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1. Introduction

The use of microwave (MW) irradiation as a tool for organic synthesis has been a fast
growth area [1-8]. Several examples have shown that the application of MW irradiation re‐
duces the reaction time, increases the product yield and sometimes results in a different
product distribution compared to conventional thermal heating method [1-6,9-20]. The rate
acceleration observed in organic reactions using MW irradiation is due to material-wave in‐
teractions leading to thermal and nonthermal effects. The thermal effects result from a more
efficient energy transfer to the reaction mixture, which is known as dielectric heating. This
process relies on the ability of a substance (solvent or reactant) to absorb MW and convert
them into heat. The reaction mixture is heated from the inside since the MW energy is trans‐
ferred directly to the molecules (solvent, reactants, and catalysts). This process is known as
'volumetric core heating' and results in a temperature gradient that is reversed compared to
the one resulting from conventional thermal heating [1,9-14]. Nonthermal effects result in
differences in product distributions, yields, and reaction times. They may result from the
orientation effects of polar species in the electromagnetic field that makes a new reaction
path with lower activation energy [9-14, 21-23]. It has been suggested [24] that MW activa‐
tion could originate from hot spots generated by dielectric relaxation on a molecular scale.
Currently, thermal and nonthermal effects are being extensively studied mainly to verify the
existence or not of nonthermal effects [21-23].

Several studies have reported the application of ionic liquids (ILs) in different areas and, in
particular, their use in organic reactions [25-33]. ILs are generally defined as liquid electro‐
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lytes composed entirely of ions. Occasionally, a melting point criterion has been proposed to
distinguish between molten salts and ILs (mp < 100 °C). However, both molten salts and ILs
are better described as liquid compounds that display ionic-covalent crystalline structures
[34-35]. Suitably selected, many combinations of cations and anions allow the design of ILs
that meets all the requirements for the chemical reaction under study; based on this, they are
also known as 'designer solvents' [36]. Properties such as solubility, density, refractive in‐
dex, and viscosity can be adjusted to suit requirements simply by making changes to the
structure of the anion, the cation, or both [37-43].

The junction of the use of MW irradiation with the use of ILs provides a method of high in‐
terest in organic synthesis. ILs interact very efficiently with MW irradiation through the ion‐
ic conduction mechanism [7-8] and are rapidly heated at rates easily exceeding 10 °C per
second [44-50]. Despite few reports on the exact measurement of their dielectric properties
and loss tangent values, the experimentally attained heating rates of ILs applying MW irra‐
diation attest to their extremely high MW absorptivity [46,51]. This ability allows that small
amounts of ILs can be employed as additives in order to increase the dielectric constant of
nonpolar solvents characterizing them as doping agents [52-57]. In particular, ILs can be
used as support in the synthesis of organic compounds which are carried out using MW ir‐
radiation and less polar solvents. Research groups have used ILs as doping agents for MW
heating of otherwise nonpolar solvents such as hexane, toluene, tetrahydrofuran, and diox‐
ane [52-57]. Thus, in view of the good relation between MW and IL, the following topics will
be discussed in this chapter: (i) behavior of the solvents under MW environment with em‐
phasis in the heating effects of adding a small quantity of ILs in solvents with different loss
tangent, such as N,N-dimethyl formamide (DMF), acetonitrile (ACN), hexane (HEX), tol‐
uene (TOL), tetrahydrofurane (THF); (ii) ILs as doping agents in MW assisted reactions es‐
pecially in N-alkylation reaction of pyrazole with alkyl halides (Figure 1).

