplet itself (Aitken, et al., 1994, Gil-Guzman, 

et al., 2001, Gomez, et al., 1996, Huszar and Vigue, 1993, Ollero, et al., 2000), combined 

with the enriched polyunsaturated fatty acids derived from the membrane of the droplet 

(Huszar and Vigue, 1993, Ollero, et al., 2000). The plasma membrane remodeling event 

involves the formation of zona pellucida binding sites via protein transport, which is 

thought to be mediated by the molecular chaperone, HSPA2. In agreement with the 

observations discussed above, immature human sperm that fail to express HSPA2 display 

cytoplasmic retention and reduced zona pellucida binding (Huszar, et al., 2000). The 

sperm also develop the machinery necessary for functional motility during 

spermiogenesis. As the acrosome grows at one pole of the nuclear surface of round 

spermatids, paired centrioles migrate to the opposite pole where they initiate the 

formation of the flagellum. The flagellum consists of a neck piece, a mid piece, a principle 

piece and an endpiece (Fawcett, 1975, Katz, 1991). The motility apparatus of the flagellum 

consists of a central axoneme of nine microtubular doublets arranges to form a cylinder 

around a central pair of single microtubules (Fawcett, 1975).  

In combination, these fundamental changes in structure and biochemisty result in terminally 

differentiated, highly polarized and morphologically mature spermatozoa. However, 

despite this level of specialization the spermatozoa that leave the testis are functionally 

incompetent, as yet unable to move forward progressively, nor interact with the zona 

pellucida and fertilize the oocyte. They must first traverse the epididymis, a highly 

convoluted tubule adjacent to the testis, during which time they undergo further 

biochemical and biophysical changes.  

2.3.1.2. Epididymal maturation 

Upon leaving the testes, the first region of the epididymis that immature sperm encounter is 

that of the caput (head). Within this region, the sperm are concentrated by a mechanism of 

resorption that rapidly removes almost all the testicular fluid/proteins that enter the 

epididymis. As they leave this environment and enter the corpus (body) epididymis, sperm 

begin to acquire their motility and fertilizing ability. These attributes continue to develop as 

the sperm move through the corpus, and reach an optimum level as they reach the cauda 

(tail) region where they are stored in a quiescent state prior to ejaculation (Fig. 2B) 

(Cornwall, 2009, Gatti, et al., 2004). Ground breaking research performed in the 1960’s and 

1970’s provided the first evidence that the epididymis played an active role for the 

epididymis in sperm development (Bedford, 1963, Bedford, 1965, Bedford, 1967, Bedford, 

1968, Orgebin-Crist, 1967a, Orgebin-Crist, 1967b, Orgebin-Crist, 1968, Orgebin-Crist, 1969). 

Most importantly, it was discovered that if sperm were held in the testis via ligation of the 

epididymal duct, they were unable to develop the ability to fertilize an ovum, and as such 

their maturation is not an intrinsic property (Cooper and Orgebin-Crist, 1975, Cooper and 

Orgebin-Crist, 1977). 
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Consistent with this notion, sperm maturation within the epididymis is not under genomic 

control, since the cells enter the ductal system in a transcriptionally inactive state with limited 

biosynthetic capacity (Eddy, 2002). Any subsequent molecular changes must therefore be 

driven by the dynamic intraluminal milieu in which they are bathed as they transit the length of 

the epididymal tubule (Cooper, 1986). This epididymal microenvironment is characterized by 

dramatic sequential changes in its composition, a reflection of segment-specific gene expression 

(Dube, et al., 2007, Jelinsky, et al., 2007, Jervis and Robaire, 2001, Johnston, et al., 2007) and 

protein secretion (Dacheux, et al., 2006, Dacheux, et al., 2009, Guyonnet, et al., 2011, Nixon, et al., 

2002, Syntin, et al., 1996). The unique physiological compartments established by this activity 

are thought to have evolved to not only to support the maturation of spermatozoa, but to also to 

provide protection for the vulnerable cells during their transport and prolonged storage.  

It is well established that as sperm descend through the epididymis they acquire the potential 

for forward motility (reviewed (Amann, et al., 1993, Cooper, 1993, Moore and Akhondi, 1996, 

Soler, et al., 1994). This progressive motion not only allows the sperm to negotiate the female 

reproductive tract, but has also been suggested to play a role in penetration of the oocytes outer 

protective barriers, including the cumulus oophorous and the zone pellucida. To date, the 

mechanisms underlying the acquisition of forward motility by cauda epididymal sperm have 

not been completely elucidated. However, a number of potential contributing factors have been 

identified. On a biochemical level, proteins from caput epididymal sperm contain a greater 

number of sulfhydryl groups than disulfide bonds. Importantly, the oxidation of these 

sulfhydryl groups during epididymal transit is correlated with stabilization of flagella, as well 

as the promotion of protein tyrosine phosphorylation on specific sperm proteins involved in 

key signaling pathways (Calvin and Bedford, 1971, Cornwall, et al., 1988, Seligman, et al., 2004). 

Additionally, there is also recent evidence to suggest that sperm isolated from the caput 

epididymis possess the ability to become motile, but that this activity is suppressed through the 

action of the cannaboid receptor CNR1, which upon engagement with its ligand, t 

ennocanaboid 2-arachidonoylglcerol, suppresses the capacity for motility (Cobellis, et al., 2010). 

Furthermore, changes in the luminal environment, as well as specific post-translational 

modification to sperm proteins have been shown to affect the motility status of these cells 

during their transit through the epididymis. In relation to the former, acidification of the 

luminal contents of the epididymis work to maintain sperm in an immotile state. This is finely 

regulated by epididymal clear cells which are capable of sensing a rise in luminal pH or 

bicarbonate concentrations via the sperm specific adenylyl cyclase (SACY)-dependent rise in 

cyclic-adenosinemonophosphate (cAMP) (Pastor-Soler, et al., 2003, Shum, et al., 2009). In terms 

of post-translational modifications, proteomic analyses of sperm proteins within the epididymis 

have identified a number of potential targets affected by changes in expression, disulfide bond 

status, proteolysis and alterations such as phosphorylation (Baker, et al., 2005). Finally, 

glycolysis plays an essential role as an energy pathway to fuel forward progressive movement 

in mouse spermatozoa. This is evidenced by the observation that male mice with genetic 

ablations of the sperm-specific forms of key glycolytic enzymes (glyceraldehydes 3-phosphate 

dehydrogenase S or phosphoglycerate kinase 2) are infertile or have very low fertility 

(Danshina, et al., 2010, Miki, et al., 2004). In part this can be explained by significantly decreased 

levels of ATP production (4 to 10-times lower than wildtype sperm) resulting in poor, or 
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sluggish motility. Furthermore, the spermatogenic cell-specific type 7 hexokinase that is present 

in mouse spermatozoa undergoes cleavage of dilsulfide bonds during epididymal transit, 

resulting in increased hexokinase activity which, in turn, has been causally associated with the 

initiation of sperm motility (Nakamura, et al., 2008). This indicates that specific structural 

changes to proteins during epididymal maturation have functional consequences, improving 

sperm competence for motility, and subsequently their ability to engage in fertilization.  

