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Soft Computing Based Mobile Manipulator
Controller Design

Abdessemed Foudil and Benmahammed Khier

1. Introduction

During the last decades, numerous papers have been written on how to apply
neuronal networks, fuzzy (multi-valued) logic, genetic algorithms and related
ideas of learning from data and embedding structured human knowledge.
These concepts and associated algorithms form the field of soft computing.
They have been recognized as attractive alternatives to the standard, well es-
tablished hard computing (conventional) paradigms. Traditional hard comput-
ing methods are often too cumbersome for today’s problems. They always re-
quire a precisely stated analytical model and often a lot of computation time.
Soft computing techniques which emphasize gains in understanding system
behaviour in exchange for unnecessary accuracy have proved to be important
practical tools for many real world problems. Because they are universal ap-
proximators of any multivariate function, the neuronal networks and fuzzy
logic are of particular interest for modelling highly nonlinear, unknown or
partial known complex systems. Due to their strong learning and cognitive
ability and good tolerance to uncertainties and imprecision, soft computing
techniques have found wide applications in robotic systems control. According
to Zadeh (Zadeh, 1994), the basic premises of soft computing are

e The real world is pervasively imprecise and uncertain.
e Precision and certainty carry a cost.

And the guiding principle of soft computing, which follows from these prem-
ises, is exploit tolerance for imprecision, uncertainty, and partial truth to
achieve tractability, robustness, and low solution costs.

Both the premises and the guiding principle differ strongly from those in clas-
sical hard computing, which require precision, certainty, and rigor. However,
since precision and certainty carry a cost, the soft computing approach to
computation, reasoning, and decision making should exploit the tolerance for
imprecision (inherent in human reasoning) when necessary. A long standing
tradition in science gives more respect to theories that are quantitative, formal,
and precise than those that are qualitative, informal, and approximate. Many

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero
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contemporary problems do not lend themselves to precise solutions such as
the mobile robot coordination.

Usually, learning implies acquiring knowledge about a previously unknown
or partially known system. Learning from experimental data (statistical learn-
ing) and fuzzy logic are the most important constituents of soft computing. In
nowadays, the soft computing is considered as a discipline that includes an
emerging and more or less established family of problem stating and solving
methods that attempt to imitate the intelligence found in nature. Very often,
the devices and algorithms that can learn from data are characterized as intel-
ligent. With the increasing complexity of industrial processes, the link among
ambiguity, robustness and performance of these systems has become increas-
ingly evident. This may explain the dominant role of emerging intelligent sys-
tems. The human mental abilities of learning, generalizing, memorizing and
predicting should be the foundations of any intelligent system. The intelligent
system is supposed to possess human like expertise within specific domain,
adapts itself and learns to do better in changing environments and explains
how it makes decisions and takes actions. It should be capable to deal with the
large amount of data coming from different sensors, to plan under large uncer-
tainties, to set the hierarchy of priorities, and to coordinate many different
tasks simultaneously.

The behaviour coordination architectures can be divided into two categories:
arbitration and command fusion schemes. In arbitration, the selected dominant
behaviour controls the robot until the next decision cycle, whereas the motor
commands of the suppressed behaviours are completely ignored. The com-
mand fusion approaches aggregate the control actions of multiple concurrently
active behaviors into a consensual decision. Fuzzy rule based hierarchical ar-
chitectures offer an alternative approach to robotic behaviour coordination. A
set of primitive, self contained behaviours is encoded by fuzzy rule bases that
map perceptions to motor commands. Reactive behaviours in isolation are in-
capable of performing autonomous navigation in complex environments.
However, more complex tasks can be accomplished through combination and
cooperation among primitive behaviours. A composite behaviour is imple-
mented as a supervisory controller that activates and deactivates the underly-
ing primitive behaviours according to the current robot context and goals. A
fuzzy coordination offers the advantage that behaviours are active to a certain
degree, rather than being either switched on or off. The weight with which a
behavior contributes to the overall decision depends on its current applicabil-
ity and desirability.