Figure 1. Ionic Liquids as doping agents in microwave assisted reactions.
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2. Behavior of the Solvents Under Microwave Environment

Several organic solvents are used in various types of organic reactions under MW irradia‐
tion. The particular ability of the solvents to convert electromagnetic energy into thermal en‐
ergy is directly related to their dielectric properties. The magnitude of the heating efficiency,
in the specific temperature and frequency, is determined by the so-called 'loss tangent' (tan
δ), whose formula is represented by Eq. 1 [52].

tan δ =  ε''
ε' (1)

In Eq. 1, ε’’ is the dielectric loss and ε’ is the dielectric constant. A reaction medium with a
high tan δ at the standard operating frequency of a MW synthesis reactor (2.45 GHz) is re‐
quired for good absorption and, consequently, for efficient heating. Solvents used for MW
synthesis can be classified as high with tan δ > 0.5, medium with tan δ 0.1 – 0.5, and low MW
absorbing with tan δ < 0.1 (Table 1) [14,58]. In general, the reactions which used solvents
with a high tan δ have a good absorption of MW irradiation and, accordingly, an efficient
heating [8,59,60]. Solvents such as DMSO and DMF are essential to reactions performed in
MW. While these are great solvents for performing the reaction, the subsequent workup
procedure is difficult to remove them due to their high boiling point and miscibility with the
product [53]. Thus, in certain situations, it is convenient to use solvents which are less polar
such as THF, TOL and HEX [14,58,59-60]. However, it is necessary to use a heating agent for
the reactions carried out in solvents with low absorption in the MW irradiation. ILs, for in‐
stance, can be added to the reaction medium to increase the absorbance level of the MW ir‐
radiation [51,59]. Therefore, the use of ILs appears as a support to increase the temperature
of the reactions carried out in a MW transparent solvents [53].

Solvent tan δ Solvent tan δ

Ethylene glycol 1.350 1,2-Dichloroethane 0.127

Ethanol 0.941 Water 0.123

Dimethyl sulphoxide 0.825 Chloroform 0.091

Methanol 0.659 Acetonitrile (ACN) 0.062

1,2-Dichlorobenzene 0.280 Tetrahydrofurane (THF) 0.047

Methylpyrrolidone 0.275 Dichloromethane 0.042

Acetic acid 0.174 Toluene (TOL) 0.040

N,N-Dimethylformamide (DMF) 0.161 Hexane (HEX) 0.020

Table 1. Loss tangent of several solvents [59-60].
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3. Heating Effects of Adding a Small Quantity of Ionic Liquid in
Solvents

Systematic studies on temperature profiles and the thermal stability of IL under MW irradi‐
ation conditions were studied [52]. In these studies it was found that even the addition of a
small amount of an IL resulted in dramatic changes in the heating profiles due to changes in
the overall dielectric properties of the reaction medium.

Leadbeater and Torenius [53] studied the heating and contamination effects of several ILs in
less polar solvents, such as HEX, TOL, THF and dioxane (DIO) (Figure 2) under MW irradia‐
tion. These authors have shown that all solvents used can be heated way above their boiling
point in sealed vessels using a small quantity of an IL, thereby allowing them to be used as
media for MW assisted chemistry. Table 2 shows the temperatures reached for pure solvents
and for doped solvents with ILs using 200 W of power under MW irradiation.

The effects of varying the quantity of IL used to the solvent heating were investigated. The au‐
thors found that the best condition used was 2 mL of solvent and 0.2 mmol of IL, resulting in
rapid heating. In these studies the contamination, if any, of the parent solvent with the IL or
any decomposition products formed as they are heated were also studied [53].

Results showed that both [BMIM][PF6] and [BMIM][BF4] proved to be useful in MW heating
of solvents, with [BMIM][PF6] being more effective (Table 3). There was no contamination of
the solvent when using [BMIM][PF6] with any of the solvents screened or when [BMIM][BF4]
was used with HEX. There was contamination due to the decomposition of [BMIM][BF4]
when used with TOL or DIO; the extent was much less in the case of the latter. The [BMIM]
[BF4] was slightly soluble in THF thus in this case the only source of contamination at the
end of the heating experiments was a trace of the parent IL rather than any decomposition.
To the experiments, 100 W of the power was used [53].

Leadbeater et al. [54] also investigated the decomposition of some ILs and found out that
when the IL was heated above 200 °C, decomposition occurred to give an alkyl halide and
alkyl imidazole as shown in Scheme 1. Halide ion (X-) acts as a nucleophile in attaching the
cation with the subsequent elimination of alkyl-X. This decomposition was verified for ele‐
vated temperatures, which was not totally unexpected.