In addition to the maturation of the motility apparatus, the acquisition of zona pellucida 

binding is also temporally associated with the exposure of spermatozoa to two distinct subsets 

of macromolecular structures in the epididymal lumen: the first being amorphous chaperone-

laden ‘dense bodies’ (Asquith, et al., 2005) and the second being membrane bound 

prostasome-like particles known as epididymosomes (Saez, et al., 2003). It has been suggested 

that these epididymal granules facilitate the transfer of proteins to the sperm surface during 

their transit of the organ (Asquith, et al., 2005, Saez, et al., 2003, Yano, et al., 2010). This is in 

keeping with the demonstration that biotinylated proteins are able to be transferred between 

epididymosomes and the sperm surface (Saez, et al., 2003). At present it remains to be 

determined how this transfer is mediated and the number of cargo proteins that are delivered 

to the maturing spermatozoa in this manner. Nevertheless, a number of proteins have been 

shown to be acquired by the sperm during epididymal transit. A non-exhaustive list of these 

proteins include HE5/CD52 (Kirchhoff and Hale, 1996), members of the ADAM family 

(Girouard, et al., 2011, Oh, et al., 2009), SPAM1 (Zhang and Martin-Deleon, 2003) and other 

hyaluronidases (Frenette and Sullivan, 2001, Legare, et al., 1999), macrophage migration 

inhibitory factor (MIF) (Eickhoff, et al., 2001, Frenette, et al., 2003, Girouard, et al., 2011) as well 

as a number of enzymes including aldose reductase and sorbitol dehydrogenase (Frenette, et 

al., 2004, Frenette, et al., 2006, Kobayashi, et al., 2002, Thimon, et al., 2008). Collectively these 

proteins are believed to participate in the modification of the sperm biochemistry and surface 

architecture conferring the potential to engage in oocyte interactions.  

2.3.1.3. Capacitation 

Although spermatozoa acquire the potential to fertilize an egg within the epididymis, the 

expression of this functional competence is suppressed until their release from this environment 

at the moment of ejaculation. Indeed they must first spend a period of time within the female 

reproductive tract (Austin, 1952, Chang, 1951) during which they undergo the final phase of 

post-testicular maturation, a process known as capacitation. Capacitation is characterized by a 

series of biochemical and biophysical alterations to the cell including changes in intracellular 

pH, remodeling of the cell surface architecture, changes in motility patterns and initiation of 

complex signal transduction pathways. These events have been correlated with a dramatic 

global up-regulation of tyrosine phosphorylation across a number of key proteins. The ensuing 

activation of these target proteins has, in turn, been causally linked to the initiation of 

hyperactivated motility, ability to recognize and adhere to the zona pellucida, and the ability to 

undergo acrosomal exocytosis (Nixon, et al., 2007). For the purpose of this review, focus will be 

placed on the molecular mechanisms that culminate in the ability of the sperm to interact with 

the zona matrix. Furthermore, as this is a cell-surface mediated event, discussion will be 

centered on the capacitation-associated pathways that mediate sperm surface remodeling.  
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One of the more widely accepted sequences for mammalian capacitation begins with the 

loss of surface-inhibitory factors, known as decapacitation factors. These factors mostly 

originate in the epididymis and accessory organs, and their removal from non-capacitated 

spermatozoa results in a rapid increase in their fertilizing ability (Fraser, 1984). Furthermore, 

as capacitation is a reversible process, addition of these decapacitation factors into a 

population of capacitating spermatozoa potently suppress their ability to recognize and 

fertilize an oocyte (Fraser, et al., 1990). A number of candidates with potential 

decapacitation activity have been identified including: DF glycoprotein (Fraser, 1998), 

phosphatidylethanolamine binding protein 1 (PEB1) (Gibbons, et al., 2005, Nixon, et al., 

2006), sperm antigen 36, CRISP1 and plasma membrane fatty acid binding protein (Nixon, et 

al., 2006) and NYD-SP27 (Bi, et al., 2009). Following the release of these decapacitation 

factors, spermatozoa experience a dramatic efflux of cholesterol from the plasma membrane 

(Davis, 1981). This efflux appears to be driven by active sequestration upon exposure of the 

spermatozoa to an environment rich in appropriate cholesterol sinks (Davis, et al., 1979, 

Langlais, et al., 1988, Visconti, et al., 1999), and accounts for a striking increase in membrane 

fluidity. Bovine serum albumin is commonly used within in vitro capacitating media as a 

cholesterol acceptor, although analogous acceptor(s) are believed to be present within the 

female reproductive tract. Indeed, studies of human follicular fluid have identified the 

presence high concentrations of albumin and other cholesterol sinks (Langlais, et al., 1988). 

Cholesterol efflux from the plasma membrane has also been correlated with an influx of 

bicarbonate ions (HCO3-) into the cell (Boatman and Robbins, 1991, Chen, et al., 2000, Garty 

and Salomon, 1987, Okamura, et al., 1985). In addition to its key role in initiation of critical 

signal transduction cascades, HCO3- has itself been shown to have a more direct role in 

sperm surface remodeling via stimulation of phospholipid scramblase activity (Gadella and 

Harrison, 2000, Gadella and Harrison, 2002). The ensuing random translocation of 

phospholipids between the outer and inner leaflets of the bilayer serves to disrupt the 

characteristic membrane asymmetry, (Flesch, et al., 2001a). This redistribution of 

phospholipids has been suggested to prime the sperm plasma membrane for cholesterol 

efflux, thus rendering the cell more ‘fusogenic’ and responsive to zona pellucida 

glycoproteins (Harrison and Gadella, 2005).  

A further consequence of capacitation-associated cholesterol efflux is the formation of membrane 

rafts and/or the polarized coalescence of these microdomains and their protein cargo into the 

anterior region of the sperm head, the precise location that mediate zona pellucida binding (Fig. 

3). Membrane rafts are generally defined as small, heterogeneous domains that serve to 

compartmentalize cellular processes (Pike, 2006), and regulate the distribution of membrane 

proteins, the activation of receptors and initiation of signaling cascades (Brown and London, 

1998, Brown and London, 2000, Simons and Ikonen, 1997, Simons and Toomre, 2000). Membrane 

rafts are highly stable structures due to the inflexible steroid backbone of cholesterol (Martinez-

Seara, et al., 2008) and are therefore extremely resistant to solubilization by a number of non-ionic 

detergents (Schuck, et al., 2003). As such they are often referred to as detergent-resistant 

membranes (DRMs). However despite their stability, rafts remain highly dynamic entities and 

have been observed to display considerable lateral movement in various cell types as a response 
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to physical stimuli or cellular activation events (Simons and Vaz, 2004). In sperm, membrane 

rafts have been identified by the presence of several somatic cell raft markers including GM1 

gangliosides, flotillin and proteins that have raft affinity due to the presence of 

glycosylphophatidylinositol (GPI) anchors, including CD59 and SPAM1 (Nixon, et al., 2009, 

Sleight, et al., 2005, van Gestel, et al., 2005). Notably, the spatial distribution of membrane rafts 

within the sperm membrane is dramatically influenced by the capacitation status of the cells. 