The goal of this chapter is to present the main role of the soft computing and
the contribution it can bring in the control of the complicated systems such as
robotic systems. By this, we meant only a brief overview of the subject.
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2. Problems and Principle of Robot Control

Industrial Robotics includes mechanical systems that are highly non-linear, ill
defined and subject to a variety of unknown disturbances. The control of such
systems is facing challenges in order to meet the requirements that can be of
different natures. A lot of effort has been devoted to capitalizing on the ad-
vances in mathematical control theory resulting in several techniques ap-
peared to tackle this kind of mechanical systems. The navigational planning
for mobile robot is a search problem, where the robot has to plan a path from a
given initial position to goal position. The robot must move without

hitting an obstacle in its environment. So, the obstacles in the robot workspace
act as constraints to the navigational planning problem. A genetic algorithm
can solve the problem, by choosing an appropriate fitness function that takes
into account the distance of the planned path segments from the obstacles, the
length of the planned path and the linearity of the path as practicable. Fur-
thermore, the learning process is constrained by the three mutually compro-
mising constraints complexity of the task, number of training examples and
prior knowledge. Optimisation of one or two of these objectives often results
in a sacrifice of the third. Learning a complex behaviour in an unstructured
environment without prior knowledge requires a long exploration and train-
ing phase and therefore creates a serious problem to robotic applications. To-
day’s robots are faced with imprecise, uncertain, and randomly changing envi-
ronments. The desire to deal with these environments leads to the basic
premises and the guiding principles of soft computing.

Robot control is predominately motion control using classical servomechanism
control theory. Due to the nonlinearity of the manipulator motion, a wide vari-
ety of control schemes have been derived. Classical schemes include computed
torque, resolved motion, PID decoupled model control, reference adaptive and
resolved motion adaptive control (Whitney, 1969), (Begczy, 1974), (Dubowsky
& DesForges, 1979). These schemes can be very complicated and require inten-
sive computer resources. For instance, the computer torque technique uses the
Lagrange-Euler or Newton-Euler equations of motion of the manipulator to
determine the required torque to servo each joint in real time to track the de-
sired trajectory as closely as possible. However, since there are always uncer-
tainties in the robot dynamic model, the ideal error response cannot be
achieved and the performance could be well degraded. This problem led peo-
ple to using adaptive control approaches to solve these problems and rela-
tively good results were obtained (Craig et al, 1987), (Spong & Ortega, 1988).
The problem is complicated if we think to enlarge the workspace of the ma-
nipulator by mounting over it a mobile platform, resulting on a new system
called a mobile manipulator. Researches to investigate the capabilities of mo-
bile platforms with onboard manipulators are devoting considerable effort to
come up with solutions to this complicated system (Yamamoto & Yun, 1994).
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Now, since the first control a plication of Mamdani (Mamdani & Assilian 1974)
and his team, a lot of efforts have been devoted to capitalizing on the advances
of fuzzy logic theory. Many fuzzy control approaches appeared. In fact, fuzzy
logic provides tools that are of potential interest to control systems. Fuzzy con-
trollers are a convenient choice when an analytical model of the system to be
controlled cannot be obtained. They have shown a good degree of robustness
in face of large variability and uncertainty in the parameters, and they lend
themselves to efficient implementations, including hardware solutions. These
characteristics fit well the needs to precision motion control of mobile manipu-
lators. However, the main difficulty in designing a fuzzy logic controller is the
efficient formul tion of the fuzzy If-Then rules. It is well known that it is easy
to produce the antecedent parts of a fuzzy control rules, but it is very difficult
to produce the consequent parts without expert knowledge. The derivation of
such rules is often based on the e perience of skilled operators, or using heuris-
tic thinking (Zadeh, L.A.1973), (Mamdani, E.H. 1974). In recent years and due
to the availability of powerful computer platform, the theory of evolutionary
algorithms starts to become popular to the problem of parameter optimization.
Genetic algorithm as one approach to the implementation of evolutionary al-
gorithms was used by Karr, (Karr, C.L. (1991) to generating the rules of the
cart-pole balancing fuzzy logic controller. In this work, we investigate the
problem of the motion control of a mobile manipulator using fuzzy control
schemes. The m chanical system is split into two subsystems where the mobile
platform and the manipulator constitute the parts. Appropriate fuzzy control-
lers are used to control each of these two subsystems. A genetic algorithm
generates the rules of the fuzzy controllers letting the system turning around
an optimal solution. The motion of the platform and that of the manipulator
are coordinated by a Neural like network, wich is a sort of adaptive graph of
operations, designed from the kinematics model of the system. A learning
paradigm is used to produce the required reference variables for each of the
mobile platform and the robot manipulator for an overall coordinate behav-
iour.