Figure 2. Ionic liquids used as doping agent.
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Solvent IL Added
T(attained)

(ºC)

Time (taken)

(s)

T (without IL)

(ºC)

Solvent

Boiling Point

(ºC)

HEX [BMIM][I] 217 10 46 69

[iPMIM][Br] 228 15

TOL [BMIM][I] 195 150 109 111

[iPMIM][Br] 234 130

THF [BMIM][I] 268 70 112 66

[iPMIM][Br] 242 60

DIO [BMIM][I] 264 90 101 101

[iPMIM][Br] 246 90

Table 2. The Microwave Irradiation Effects of Adding a Small Quantity of ILs in Less Polar Solvents [53].

Solvent IL Added
T. attained

(ºC)

Time Taken

(s)

Level of

Contamination

HEX [BMIM][PF6] 279 20 None

[iPMIM][PF6] 90 300 None

[BMIM][BF4] 192 60 None

TOL [BMIM][PF6] 280 60 None

[iPMIM][PF6] 79 120 None

[BMIM][BF4] 165 90 Contaminated

THF [BMIM][PF6] 231 60 None

[BMIM][BF4] 95 50 contaminatedb

DIO [BMIM][PF6] 149 100 None

[BMIM][BF4] 184 120 Contaminated

b[BMIM][BF4] is slightly soluble in THF and so cannot totally be removed; thus con‐
tamination is due to [BMIM][BF4] rather than decomposition.

Table 3. Microwave irradiation effects in the presence of a small quantity of ILs in less polar solvents [53].

Scheme 1.
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Hoffmann et al. [61] showed that ILs of the 1,3-dialkylimidazolium-type revealed (Figure 3)
great potential for the application of MW for organic synthesis. These authors verified that
the increase of MW power resulted in a drastic decrease in heating time.

Figure 3. Ionic liquids used in the study [61].

A supplementary investigation covered the heating behavior of ILs as doping agent when
mixed with solvents less polar in MW irradiation such as TOL and cyclohexane (100 mL
of solvent in 1 mL, 3 mL and 5 mL of IL) (Table 4). Therefore, the authors concluded that
small amounts of ILs are necessary to significantly reduce the heating time of TOL or cy‐
clohexane under MW conditions. An increase in the MW power generates a reduction in
heating time (Table 4).  Also in this  case,  heating time approaches a limiting value even
with an increase of the MW power. This was also true for the addition of ILs to both non‐
polar solvents (TOL and cyclohexane).

IL
Power

(W)

Ht(35-105ºC/s)

(TOL : IL (mL)

100 : 1 100 : 3 100 : 5

[HMIM][Tf2N] 300 318 90 70

[HMIM][Tf2N] 400 167 66 53

[HMIM][Tf2N] 500 112 54 39

[HBIM][PF6] 300 548 168 143

[HBIM][PF6] 400 319 126 92

[HBIM][PF6] 500 229 88 86

Table 4. Heating times (Ht) of toluene/ionic liquid-mixtures.

Following the direction of these studies, we also performed some experiments using ILs as
doping agents with several solvents under MW irradiation. The objective of this study was
to check if the data of our MW equipment are in accordance with the data already publish‐
ed. Thus, we performed investigations of power profiles in different solvents with distin‐
guished loss tangent values as DMF, ACN, THF, TOL and HEX in the presence of small
quantities of [BMIM][BF4] as doping agent. The solvents doped were submitted under MW
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irradiation in an attempt to reach a temperature of 150°C (temperature which may be used
in organic reactions) [62]. For this, we used various concentrations of IL in different solvents,
as shown in Table 5. After reaching the desired temperature, the doped solvents were irradi‐
ated for 5 min and we verified that lower concentrations of IL required higher power for all
solvents tested (Table 5). During the 5 min of MW irradiation the power remained substan‐
tially constant. Solvents with the low loss tangent such as HEX and TOL achieved only 99
and 108 °C, respectively, even though 300 W of power was applied.