Indeed, the uniform localization of rafts characteristically observed in non-capacitated 

spermatozoa is replaced by a pattern of confinement within the peri-acrosomal region of the 

sperm head following the induction of capacitation (Boerke, et al., 2008, Nixon, et al., 2009, 

Shadan, et al., 2004). This particularly interesting finding raises the possibility that membrane 

rafts are of significance in coordinating the functional competence of spermatozoa (Bou Khalil, et 

al., 2006). In keeping with this notion, recent studies have shown isolated DRMs are capable of 

binding to the zona pellucida of homologous oocytes with a high degree of affinity and 

specificity (Bou Khalil, et al., 2006, Nixon, et al., 2009, Nixon, et al., 2011) and that these 

membrane fractions contain a number of key molecules that have been previously implicated in 

sperm-zona pellucida interactions (Bou Khalil, et al., 2006, Nixon, et al., 2009, Nixon, et al., 2011, 

Sleight, et al., 2005). Taken together, such findings encourage speculation that sperm membrane 

rafts may serve as platforms that act to spatially constrain key zona pellucida recognition 

molecules and deliver them to their site of action on the anterior region of the sperm head during 

capacitation (Nixon, et al., 2009, Nixon, et al., 2011). Consistent with this notion, elegant real time 

tracking studies have demonstrated that cholesterol efflux initiates diffusion (and possibly 

formation) of novel membrane raft-like structures containing zona-binding molecules over the 

acrosome of live spermatozoa. Furthermore, following head-to-head agglutination spermatozoa 

show contact-induced coalescence of GM1 gangliosides suggestive of a specific mechanosensitive 

response that concentrates important molecules to the appropriate site on the sperm surface to 

mediate zona binding (Jones, et al., 2010). 

In addition to stimulating the loss of cholesterol from the plasma membrane, and promoting 

aggregation of membrane rafts, the elevation of intracellular HCO3- also activates a unique 

form of soluble adenylyl cyclase (SACY), which synthesizes cAMP from adenine 

triphosphate (ATP) (Aitken, et al., 1998, White and Aitken, 1989). Calcium has also been 

shown to coordinate with bicarbonate to stimulate SACY, although the precise mechanism 

that underpins this interaction remains to be elucidated (Carlson, et al., 2007, Litvin, et al., 

2003). The importance of SACY has been demonstrated by the fact that sperm from Sacy-null 

male mice display limited motility (Esposito, et al., 2004). Furthermore, inhibition of SACY 

activity in wildtype mice results in the obstruction of capacitation-associated tyrosine 

phosphorylation and in vitro fertilization (Hess, et al., 2005). In addition to SACY, 

intracellular levels of cAMP are also regulated by cAMP phosphodiesterases (PDEs) that 

degrade cAMP to 5’-AMP (Fig. 3). The initial production of cAMP activates protein kinase A 

(PKA) through association with the regulatory subunits of the enzyme, promoting 

dissociation and activation of the catalytic subunits that in turn catalyze the 

phosphorylation of serine/threonine residues (Urner and Sakkas, 2003). Activation of PKA  
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Figure 3. Model of mammalian sperm capacitation. Cholesterol efflux during the early phases of 

capacitation increases plasma membrane fluidity, facilitating the entry of bicarbonate (HCO3-) and 

calcium ions (Ca2+) into the sperm cytosol through specific membrane channels. Cholesterol is 

preferentially lost from non-membrane raft portions of the plasma membrane, and appears to promote 

a polarized redistribution of membrane rafts to the anterior region of the sperm head. This event may 

serve to reposition key zona pellucida receptor molecules and enable their surface presentation and / or 

assembly into functional zona pellucida receptor complexes in this region of the sperm head. There is 

compelling evidence that such dramatic membrane remodeling events may be augmented by the action 

of molecular chaperones that are themselves activated during capacitation. This activation appears to be 

underpinned by a complex signaling cascade involving cross-talk between several pathways. In the 

most well characterized of these, a sperm specific form of soluble adenylyl cyclase (SACY) is activated 

by increases in intracellular bicarbonate, calcium and  pH, leading to the production of the second 

messenger cyclic AMP (cAMP). cAMP, in turn, initiates the activation of protein kinase A (PKA), which 

then simultaneously inhibits the activity of protein tyrosine phosphatases (PTP) and activates protein 

tyrosine kinases (PTK). This dual regulation results in a global increase in protein tyrosine 

phosphorylation across a myriad of proteins, including a subset of molecular chaperones, and 

culminates in the functional activation of the cell. Calcium regulated adenylyl cyclases, 

phosphodiesterases (PDE), tyrosine kinases and tyrosine phosphatases have also been implicated in 

various aspects of capacitation associated cell signaling in the spermatozoa of a number of mammalian 

species.  
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also results in the induction of tyrosine phosphorylation across a number of substrates, 

most likely through activation of an intermediary protein tyrosine kinase (PTK) and/or 

inhibition of protein tyrosine phosphatases (PTP), or both. Of the potential candidates, 

inhibitory studies have implicated the promiscuous SRC kinase-family of PTKs in driving 

the increase in phosphotyrosine content (Baker, et al., 2006), especially in human 

spermatozoa (Lawson, et al., 2008, Mitchell, et al., 2008). However, more recent work has 

demonstrated that the suppression of capacitation-associated parameters induced by SRC 

kinase inhibitors is able to be overcome by incubation of sperm in the presence of Ser/Thr 

phosphatase inhibitors. In addition, sperm from Src-null mice contained similar levels of 

capacitation-associated tyrosine phosphorylation as wild-type sperm. These data indicate 

that SRC is not directly involved in capacitation-associated changes in tyrosine 

phosphorylation in mouse spermatozoa. They also provide evidence that capacitation is 

regulated by two parallel pathways, one requiring activation of PKA and another 

involving inactivation of Ser/Thr phosphatases, such as PP2A (Krapf, et al., 2010). Other 

potential candidates include c-ras which has been identified in human sperm (Naz, et al., 

1992a), as well as c-abl which has been studied in both mouse (Baker, et al., 2009) and 

human models (Naz, 1998). It is important to note, that while the above canonical 

pathway is the primary pathway thought to induce capacitation, there is evidence to 

suggest that there is significant cross-talk with other signaling pathways. For instance, it 

has been demonstrated that a subset of the targets for capacitation associated protein 

tyrosine phosphorylation are activated by the extracellular signal-regulated kinase (ERK) 

module of the mitogen-activated protein kinase (MAPK) pathway. Interestingly,  

inhibition of several elements of this pathway results in suppression of sperm surface 

phosphotyrosine expression and a concomitant reduction in sperm-zona pellucida 

interactions (Nixon, et al., 2010).  