3. Robot Model

3.1 A mobile manipulator overview architecture

A mobile manipulator system is a robotic manipulator mounted on mobile
platform.This combination allows manipulation tasks over unlimited working
space. However, since the platform and the manipulator have independent
movement, a particular point in the workspace may be reached in multiple
configurations, resulting in a system with redundancy (Lee, ]J. K., & Cho, H. S.
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1997). This can be helpful when it is desirable to perform tasks in a cluttered
environment, or to optimally configure the system (Brock, O., Khatib, O. &
Viji, S. 2002). Our o jective in this work, is to devise a controller for each of the
mobile base and the manipulator separately, then we implement a sort of
adaptive graph of operations to generate trajectory in the joint space. The net-
work provides reference output values of the desired motion to the mobile
manipulator system. The mechanical system is made up of the non-holonomic
platform upon which is mounted a robot manipulator with 3 rotational de-
grees of freedom as it is shown in Figure 1. The accomplishment of the task is
the result of the perm nent movement of the two structures for which the suc-
cess is based on the satisfaction of the tracking error. If we consider Figure 1
where the four principal coordinate frames are shown: World frame O,,, plat-

form frame O,, manipulator base frame O,, and the end effector frame O, .
Then, the manipulator’s end effector position/orientation with respect to O,,
is given by:

TV =TVT'T?

Such that the matrix T," is determined by a certain A(q) matrix, T, is a fixed

matrix and T is determined by the joint variable vector = [61 ,0,,...,0, ]T M,

represents the degree of freedom of the arm manipulator.

Z,
t

Xy

Oy

Figure 1. Mobile manipulator configuration
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The vector of position of the end effector x;’ is a non-linear function of the
configuration vector ,q =[ p",0" ]T e R",(n=3+n,). Thejoint coordinates of

the manipulator are 6 =[6,,6,,6,] (thus (1, =3). Therefore the generalized

coordinates of the mechanical system are:

q =(ql/q2"""q6)T =(xB’yB/ZB’81/92/63)T

Hence, the generalized space dimension of the mechanical system is equal to
A=6. Now, for a given mechanical configuration system g, its structure imposes
to its end effector ) position and orientation constraints. In our case, only the
end effector position is considered. Therefore, the number of constraints is r
duced to 0=3. On the other hand, we can observe that the system is non
holonomic, and taking into account the constraint of the non-holonomy of the
mobile platform, we can deduce the order of redundancy, which is equal to

(A 0-1) = 2. This redundancy helps increasing the manipulator dexterity, pre-
vents the arm from singular configurations, and the let the system away from
obstacles while completing a given task. On the other hand, the control of such
mechanisms becomes much harder.

If we refer to Figure 1 and following the D-H parameterization, the outputs of
the neural like network are given by equations (1), which designates the Carte-
sian coordinates of the task variable E, with respect to the world frame {W}. In
a closed form this can be written as X, (t)=F(q(t)), where F represents the

direct kinematic mapping from the joint space to the task space and
X (H)=(x; ,x; ,x; )"

xy =x, +cos(8). [1,cos(6,)+1 cos(6, +6,)]
vy =y, +sin(8) .[1, cos(6,)+1, cos(6, +6,)] 1)

2V =2V +1 —1,sin(6,)—1, sin(6, +6,)

Such that,

0=6+¢ 2)

Where ¢ is the heading angle of the mobile platform, and /,/, and /; are the

lengths of the three links composing the manipulator arm. x , y, ,z; , are the
coordinates of the point B located in the front of the mobile platform with re-
spect to the world frame {W}. In the sequel, we consider z; equals zero for
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simplicity. The goal is to find the generalized trajectory q(f) for a given task
space trajectory X, (t) such that F(g(t)) = Xk(t) is satisfied. Since the system is

redundant, the number of solutions is expected to be infinite. To realize a gen-
eralized task of the mechanical system, one has to derive the set of the A gener-
alized coordinates. In this context, an approach is suggested to investigate and
solve this problem when we make a complete motion of the end effector re-
sulting from a combined operation of the two subsystems that work in a coor-
dinate manner.