Entry Solvent
[BMIM][BF4]

(mmol.mL-1)

Power

(W)

1 DMF 0.057 20.402

2 DMF 0.107 18.679

3 DMF 0.196 16.887

4 DMF 0.397 15.895

5 ACN 0.048 38.967

6 ACN 0.104 31.229

7 ACN 0.205 30.478

8 ACN 0.407 29.402

9 THF 0.063 240.079

10 THF 0.103 185.834

11 THF 0.218 112.582

12 THF 0.401 69.415

13 TOL 0.045 -b

14 TOL 0.102 119.429

15 TOL 0.197 67.805

16 TOL 0.403 47.317

17 HEX 0.049 -c

18 HEX 0.105 130.718

19 HEX 0.210 68.858

20 HEX 0.398 60.301

aIn a sealed vessel, under simultaneous cooling, 150 °C for 5 min, temperature
was measured with fiber-optic probe. bAchieved 108 °C, 300 W, 20 min. cAch‐
ieved 99 °C, 300 W, 20 min.

Table 5. Power dependence of IL concentration in some solventsa.

Figure 4 illustrates the dependence between the concentrations of [BMIM][BF4] in the sol‐
vents and the power irradiated by MW equipment. At low concentrations of [BMIM][BF4] (~
0.05 mmol.mL-1) a significant increase in the power is required to maintain the temperature
of 150 °C. Another point is that, to maintain the temperature of 150 °C, solvents such as
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DMF and ACN did not require substantial variation of power as that found to HEX, TOL
and THF when the concentration of IL ranged from ~ 0.05 mmol.mL-1 to ~ 0.4 mmol.mL-1.
These data corroborate previous studies reported [53,61] and highlight the efficiency of
[BMIM][BF4] as doping agent of poorly MW absorbing solvents.

Figure 4. Power profiles of solvents with different concentrations of [BMIM][BF4].

4. Ionic Liquids as Doping Agents (ILDA) in Microwave Assisted
Reactions

The efficient use of ILs as a doping agent in reaction under MW irradiation was firstly intro‐
duced by Ley et al. [55]. The authors described the synthesis of thioamides from the secondary
or tertiary amides (Scheme 2) and nitriles from primary amides (Scheme 3) in presence of thio‐
phosphorylated amine resin using small quantity of IL [EMIM][PF6] (120 mg) in TOL (2.5 mL).

Scheme 2.
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Protocols used the reactants thiophosphorylated amine resin and secondary or tertiary
amides in a molar ratio of 1:3-20, respectively, to obtain thioamides, and used the reactants
thiophosphorylated amine resin and primary amides in a molar ratio of 1:3.5, respectively to
furnish nitriles. Reactions were carried out under both MW irradiation at 200 °C for 15 min
to obtain the thioamides in 92-98% (Scheme 2) and nitriles in 95 - < 99% yields (Scheme 3).
Acetonitrile was also investigated as an alternative MW absorbent and proved to be effec‐
tive, in spite of being less efficient than the IL.

Scheme 3.

Eycken et al. [56] initially investigated the intramolecular hetero-Diels-Alder reaction in a ser‐
ies of 2(1H)-pyrazinones to obtain the chloro-bicycles and dione-bicycles, as showed in Scheme
4. In their initial experiments they used pyrazinone (R = Bu, n = 2) as a model substrate involv‐
ing DCE as solvent to obtain the chloro-bicycles (R = Bu, n = 2). Using a preselected maximum
temperature of 190 °C (300 W maximum power), neat DCE could be heated to ca. 170 °C within
10 min under sealed vessel conditions. Prolonged time heating is needed to reach higher tem‐
peratures. In an effort to promote the enhance of the maximum attainable reaction tempera‐
ture, the solvent (DCE) was doped with different amounts of [BMIM][PF6]. Adding 0.035
mmol of IL to the neat solvent (2 mL of DCE), the preselected temperature of 190 °C could be
reached in 3 min upon MW heating. These results clearly demonstrated that even small
amounts of IL were able to change the dielectric properties of a less polar solvent. These
changes are sufficiently significant to heat more rapidly the reaction medium and to reach
higher reaction temperatures. Increasing the amount of IL to 0.075 mmol led to a more rapid
heating of the reaction mixture, as expected. When 0.150 mmol concentration was used, it pro‐
vided a profile that allowed heating the DCE doped with IL to 190 °C in 1 min. To minimize the
risk of potential contaminations or side reactions caused by the IL, all the following cycloaddi‐
tion studies were carried out using this set of conditions (0.150 mmol IL for 2 mL of DCE) in 100
mg of 2(1H)-pyrazinones to obtain the chloro-bicycles. After, the hydrolysis reaction was car‐
ried out to obtain the dione-bicycles with yields of 57-77%.