 Irrespective of the mechanisms, capacitation-associated tyrosine phosphorylation has 

been causally related to the induction of hyperactivated motility, increasing the ability of 

sperm to bind to the zona pellucida, priming of the cells for acrosomal exocytosis and 

ultimately enhancing their capacity to fertilize an oocyte (Leclerc, et al., 1997, Sakkas, et 

al., 2003, Urner and Sakkas, 2003, Visconti, et al., 1995b). The diversity of functions 

regulated by phosphorylation is consistent with the demonstration that this process 

occurs in a specific sequence within different compartments of the sperm cell, and is 

altered again upon binding to the zona pellucida (Sakkas, et al., 2003). In mouse 

spermatozoa, overt capacitation-associated increases in protein tyrosine phosphorylation 

have been documented in the flagellum, with principal piece phosphorylation preceding 

that of the midpiece. Several targets have been identified including aldolase A, NADH 

dehydrogenase, acrosin binding protein (sp32), proteasome subunit alpha type 6B, and 

voltage-dependent anion channel 2 among others (Arcelay, et al., 2008). In human 

spermatozoa however, this increase appears to be restricted to the principal piece, with 

evidence that both A-kinase anchor protein (AKAP) 3 and AKAP4 are targets (Ficarro, et 

al., 2003, Sakkas, et al., 2003). The tyrosine phosphorylation of proteins in the sperm 

flagellum has been causally related to the induction of hyperactivated motility (Mahony 
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and Gwathmey, 1999, Nassar, et al., 1999, Si and Okuno, 1999), a vigorous pattern of 

motility that is required for spermatozoa to penetrate through the cumulus cell layer and 

the zona pellucida in order to reach the inner membrane of the oocyte. In addition, to the 

increased phosphorylation, hyperactivation requires the alkalinization of the sperm and is 

also calcium-dependent. The calcium required for the induction of hyperactivation can be 

mobilized into sperm from the external milieu by plasma membrane channel, and can also 

be released from intracellular stores, including the redundant nuclear envelope located at 

the base of the sperm flagellum, or the acrosome (Costello, et al., 2009, Herrick, et al., 

2005, Ho and Suarez, 2003). Of particular importance in importing calcium into sperm are 

the CATSPER (cation channel, sperm associated) family of calcium channel proteins, 

which are sensitive to intracellular alkalinization, and thus are critical for capacitation 

(Kirichok, et al., 2006, Lobley, et al., 2003, Qi, et al., 2007, Quill, et al., 2001, Ren, et al., 

2001). Male mice null for each of the four individual Catsper genes have been shown to be 

infertile as they are incapable of the hyperactivated motility required for zona pellucida 

penetration (Carlson, et al., 2005, Jin, et al., 2007, Qi, et al., 2007, Quill, et al., 2001, Ren, et 

al., 2001). 

In addition to the more widely studied phosphorylation of flagellum proteins, capacitation-

associated increases in tyrosine phosphorylation have also been reported in an alternate set 

of proteins located in the sperm head (Asquith, et al., 2004, Flesch, et al., 2001b, Tesarik, et 

al., 1993, Urner, et al., 2001). Although these proteins represent only a minor proportion of 

the total pool of phosphorylation substrates in mouse spermatozoa, their importance has 

been highlighted by the observation that they are expressed on the surface of live, 

capacitated spermatozoa in a position compatible with a role in mediation of sperm-zona 

pellucida interactions (Asquith, et al., 2004, Piehler, et al., 2006). Furthermore, these 

phosphoproteins are present on virtually all sperm that are competent to adhere to the zona 

pellucida opposed to less than one quarter of sperm in the free swimming population. 

Although such findings invite speculation that a subset of proteins targeted for 

phosphotyrosine residues may directly participate  sperm-zona pellucida adhesion, this 

conclusion is at odds with the fact that pre-incubation of sperm with anti-phosphotyrosine 

antibodies has no discernible effect on their subsequent fertilizing ability (Asquith, et al., 

2004). Rather it has been suggested that, following their activation via phosphorylation, 

these proteins play an indirect role by mediating sperm surface remodeling to render cells 

competent to engage in zona pellucida adhesion (Fig. 3). In agreement with this proposal, a 

subset of phosphorylated proteins have been identified in the mouse as the molecular 

chaperone proteins heat shock protein (HSP) 60 (HSPD1) and endoplasmin (HSP90B1) 

(Asquith, et al., 2004). Such proteins have well-characterized roles in the folding and 

trafficking proteins, the assembly of multi-protein structures, and the translocation of 

proteins across membranes (Nixon, et al., 2005) In addition to mice, a similar cohort of 

molecular chaperone proteins have also been detected on the surface of sperm from other 

species including bull (Kamaruddin, et al., 2004), boar (Spinaci, et al., 2005) and human 

(Miller, et al., 1992, Naaby-Hansen and Herr, 2010), although their phosphorylation status in 

these species is less clear.  
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Maturational Phase 
Changes contributing to acquisition of zona pellucida 

binding ability
References 

Spermatogenesis  Primordial germ cells undergo multiple stages of 

mitotic and meiotic divisions, followed by a process 

of cytodifferentiation which results in a highly 

polarized cell 

 In early spermatids the Golgi apparatus is 

transformed into the acrosome 

 The flagellum is formed to provide sperm with the 

ability for forward progressive movement 

 Expression of the molecular chaperone in elongating 

spermatids is correlated with plasma membrane 

remodeling that results in the formation of zona 

pellucida and hyaluronic acid binding sites. These 

HA binding sites are thought to be responsible for the 

sperm to penetrate the cumulus cell layer 

surrounding the oocyte  

(Berruti and Paiardi, 

2011, Hermo, et al., 

2010b, Hermo, et al., 

2010c, Huszar, et al., 

2007) 

Epididymal Transit  Lipid architecture is remodeled in preparation for the 

formation of membrane rafts during capacitation 

 Protein architecture is altered. Existing proteins are 

unmasked or undergo post-translational 

modifications, or alternatively novel proteins are 

integrated into the plasma membrane via 

epididymosomes and intraluminal fluid 

 Motility machinery is matured in preparation for 

acquisition of motility 

 Upon reaching the cauda epididymis spermatozoa 

are capable of a sinusoidal movement pattern 

characterized by a symmetrical tail motion at high 

frequency and low amplitude 

 Increase in ability to recognize and interact with zona 

pellucida

(Cooper, 1986, Cooper 

and Orgebin-Crist, 

1975, Dacheux and 

Paquignon, 1980, 

Jones, 1998, Jones, et 

al., 2007) 

Capacitation  Loss of specific decapacitation factors (DFs) allows 

freshly ejaculated spermatozoa to commence 

capacitation 

 Cholesterol efflux from the plasma membrane 

increases membrane fluidity promoting lateral 

movement of integral proteins, as well as the 

formation of membrane rafts 

 Influx of HCO3- activates key signaling cascades 

whereby SACY stimulates cAMP and in turn PKA. 