3.2 The dynamic model of the manipulator

Two main approaches are used by most researchers to systematically derive
the dynamic model of a manipulator, the Lagrange-Euler and the Newton-
Euler formulations. The dynamic equations of motion are highly nonlinear and
consist of inertia loading, coupling reaction forces between joints and gravity
loading effects. For an n-link rigid manipulator the vector dynamic equation is

given by:
7=M(0)0 +B(6,0)0+ F(6,0)+G(6) 3)

where @€ R"is a vector of joint displacements, 7€ R" is a vector of applied
joint torques, M(6):R" — R™" is a symmetric positive definite manipulator in-
ertia matrix, B(6,0):R"XR"xR" — R" is a vector of centrifugal and Coriolis
terms, F(6,0): R"XR" — R"is a vector of frictional torques, and G(8):R" — R”
is a vector of gravitational torques. The control of the robot manipulator is es-
pecially challenging due to the generic high nonlinearity existing in its dy-
namic model. Although the equations of motion (3) are complex and nonlinear

for all but simple robots, they have several fundamental properties, which can
be exploited to facilitate control system design.

1. Property 1. The inertia matrix M (€) is symmetric, positive definite and
both M(6) and M '(#) are uniformly bounded as a function & of R".

2. Property 2. There is an independent control input for each degree of free-
dom

3. Property 3. The Lagrange-Euler equations for the robot are linear in the
parameters.

Most feedback control laws, where a PD or PID controllers are used, are based
on simplified dynamic equations. However the approach works well only at
slow speeds of movement. At high speeds of movement the Coriolis and cen-
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trifugal forces are major components of the dynamic equations and conse-
quently the error can not corrected. A lot of effort has been devoted to capital-
izing on the advances in mathematical control theory resulting in several tech-
niques appeared to tackle this kind of mechanical systems. May be the most
famous and which is considered, as the basic approach becoming very popular
is the model based computed torque method. However, since there are always
uncertainties in the robot dynamic model and the disturbances possibly aris-
ing from the actual running of the actuator or some other causes, the ideal er-
ror response cannot be achieved and the performance could be well degraded.
Now, since the reliability of the PID controller has been field proven besides
the application of fuzzy logic theory to process control, we propose in the next
section a combination of the two to make a robust controller for robot manipu-
lators.

3.3 The Kinematic model of the mobile platform

In this section, a kinematic description of a mobile robot is given. The vehicle
has two driving wheels at the rear corners and two passive supporting wheels
at the front corners. Two DC motors independently drive the two rear wheels.
The vehicle presents however two constraints: It is non-holonomic, which
means that it must move in the direction of the axis of symmetry, i.e.

y,—Xx,tang=0 4)

¢ is the heading angle of the vehicle from the X-axis of the world coordinates
as it is depicted in Figure 2.

Figure 2. Mobile robot schematic
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Writing the classical relationships between the velocity point O, and those of
points O; and O,, we can easily determine the linear ve'locity v,, and the instan-

taneous angular velocity @ of the mobile robot:

V.=V _+00, A® ()
V.=V ,+00, A@ (6)
D=k )

k is the unit vector along the Z4 axis; and v, and v, are the linear velocities
of the mobile robot points O, and O, respectively. When projecting expres-
sions (5) and (6) on the X-axis and the Z-axis, we get the expressions of v, and

¢ as follows:

v, =3+ @) ®)

d=5 (@ -) ©)

r and R are respectively the radius of the wheels and the width of the vehicle
as it is shown in Figure 3. It has been proven by Samsung and Abderrahim
(Samsung, C. & Abderrahim, K.A. 1990), that the vehicle converges better to its
reference when controlling a point located in front of the rear wheel axis.

—

4*

B —

2R

Figure 3. Geometric characteristic of the mobile robot
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In this paper point B, as it is obvious from Figure 3, which is located at a dis-
tance d from point O, has been chosen to be the position control of the vehicle
such that:

X, =x,+d.cos¢ (10)

Yy =y, +d.sing (11)

where:

x,(t+1)=x,(1) +AD.cos(¢+%) (12)

y,(t+1) =y, (t)+AD.sin(¢+ %) (13)

Such that:

AD = g(Aq,, +Aq,) (14)
r

A= SR (Aq, —Aqg)) (15)

Where, (x,,y,) and (x,,y,) denote the coordinates of points O and A respec-
tively, whereas Ag,and Ag, are the angular steps of the right and left wheels
respectively.

4. Robot Control

The control strategy combines the mobile base behaviour and the manipulator
behaviour to produce an integrated system that performs a coordinated mo-
tion and manipulation. We propose in this section the two layer robot control-
ler and the genetic algorithm to determine the solution that gives the optimum
rule base for a precompensator which is associated with the PID controller
(Abdessemed, F. & Benmahammed, K. 2001).