The same authors [56] reported the synthesis of the chloro-pyridine and pyridonefrom the
cycloaddition reaction of 2(1H)-pyrazinone with dimethylacetylenedicarboxylate (DMAD)
under the MW/IL conditions (Scheme 5). The reactants 2(1H)-pyrazinone and DMAD were
used in a molar ratio of 1:1. The reaction conditions used were the same reported previous‐
ly, 190 °C, DCE/[BMIM][PF6] (0.150 mmol IL for 2 mL of DCE) in 5 min to furnish yields of
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82% of chloro-pyridine and 2% of pyridine. Another cycloaddition reaction used hetero‐
dienes with ethene, leading to the bicyclic cycloadducts was investigated by these authors.
However, using IL as a doping agent in the DCE was not successful because this reaction
was not suitable for MW irradiation.

Scheme 4.

Leadbeater and Torenius [53] described the Diels-Alder reaction from equimolar amounts of
2,3-dimethylbutadieneand methyl acrylate to furnish the [4 + 2] adduct cyclohex-3-ene using
a mixture of TOL (2 mL) and [iPrMIM][PF6] (55 mg) under MW irradiation (Scheme 6). The
mixture was irradiated at 200 °C for 5 min and led to the cyclohex-3-ene in 80% yield. The
power used during the reaction performed under MW irradiation was 100 W. In a control
experiment, the reaction was repeated in the absence of [iPrMIM][PF6], and it was found that
after the same time (5 min at 100 W power) there was no product formed.

Scheme 5.

The same authors studied [53] the reaction of Michael addition from equimolar amounts of
imidazole and methyl acrylate to furnish the methyl 3-(imidazol-1-yl) propionate (Scheme
7). The mixture of TOL (2 mL) and [iPrMIM][PF6] (55 mg) was irradiated for 2 min (200 °C,
100 W) and led to the methyl 3-(imidazol-1-yl)propionatein 75% yield. The reaction was re‐
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peated firstly in the absence of IL and TOL and secondly in the absence of TOL; in both cas‐
es after the same time and power (2 min at 100 W) there was no product formed.

Scheme 6.

Scheme 7.

Garbacia et al. [57] described the ring-closing metathesis reactions (RCM) using diene sub‐
strates to furnish rings of five-, six-, or seven membered carbo- or heterocycles under MW irra‐
diation (Scheme 8). The mixture of dienes (X = NTs, m,n = 1) and 0.5 mol% Grubbs' catalyst in
the presence of DCM/[BMIM][PF6] (0.04 M of IL) was irradiated in MW for 15 s, furnishing the
desired product in > 98% yields. When neat DCM was used after the same time period only
57% conversion was observed. The authors mentioned that this was not a surprise since the re‐
action temperature during the full irradiation event (0-15 s) was significantly lower for the neat
solvent. On the other hand, it was not possible to use the cationic ruthenium allenylidene cata‐
lyst in conjunction with an IL-doped solvent. With both [BMIM][PF6] and [BMIM][BF4] (0.04 M
in DCM), conversions were below 30%, presumably due to catalyst deactivation.