This results in increased tyrosine phosphorylation of 

specific sperm proteins 

 In the tail, AKAPs become activated via this 

phosphorylation and induce a hyperactivated form of 

motility which allows the sperm to navigate through 

the oviduct to the site of ovulation.  

 Key zona pellucida recognition molecules aggregate 

to the apical region of the sperm head, using 

membrane rafts as a platform to mediate zona 

pellucida interaction

(Fraser, 1984, Jones, et 

al., 2010, Nixon, et al., 

2009, Nixon, et al., 

2011, Sleight, et al., 

2005, Suarez, 2008, 

Visconti, et al., 1995a) 

Table 1. Summary of specific biochemical- and biophysical-changes that occur during mammalian 

sperm maturation. 
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Although the precise role that these surface expressed chaperones play in preparing the 

sperm for their interaction with the oocyte remains to be established, one possibility is that 

they promote the presentation and/or assembly of oocyte receptor complex(es) on the sperm 

surface (Asquith, et al., 2004) (Fig. 3). This notion is supported by the observation that a 

subset of chaperones have been shown to be the subject of dynamic redistribution during 

capacitation, leading to their exposure on the anterior region of the sperm head (Asquith, et 

al., 2005, Dun, et al., 2011). Despite this relocation, a direct role for the chaperones in the 

mediation of sperm-zona pellucida interactions has been discounted on the basis that anti-

chaperone antibodies consistently fail to compromise sperm-zona pellucida adhesion 

(Asquith, et al., 2005, Dun, et al., 2011, Walsh, et al., 2008). The chaperones do however form 

stable interactions with a number of putative zona pellucida adhesion molecules which, as 

discussed below (see Section 2.3.2), appears to indicate that they play an indirect role in 

gamete interaction. Whether a similar role extends to molecular chaperones in the 

spermatozoa of other species, such as our own, remains somewhat more controversial. A 

study by Mitchell et al (2007) failed to localize any of the prominent chaperones to the sperm 

surface, nor secure evidence for the capacitation-associated phosphorylation of these 

chaperone proteins (Mitchell, et al., 2007). However, a more recent study by Naaby-Hansen 

and Herr (2009) demonstrated the expression of seven members from four different 

chaperone families on the surface of human spermatozoa. They also demonstrated that 

inhibition of several isoforms of HSPA2 results in decreased fertilization rates in vitro 

(Naaby-Hansen and Herr, 2010). These studies are supported by earlier work which 

suggests that the absence of HSPA2 is correlated with decreased ability of sperm to bind to 

the zona pellucida (Huszar, et al., 2007).  

2.3.2. Zona pellucida receptor candidates 

Consistent with the apparent complexity of the zona pellucida ligands to which 

spermatozoa bind, a plethora of candidates have been proposed to act as primary receptors 

capable of interacting with the carbohydrate moieties and or protein present within the zona 

pellucida matrix. In most species the list is constantly being refined as new candidates 

emerge and others are disproven through, for example, the production of knockout models 

bearing targeted deletions of the putative receptors. Consistent with the notion that primary 

sperm- zona pellucida interaction involves engagement with specific carbohydrate 

structures on ZP3, a number of the identified sperm receptors possess lectin-like affinity for 

specific sugar residues (McLeskey, et al., 1998, Topfer-Petersen, 1999, Wassarman, 1992). In 

the mouse, the most widely studied model, these receptors include, but are not limited to: β-

1,4-galatosyltransferase (GalT1) (Lopez, et al., 1985, Nixon, et al., 2001, Shur and Bennett, 

1979, Shur and Hall, 1982a), ZP3R (or sp56) (Bookbinder, et al., 1995, Cheng, et al., 1994, 

Cohen and Wassarman, 2001), α-D-mannosidase (Cornwall, et al., 1991) and zonadhesin 

(Gao and Garbers, 1998, Tardif and Cormier, 2011, Topfer-Petersen, et al., 1998) (see Table 

1). However, despite the wealth of knowledge accumulated about each of these putative 

zona pellucida receptors it is now apparent that none are uniquely capable of directing 

sperm- zona pellucida adhesion. For example, the targeted disruption of GalT1 in knockout 
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mice fails to result in infertility (Lu, et al., 1997). Although sperm from GalT1 null mice bind 

poorly to ZP3 and fail to undergo a zona-induced acrosome reaction, they retain the ability 

to bind to the ovulated egg coat in vitro (Lu and Shur, 1997). In a similar vein, a number  of 

zona pellucida binding molecules have been identified in human spermatozoa, including 

sperm autoantigenic protein 17 (SPA17) (Grizzi, et al., 2003), fucosyltransferase 5 (FUT5) 

(Chiu, et al., 2003a, Chiu, et al., 2004), and mannose binding receptor (Rosano, et al., 2007). 

However, further analyses of these receptor molecules have compromised their status as 

being the single molecule responsible for zona pellucida interaction (see Table 2). In fact 

prevailing evidence now strongly suggests that no individual receptor is exclusively 

responsible for regulating gamete interaction. Underscoring the amazing complexity of this 

interaction, it has instead been proposed to rely on the coordinated action of several zona 

receptor molecules, which may be assembled into a functional multimeric complex.  

 

Candidate (synonyms) Species Evidence References 

Angiotensin-converting enzyme (ACE) Mouse

Rat 

Horse 

Human 

 Testis-specific form is 

found within developing 

spermatids and mature 

sperm 

 ACE KO mice are infertile 

due to defective transport 

in the oviducts as well as 

decreased zona pellucida 

binding 

 Play significant role in re-

distribution of ADAM3 to 

the sperm surface

(Esther, et al., 1996, Foresta, 

et al., 1991, Kohn, et al., 

1995, Langford, et al., 1993, 

Sibony, et al., 1993) 

A disintegrin and metalloproteinase 

(ADAMs) 

Mouse 

Rat 

Pig 

Human 

 Family of transmembrane 

proteins that have varying 

roles in maturation of 

spermatozoa 

 ADAM3 has important 

role in zona pellucida 

binding 

 ADAM2 KO mice show 

strong suppression of zona 

pellucida binding and 

difficulty in moving 

through female 

reproductive tract, due to 

absence of ADAM3 in 

these mice 

 ADAM1a KO mice are 

fertile, but show decreased 

levels of ADAM3 on the 

sperm surface 

 ADAM1b KO mice are 

fertile

(Kim, et al., 2004, Kim, et al., 

2006a, Kim, et al., 2006b, 

Nishimura, et al., 2004, 

Nishimura, et al., 2007, 

Yamaguchi, et al., 2009) 