Scheme 8.
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Leadbeater et al. [54] also reported the conversion of alcohols to alkyl halides using IL. Ini‐
tially, they screened a range of reaction conditions mediated by MW irradiation using 100 W
of power. Focusing on 1-octanol, they varied the MW irradiation time (0.5-10 min), the ILs
([PMIM][I], [iPMIM][Br], [BMIM][Cl]) and the acid (PTSA, H2SO4). The reaction was per‐
formed from equimolar amounts of alcohol, IL and acid. The authors also investigated the
effects of the addition of TOL as co-solvent (2 mL). When these reactions were carried out
with neat IL, they reached 200 °C in a few seconds (≤ 15 s). On the other hand, using TOL as
co-solvent it took a little longer to heat up but still reached 200 °C within a matter of 30–40 s
(Table 6). Results showed that PTSA was more efficient than H2SO4 in he reactions involving
the iodo, bromo and chloro ILs. Reaction times were in an increasing order: iodo < bromo <
chloro substitutions with 0.5, 3 and 10 min, respectively. Most of the reactions using neat ILs
presented higher product yields. The use of 2 mL of TOL as a co-solvent decreased the yield
of the product formed.

IL/(Nucleofile) Time (min) Acid Product

Yielda (%)

Without

co-solvent

Yielda (%)

With

co-solvent

[PMIM][I] 0.5 PTSA CH3(CH2)7-I 81 56

[PMIM][I] 1 PTSA CH3(CH2)7-I 53 38

[PMIM][I] 0.5 H2SO4 CH3(CH2)7-I 3 55

[PMIM][I] 1 H2SO4 CH3(CH2)7-I 38 15

[iPMIM][Br] 0.5 PTSA CH3(CH2)7-Br 68 42

[iPMIM][Br] 3 PTSA CH3(CH2)7-Br 95 32

[iPMIM][Br] 0.5 H2SO4 CH3(CH2)7-Br 73 59

[iPMIM][Br] 1 H2SO4 CH3(CH2)7-Br 42 40

[BMIM][Cl] 3 PTSA CH3(CH2)7-Cl 32 0

[BMIM][Cl] 3 H2SO4 CH3(CH2)7-Cl 49 8

[BMIM][Cl] 10 PTSA CH3(CH2)7-Cl 42 35

aYield of isolated product.

Table 6. Reaction conditions of 1-octanol with IL/(Nucleofile) [54].

Having found suitable conditions, the reaction was performed to a range of different alco‐
hols. Further optimization of the reaction showed that the best reaction conditions for ob‐
taining the 1-octanol were when IL was used in reaction medium. On the other hand, some
dihalogenate 1,8-octanediol have furnished the best results when the co-solvent method was
used as showed in Table 7. When using geraniol, not unexpectedly, geranyl iodide could not
be isolated, but bromide and chloride could be obtained (Table 7). When using benzyl alco‐
hol, it was possible to obtain the iodide in moderate yield (46%), the bromide in good yield
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(68%) but only the chloride in low yield (17%). The authors believe that the co-solvent meth‐
od is better because the organic product is more soluble in the organic solvent than in the IL
and that once formed it moves to the organic layer and is protected from decomposition
which can occur in the higher-temperature, acid IL environment.

Alcohol IL Product
Time

(min)

Yielda

(%)

1,8-Octanediolb [PMIM][I] I-(CH2)8-I 3 53

1,8-Octanediolb [iPMIM][Br] Br-(CH2)8-Br 3 86

1,8-Octanediolb [BMIM][Cl] Cl-(CH2)8-Cl 10 50

Geraniol [PMIM][I] I-CH=C(Me)-(CH2)2-CH=CMe2 0.5 Decc

Geraniol [iPMIM][Br] Br-CH=C(Me)-(CH2)2-CH=CMe2 3 47

Geraniol [BMIM][Cl] Cl-CH=C(Me)-(CH2)2-CH=CMe2 10 30

Benzyl alcohol [PMIM][I] PhCH2-I 1 46 (72)d

Benzyl alcohol [iPMIM][Br] PhCH2-Br 3 68

Benzyl alcohol [BMIM][Cl] PhCH2-Cl 10 17

aYield of isolated product. b0.5 mmol alcohol. cDec = decomposition observed. d3 min.

Table 7. Conversion of alcohols to alkyl halides using co-solvent method [54].