α-D-mannosidase (MAN2B2) Mouse

Rat 

Hamster 

Human 

 Integral plasma membrane 

protein that may facilitate 

sperm-zona pellucida 

binding by adhering to 

mannose-containing zona 

pellucida oligosaccharides

(Cornwall, et al., 1991, 

Pereira, et al., 1998, Tulsiani, 

et al., 1993, Tulsiani, et al., 

1989, Yoshida-Komiya, et 

al., 1999),  
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Candidate (synonyms) Species Evidence References 

 Pre-incubation of sperm 

with either D-mannose or 

anti-MAN2B2 antibody 

elicits a dose-dependent 

inhibition of zona 

pellucida binding 

Arylsulfatase A (AS-A; ARSA) Mouse

Human 

Boar 

 Acquired onto the sperm 

surface during epididymal 

transit 

 Addition of exogenous 

ARSA, or anti-ARSA 

antibodies inhibit zona 

pellucida binding in a 

dose-dependent manner 

 ARSA-null males are 

fertile but fertility 

decreases with age

(Carmona, et al., 2002, Hess, 

et al., 1996, 

Tantibhedhyangkul, et al., 

2002, Weerachatyanukul, et 

al., 2003) 

Calmegin (CLGN)/Calnexin/Calspernin 

(CALR3) 

Mouse  CLGN- and CALR3-

deficient mice are infertile 

due to defective sperm 

migration from uterus into 

the oviduct, as well as 

defective zona 

pellucidabinding 

 CLGN is required for 

ADAM1a/ADAM2 

dimerization 

 CALR3 is required for 

ADAM3 maturation 

(Ikawa, et al., 2001, Ikawa, 

et al., 2011, Yamagata, et al., 

2002) 

GalT1 (β-1,4-galactosyltransferase; 

GAlTase; GALT; B4GALT1) 

Mouse

Rat 

Human 

Guinea Pig 

Rabbit 

Bull 

Boar  

Stallion 

 Transmembrane protein 

located on the sperm head 

overlying the intact 

acrosome 

 Transgenic mice 

overexpressing GalTase 

are hypersensitive to ZP3 

and undergo precocious 

acrosome reactions 

 Sperm from mice bearing 

targeted deletions in 

GalTase are unable to bind 

ZP3 or undergo ZP3-

dependent acrosomal 

exocytosis 

 GalTase-null sperm retain 

ability to bind to zona 

pellucida 

(Lopez, et al., 1985, Lopez 

and Shur, 1987, Shi, et al., 

2004, Shur and Hall, 1982a, 

Shur and Hall, 1982b) 

Fertization antigen 1 (FA1) Mouse 

Human 

Bull 

 Localized to the 

postacrosomal region of 

sperm head 

 Anti-FA-1 antibodies have 

been implicated in 

immune infertility in 

humans 

 No recorded knockout 

(Coonrod, et al., 1994, 

Menge, et al., 1999, Naz, et 

al., 1992b, Naz, et al., 1984, 

Naz and Zhu, 1998) 
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Candidate (synonyms) Species Evidence References 

Fucosyltransferase 5 (FUT5) Human  Localized to the acrosomal 

region of the sperm head 

 Pre-treatment of sperm 

with antibodies directed 

against FUT5 inhibits zona 

pellucida binding 

(Chiu, et al., 2003b, Chiu, et 

al., 2004) 

Milk fat globule-EGF factor 8 (MFGE8; 

p47; SED1) 

Mouse

Boar 

 Protein is applied to  the 

sperm acrosome during 

epididymal transit 

 Binds specifically to the 

zona pellucida of 

unfertilized, but not 

fertilized eggs 

 Recombinant MFGE8 and 

anti-MFGE8 antibodies 

competitively inhibits zona 

pellucida binding 

 MFGE8 null males are 

subfertile and their sperm 

are unable to bind to the 

zona pellucida  in vitro

(Ensslin, et al., 1995, Ensslin 

and Shur, 2003) 

Proacrosin (acrosin) Mouse

Boar 

 Localizes to acrosome and 

inner acrosomal 

membrane 

 Mediates secondary zona 

pellucida binding via 

interaction with ZP2 

 Binding to zona pellucida 

is non-enzymatic and 

thought to involve 

recognition of polysulfate 

groups on zona pellucida 

glycoproteins 

 Acrosin null males are 

fertile but 

displaycompromised zona 

pellucida penetration 

(Baba, et al., 1994a, Baba, et 

al., 1994b, Howes, et al., 

2001, Howes and Jones, 

2002, Moreno, et al., 1998, 

Urch and Patel, 1991) 

Sperm adhesion molecule 1 (SPAM1; 

PH-20) 

All mammals  Widely conserved sperm 

surface protein 

 Localized to plasma 

membrane over anterior 

region of sperm head 

 Possesses hyaluronidase 

activity that aids in the 

digestion of cumulus cells 

 Relocalizes to inner 

acrosomal membrane 

following acrosome 

reaction; potentially 

participates in secondary 

zona pellucida binding 

 SPAM1 null males are 

fertile although their 

sperm areless efficient in 

cumulus cell dispersal 

(Baba, et al., 2002, 

Hunnicutt, et al., 1996a, 

Hunnicutt, et al., 1996b, Lin, 

et al., 1994, Morales, et al., 

2004, Myles and Primakoff, 

1997) 
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Candidate (synonyms) Species Evidence References 

Sperm autoantigenic protein 17 (SPA17; 

SP17) 

Mouse 

Rabbit 

Human 

Primates 

 Highly conserved protein 

localized to the acrosome 

and fibrous sheath 

 Has been implicated in 

regulation of sperm 

maturation, capacitation, 

acrosomal exocytosis and 

zona pellucida binding 

 Shown to bind to specific 

mannose components of 

the zona pellucida 

(Chiriva-Internati, et al., 

2009, Grizzi, et al., 2003, 

Yamasaki, et al., 1995) 

Spermadhesins (AWN; AQN-1; AQN-3) Boar 

Stallion 

Bull 

 Are major components of 

seminal plasma 

 May be involved in several 

sequential steps of 

fertilization through 

multifuncational ability to 

bind to carbohydrates, 

sulfated 

glycosaminoglycans, 

phospholipids and 

protease inhibitors 

(Petrunkina, et al., 2000, 

Sinowatz, et al., 1995, 

Topfer-Petersen, et al., 1998) 

Sulfogalactosylglycerolipid (SGG) Mouse 

Rat 

Human 

Boar 

 SGG is a major sperm 

sulfoglycolipid that 

putatively facilitates 

uptake of sulfolipid-

immobilizing protein-1 

(SLIP1) and ARSA 

 Following capacitation, 

SGG is predominantly 

found in membrane rafts, 

microdomains that possess 

zona pellucida affinity 

 Pre-incubation of sperm 

with monovalent anti-SGG 

Fab fragments 

significantly inhibits zona 

pellucida binding 

(Bou Khalil, et al., 2006, 

Kornblatt, 1979, 

Tanphaichitr, et al., 1990, 

Tanphaichitr, et al., 1993, 

Weerachatyanukul, et al., 

2001, White, et al., 2000) 