Silva et al. [63] used the MW irradiation technique in the Diels–Alder reaction of tetra‐
kis(pentafluorophenyl)porphyrin with pentacene and naphthacene. One of the synthetic
methods used for the synthesis of these compounds was the use of IL-doped under MW ir‐
radiation. In order to increase the product yields, the authors used NMP and DCB as solvent
systems with higher loss tangents, doped with an [BMIM][PF6]. Unfortunately, none of these
experiments gave better results.

5. Ionic Liquids as Doping Agents in Microwave Assisted N-Alkylation
Reactions

Reactions of N-alkylation of pyrazoles using IL as doping agent under MW irradiation have
been little explored. Leadbeater and Torenius [53] studied the reaction of alkylation of pyra‐
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zoles used 1H-pyrazole and alkyl halides to furnish 1-alkylpyrazoles under MW irradiation
(Scheme 9). The authors found that to this reaction the product was not obtained using 2 mL
of TOL and 55 mg of [iPrMIM][PF6], which were reaction conditions previously established
for other reactions (Diels-Alder and Michael addition). Although the authors did not man‐
age to characterize the reaction products, they affirm that "it is clear to see that all the IL is
destroyed since the biphasic starting mixture (solvent and IL) becomes a monophasic mixture after
just a few seconds of MW irradiation. This shows the limitations of our protocol; it not being possible
to undertake reactions which use or generate nucleophiles such as halide ions".

Scheme 9.

Taking into account the results found by Leadbeater and Torenius [53], Kresmsner et al. [51] de‐
scribed the use of passive heating elements (PHEs) in N-alkylation of pyrazoles using NH-pyr‐
azole and 1-(2-bromoethyl) benzene to obtain 1-phenethyl-1H-pyrazole. PHEs are materials
which allow the compounds with low absorption of MW irradiation or poorly absorbing sol‐
vents such as HEX, carbon tetrachloride, THF, DIO, or TOL to be effectively heated to tempera‐
tures far above their boiling points (200-250 °C) under sealed vessel MW conditions. Thus, the
authors used cylinders of sintered silicon carbide (SiC), PHE, which are chemically inert and
strongly MW absorbing materials in the reactions of alkylation of pyrazoles.

Based on the studies mentioned above, we decided to explore the doping capacity of IL
under MW irradiation in the N-alkylation of pyrazoles. This is a fundamental reaction of
broad synthetic utility that often requires basic catalysis and thermodynamic reaction con‐
ditions. In addition, N-alkylation reaction of this heterocycle is a synthetic approach use‐
ful in the preparation of building blocks for the synthesis of important active compounds
like pharmaceuticals [64] and agrochemicals [65]. In this way, it is clear the importance to
develop a new methodology regarding this reaction. Our research group has previously
reported the N-alkylation of pyrazoles using IL as solvent in oil  bath [31].  Thus,  we fo‐
cused the use of efficient MW irradiation to perform the N-alkylation of pyrazoles in less
polar solvents. Since these molecular solvents poorly absorb MW irradiation due to their
lower loss tangent, the use of IL as doping agents becomes essential to achieve high tem‐
peratures. A symmetrical pyrazole and two reactive alkyl halides were chosen to perform
these tests. [BMIM][BF4] was selected due to its successful results in our previous work of
N-alkylation  in  oil  bath  [31].  The  amount  of  IL  employed was  ~  0.1  mmol.mL-1,  which
represents the minimum quantity required to achieve 150 °C in the four solvents under
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study – HEX, TOL, THF and DIO (Figure 3) [66]. We also selected a base, KOH, to inves‐
tigate the influence of basic catalysis on this reaction [31].  Initially, the reaction between
butyl  bromine  and  3,5-dimethylpyrazole  was  performed  in  absence  of  basic  catalysis.
Based on data presented in Table 8, we could see that the reaction in HEX achieved the
highest  conversion followed by TOL, THF and DIO. In a basic  medium, the conversion
was increased only for TOL and DIO. The maintenance of moderate conversions could be
explained by the low solubility of KOH in the solvents employed (Table 8).

Thus, we decided to investigate if a change in the alkylant agent reactivity could lead to
higher conversions. Since iodine is a better leaving group than bromine, ethyl iodine was
chosen to react with 3,5-dimethylpyrazole. Higher conversions were achieved for all tested
solvents when compared with the results mentioned previously (Table 9). These results sug‐
gest that the nature of the leaving group would have greater influence than the basic cataly‐
sis on the product conversion.

Contrary to the results of Leadbeater and Torenius [53], we chose substrates for the reaction
that showed moderate to good conversions. Thus, the IL is shown as an alternative to pas‐
sive heating elements PHE [13].

Entry Solventa Base
[BMIM][BF4]

(mmol.mL-1)

Conversion

(%)b

1 HEX - 0.117 59

2 HEX KOH 0.123 50

3 TOL - 0.123 17

4 TOL KOH 0.127 37

5 THF - 0.113 17

6 THF KOH 0.124 17

7 DIO - 0.108 9

8 DIO KOH 0.118 41

a3mL. bDetermined by 1H NMR.

Table 8. Conversion of 1H-pyrazole in 1-butylpyrazolein low polar solvents in presence of [BMIM][BF4].
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Entry Solventa
[BMIM][BF4]

(mmol.mL-1)

Conversion

(%)b

1 HEX 0.123 75

2 TOL 0.114 43

3 THF 0.120 71

4 DIO 0.118 43

a3mL.bDetermined by 1H NMR.

Table 9. Conversion of 1H-pyrazole in 1-ethylpyrazolein low polar solvents in presence of [BMIM][BF4].

6. Conclusions

After analysis of the literature and results previously obtained by us about ILs as doping
agents under MW irradiation, it is possible to conclude that: (i) the use of a small amount of
IL in less polar solvents such as THF, TOL, and HEX promotes efficient heating under MW
irradiation in sealed vessels; (ii) solvents with low tan δ when doped with small amounts of
ILs are generally ideal reaction media as they allow a very rapid heating by MW irradiation
in sealed vessels; (iii) an important limitation in the use of ILs as a doping agent is the
chance of IL decomposition at temperatures higher than its thermal stability.

The examples of ILs as doping agents reviewed in this chapter showed that their applica‐
tions are little explored and they have the potential to become an area of greater interest
in the organic synthesis.

7. List of Abbreviations

ACN Acetonitrile

[BMIM][BF4] 1-Butyl-3-methylimidazolium tetrafluoroborate

[BMIM][Br] 1-Butyl-3-methylimidazolium bromide
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[BMIM][I] 1-Butyl-3-methylimidazolium iodide

[BMIM][PF6] 1-Butyl-3-methylimidazolium hexafluorophosphate

DCE 1,2-Dichloroethane

DCM Dichloromethane

DIO Dioxane

DMF N,N-Dimethylformamide

DMAD Dimethylacetalenedicarboxylate

[DMMBisIM][I] (Bis(1-methylimidazol-3-yl))methane iodide

[DMMBisIM][PF6] (Bis(1-methylimidazol-3-yl))methane hexafluorophosphate

[EMIM][Tf2N] 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide

Grubbs' catalyst Grubbs' Catalysts (are a series of transition metal carbene

complexes used as catalysts for olefin metathesis)

[HBIM][BF4] 1-Buthylimidazolium tetrafluoroborate

[HBIM][PF6] 1-Buthylimidazolium hexafluorophosphate

[HBIM][Tf2N] 1-Buthylimidazolium bis(trifluoromethylsulfonyl)amide

HEX Hexane

[HEIM][Tf2N] 1-Ethylimidazolium bis(trifluoromethylsulfonyl)amide

[HMIM][Tf2N] 1-Methylimidazolium bis(trifluoromethylsulfonyl)amide

ILDA Ionic Liquids as Doping Agents

[iPMIM][Br] 1-iso-Propyl-3-methylimidazolium bromide

[iPMIM][PF6] 1-iso-Propyl-3-methylimidazolium hexafluorophosphate

[PMIM][I] 1-Propyl-3-methylimidazolium iodide

PTSA p-Toluenesulfonicacid

PHEs Passive Heating Elements

RCM Ring-Closing Metathesis

TOL Toluene

THF Tetrahydrofurane
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