Zonadhesin (ZAN) Mouse 

Hamster 

Rabbit 

Boar 

Bull 

Horse 

Primates 

 Localizes to the apical 

region of the sperm head 

following spermatogenesis 

and epididymal 

maturation 

 Features a mosaic protein 

architecture with several 

domains that potentially 

enable the protein to 

participate in multiple cell 

adhesion processes 

including zona pellucida 

binding 

(Bi, et al., 2003, Gasper and 

Swanson, 2006, Hardy and 

Garbers, 1994, Hardy and 

Garbers, 1995, Herlyn and 

Zischler, 2008, Hickox, et al., 

2001, Olson, et al., 2004, 

Tardif, et al., 2010) 
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Candidate (synonyms) Species Evidence References 

 Appears to confer species 

specificity to sperm-zona 

pellucida adhesion in that 

sperm from Zan -/- males 

are able to bind 

promiscuously to the zona 

pellucida of non-

homologous species 

ZP3R (sp56) Mouse  Localized to the surface of 

the sperm head 

 Pre-incubation of sperm 

with anti-ZP3R antibodies 

blocks  zona pellucida 

binding 

 Pre-treatment of sperm 

with recombinant ZP3R 

inhibits fertilization in vivo

 EM localizes ZP3R within 

acrosomal matrix, but the 

protein appears to 

undergo a capacitation-

associated relocation to the 

surface of the anterior 

region of the sperm head 

 ZP3r -/- males are fertile 

and their spermatozoa 

retain their ability to bind 

zonae of unfertilized eggs 

and undergo acrosomal 

exocytosis  

(Hardy, et al., 2004, Muro, et 

al., 2012, Wassarman, 2009) 

 

Table 2. Putative sperm- zona pellucida receptor candidates 

2.4. Toward an integrated model of sperm- zona pellucida interaction 

2.4.1. Multimeric protein complexes in zona pellucida binding 

Despite decades of research, the specific molecular mechanisms that drive the initial 

interaction between the male and female gametes remain elusive. As stated previously, a 

myriad of diverse candidate molecules have been proposed as putative mediators of sperm 

binding to the zona matrix (Table 1). Regardless of this, prevailing evidence now indicates 

that none are uniquely responsible for directing or maintaining this interaction (Nixon, et 

al., 2007). Indeed, the classical model of a simple lock and key mechanism that prevailed in 

this field of research for several decades has been largely disproven. The fact that 

spermatozoa contain a multiplicity of zona pellucida receptor candidates allows for a level 

of functional redundancy commensurate with the overall importance of this fundamental 

cellular interaction. It also accounts for the succession of both low affinity and high affinity 

interactions (Thaler and Cardullo, 1996, Thaler and Cardullo, 2002) that characterize gamete 

interaction. Although the biochemical basis of this multifaceted adhesion process remains 

obscure, it is unlikely that it could be regulated by the activity of a single receptor. 
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Furthermore, mammalian spermatozoa undergo considerable changes in their already 

complex surface architecture during epididymal transit and the capacitation process in the 

female reproductive tract. Prior to these events, the cells are unable to recognize or bind to 

the zona pellucida. A simple lock and key mechanism involving a constitutively expressed 

surface receptor does not account for the need to undergo such radical alterations prior to 

obtaining affinity for the zonae.. Collectively, these data have led to an alternative 

hypothesis that sperm maturation leads to the surface expression and/or assembly of 

multimeric complex(es) compromising a multitude of zona pellucida receptors.  

The concept that multimeric protein complexes are capable of regulating cell-cell 

interactions draws on an extensive body of literature. It is well known for instance that the 

human genome codes for in excess of 500 000 different proteins, of which an estimated 80% 

function as part of multimeric protein complexes, as opposed to individual proteins 

(Berggard, et al., 2007). In addition, there are many documented examples of cell-cell 

adhesion events that require the formation of multimeric protein complexes. As a case in 

point, β-catenin is well-known to form a complex with several other adhesion proteins, such 

as cadherin, at sites of cell-cell contact. Interestingly, the formation of these complexes is 

tightly regulated by phosphorylation and dephosphorylation of the N-terminus of β-catenin 

(Maher, et al., 2009). Tight junctions have also been shown to rely heavily on the formation 

of specific protein complexes, comprising transmembrane and membrane-associated 

proteins (Shen, et al., 2008). Studies with migrating cells, and other cell types that interact in 

fluid, dynamic environments similar to that in which gametes bind, have illustrated that 

they most likely rely on the sequential receptor-ligand interactions that are coordinated 

through the formation of protein adhesion complexes (Sackstein, 2005). In a situation 

analogous to that recorded in spermatozoa, recent work in cancer cell biology has described 

the importance of molecular chaperone complexes in increasing the migration and 

invasiveness of specific cancer types. Breast cancer in particular relies heavily on the action 

of HSP90α in order to invade other cell types. In this case, HSP90α is excreted by the cancer 

cell in order to act as a mediator between a complex of co-chaperones outside the cell, 

including HSP70, HSP40, Hop (HSP70/HSP90 organizing protein) and p23, subsequently 

activating MMP-2 (matrix metalloproteinase 2) (Eustace, et al., 2004, McCready, et al., 2010, 

Sims, et al., 2011). MMP-2 then acts to degrade proteins in the extracellular matrix of target 

cells, thus increasing the invasive ability of the malignant cancer cells (Folgueras, et al., 2004, 

Jezierska and Motyl, 2009).  

The concept of a multimeric zona pellucida receptor complex in spermatozoa was originally 

proposed by Asquith et al in mouse spermatozoa (Asquith, et al., 2004). This work 

demonstrated the preferential tyrosine phosphorylation of a specific subset of molecular 

chaperones during capacitation. A finding that generated considerable interest was that this 

modification, coincided with the translocation of the chaperones the surface of the sperm 

head in the precise region that mediates zona pellucida binding. However, the failure of 

either anti-phosphotyrosine or anti-chaperone antibodies to compromise sperm- zona 

pellucida interactions led to the proposal that these chaperones may have an indirect role in 

zona pellucida interaction by virtue of their ability to coordinate the assembly of a zona 
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pellucida receptor complex during capacitation. A key observation in support of this model 

is that the chaperones, along with numerous putative zona pellucida receptors, partition 

into lipid microdomains or DRMs (discussed in Section 2.3.1.3). It is proposed that these 

microdomains may serve as platforms to recruit chaperone clients proteins and/or enhance 

productive interactions between these two classes of proteins (Nixon, et al., 2009). Indeed, 

independent evidence indicates that chaperones do form stable protein complexes within 

membrane rafts during the capacitation of mouse spermatozoa. For instance, Han et al (2011) 

have recently revealed that the molecular chaperones, HSPA5 and calnexin, associate with a 

number of client proteins to form a stable supramolecular complex on the surface of mouse 

spermatozoa. These client proteins include ADAM7 (a disintegrin and metalloprotease 7), a 

protease that is transferred to the sperm surface via epididymosomes as the cells transit 

through the epididymis (Oh et al. 2009) and belongs to a family of proteases that have been 

implicated in sperm migration in the female reproductive tract and adhesion to the zona 

pellucida (Muro and Okabe 2011) (Cho, et al., 1998, Shamsadin, et al., 1999, Yanagimachi, 

2009). Interesting the HSPA5/calnexin/ADAM7 complex resides within DRMs (membrane 

rafts) and its assembly is promoted by sperm capacitation (Han et al. 2011). In addition, 

recent work performed by Dun et al (2011) demonstrated the presence of a number of high 

molecular weight protein complexes expressed on the surface of capacitated mouse sperm 

utilizing the technique of Blue Native PAGE (Dun, et al., 2011). Of particular interest was 

the identification of the chaperonin-containing TCP-1 complex (CCT/TRiC) and its ability to 

form a stable complex with zona pellucida binding protein 2 (ZPBP2). In addition to 

independent evidence that ZPBP2 participates in zona pellucida binding (Lin, et al., 2007) 

the CCT/TRiC / ZPBP2 complex was also shown to display affinity for homologous zonae. 

Importantly, a complex of similar size and compromising the same combination of the 

CCT/TRiC / ZPBP2 complex was also recently identified via application of the same 

methodology in human spermatozoa and again shown to participate in zona pellucida 

interaction in this species (Redgrove, et al., 2011). The conservation of this complex implies 

that it may be involved in mediation of non-species specific initial interactions, which are 

relatively weak and forgiving of species barriers. The same may also be true of the 20S 

proteasome complex that has been shown to display a high level of conservation among the 

spermatozoa of different species. For instance, the proteasome complex has been described 

in the spermatozoa of pig, mouse and human and, in each of these species, it has been 

implicated in zonae interactions (Morales, et al., 2003, Pasten, et al., 2005, Yi, et al., 2010, 

Zimmerman, et al., 2011). Although this is a constitutively expressed complex, there is 

evidence that certain subunits of the complex may be subjected to post-translational 

modifications, including tyrosine phosphorylation, during capacitation (Redgrove et al., 

2011). In this context it is noteworthy that the tyrosine phosphorylation of similar 

proteasome subunits has been shown to influence the substrate specificity of the complex in 

other cell types (Bose et al., 1999; Castano et al., 1996; Mason et al., 1996; Wehren et al., 1996). 

Taken together, these findings raise the possibility the proteasome complex may be 

activated during sperm maturation in preparation for its functional role(s) in sperm–oocyte 

interactions. These roles appear to extend beyond that of zona pellucida recognition 

(Zimmerman, et al., 2011) to include regulation of the acrosome reaction in addition to 
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penetration of the zona matrix (Kong, et al., 2009, Sutovsky, et al., 2004), (Morales, et al., 

2003).  

Interestingly, the indirect role of molecular chaperones in sperm- zona pellucida interactions 

appears to extend beyond the capacitation-associated remodeling of the sperm surface. 

Indeed, chaperones such as calmegin, calspernin, calnexin, and HSPA2 have been 

implicated in additional remodeling events during spermatogenesis and epididymal 

maturation. With respect to calspernin and calmegin, it has been shown that mice lacking 

these genes are incapable of binding to the zona pellucida, a defect that  is attributable to the 

role these chaperones play in the maturation of ADAM3 (a protein required for 

fertilization), as well as the dimerization of an ADAM1 / ADAM2 heterodimer (Ikawa, et al., 

2011). In contrast, calnexin has a primary  role in retaining unfolded or unassembled N-

linked glycoproteins in the ER (Sitia and Braakman, 2003). Importantly however, calnexin 

has also been shown to be present on the surface of mouse spermatozoa where it partitions 

into membrane rafts (Nixon, et al., 2009, Stein, et al., 2006). In addition to these lectin-like 

chaperones, testis-specific HSPA2 has been shown to be essential in several stages of 

spermatogenesis (Govin, et al., 2006) and, in the human, it has a prominent role in plasma 

membrane remodeling through the formation of zona pellucida and hyaluronic acid binding 

sites (Huszar, et al., 2007, Huszar, et al., 2006). 

3. Summary 

For decades, researchers have strived to find the key molecule on the sperm surface that is 

responsible for directing its binding to the zona pellucida in a cell and specifies specific 

manner. However, this premise of a simple lock and key mechanism has been increasingly 

drawn into question since it fails to account for the myriad of potential receptor molecules 

that have been identified over the intervening years and the fact that sperm- zona pellucida 

binding can be resolved into a number of sequential recognition events of varying affinity. 

Instead, owing largely to the application of elegant genetic manipulation strategies, it is now 

apparent that the interaction between the two gametes relies on an intricate interplay 

between a multitude of receptors and their complementary ligands, none of which are 

uniquely responsible. Such a level of functional redundancy is commensurate with the 

overall importance that this interaction holds in the initiation of a new life.  

An important question that arises from this work is how the activity of such a diverse array 

of receptors is coordinated to ensure they are presented in the correct sequence to enable 

productive interactions with the zonae. One possibility is that the zona pellucida binding 

proteins are organized into functional receptor complexes that are assembled on the anterior 

region of the sperm head during the different phases of sperm maturation. Such a model 

may account for the need for the dramatic membrane remodeling events that accompany 

epididymal maturation and capacitation. Until recently a major challenge to this model has 

been the lack of direct evidence that sperm harbor multimeric protein complexes on their 

surface. However, through the application of a variety of novel techniques, independent 

laboratories have now verified that sperm do express high molecular weight protein 
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complexes on their surface, a subset of which possess affinity for homologous zonae. 

Furthermore, there is compelling evidence that the assembly and / or surface presentation of 

these complexes is regulated by the capacitation status of the cells (Dun, et al., 2011, Han, et 

al., 2010, Morales, et al., 2003, Redgrove, et al., 2011, Sutovsky, et al., 2004).  

The conservation of complexes such as the 20S proteasome and CCT/TRiC implies that they 

are not involved in high-affinity species specific binding to homologous zonae. Rather they 

may mediate the initial loose tethering of sperm to the zona pellucida and / or downstream 

events in the fertilization cascade. It is therefore considered likely that the higher affinity, 

species-specific zona pellucida interactions that follow are executed by additional protein 

complexes that have been shown to reside in human and mouse spermatozoa (Dun, et al., 

2011, Redgrove, et al., 2011) but have yet to be characterised. The proteomic profiling and 

functional characterization of these additional multiprotein complexes therefore promises to 

shed new light on the intricacies of sperm-egg interactions.  
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