4.1 The two layer robot controller design

Control inputs to the joints are composed of both feedback PID control and
precompensator sub-systems components, (Fig. 4). The output of the precom-
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pensator is considered as a new reference input to the PID-plant system. The
introduction of the precompensator is justified by the fact that when the sys-
tem evolves toward an abnormal mode, it is necessary to anticipate this evolu-
tion rather than to wait to arrive to this mode in order to avoid its conse-
quences especially if it is dangerous. The dynamics of the precompensator-PID
controller is explained as follows: The two inputs to the PID controller are

e, (k) and é(k);

Where:
e, (k) = 6 (k)—6,(k) (16)
é,‘ (k) = e:i (k) - éi (k)/ i=1,2 ,3 refer to the ith link. (1 7)

Note that the desired angular position is not directly compared to the meas-
ured one, but passes first through the precompensator to be transformed to a
new reference angular value for the PID-plant system. Thus, one writes:

where:
6; (k) =6 (k) +m, (k) 25 gua 5 (18)
mi = Fi (ei, Aei); i=12 and 3. (19)

e(k) and Jde(k) are inputs to the map F, and mi(k) is the output of the i-th joint;
such that:

e (k)= 9,~d (K)=6.(k); 21 3 ana 3 (20)

Ae,(k)=e(k)—e,(k=1); 15 4 3 (21)
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+ u |ROBOT [—

ed-l— % &
1(?" Kq .

Figure 4. Diagram simulation of one-link robot control

4.1.1 The PID controller parameters determination

As a first attempt to regulate the robot manipulator, we consider the propor-
tional-integral-derivative (PID) control law given by

7=K,e(t)+ K ,e()+ K, [e(t)dt (22)

Where e(t)=6’ -6 and 6‘and @ are the desired reference and the measured
trajectories respectively. The required controller parameters are found based
on simplified dynamic equations; i.e, the manipulator is supposed evolving at
slow speeds of movement. Consequently, the Coriolis and centrifugal forces
are of the dynamic equations are neglected, thus

7=M(6)8 (23)

Considering equations (22) and (23), the following transfer function is ob-
tained:

2
O _ kS tkpstk, (24)
0"  Js +k,st+k,s+k,
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Thus, the characteristic equation is written as:

A(s)=s3+@s2+hs+&:0 (25)
J. J J

i i i

Ji is taken to be the fixed term of the Ji; element of the inertial matrix J. In ro-
botic control, the gains are typically chosen so that the two poles are double
and real negative. This gives a damping coefficient of one and by consequence
a fast response without oscillations. The remaining pole is then placed on the
real axis far away from the first two. Thus:

A(s)=(s+P)2(s+np). (26)

The desired gains are given by the following relationships:

kp, =m;,(2n+ 1),32;
kp =m;(2+n)p, (27)
k= minﬂ3

with: >0, n>1. The choice of  depends on the sampling frequency as well as
to possible saturation effects.

4.1.2 The precompensator design

The precompensator is a fuzzy controller. Its main goal is to enter into action
whenever it is needed to reinforce the conventional controller to provide the
necessary commands that allow the end effector to track the desired trajectory
with minimum error. A fuzzy controller is a system, which use a rule-based
expert in the form of If Then statements. The input state with respect to a cer-
tain universe of discourse constitutes the premise of the rule, whereas the out-
put state constitutes the consequence of the rule. We can distinguish among
the steps of the rule treatment, the following procedures: Fuzzification, Fuzzy
inference and Defuzzification. The main difficulty in designing a fuzzy logic con-
troller is the efficient formulation of the fuzzy If-Then rules. It is well known
that it is easy to produce the antecedent parts of a fuzzy control rules, but it is
very difficult to produce the consequent parts without expert knowledge. In
this work, the fuzzy rule base of the precompensator designed is found by us-
ing a genetic algorithm that search for the solution that gives the optimum rule
base for the precompensator. If we assume that the error and its derivative are
partitioned into K and L subsets then, the the number of possible combinations
is LxK, which represent the number of rules per output. A single rule is de-
fined as:
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Rule Rij: ifeis A° and Aeis Af‘e then mijis A i=1,2,..7j=1,2,.., 7:p=1,2,.., 7.

Rjjis the label of he fuzzy if-then rule, 4° and 4;° are fuzzy subsets on the in-
terval [-1, 1], and 4] is the consequent fuzzy subset. The aim is to sort out

the appropriate optimised rules adequate for the system by employing an
evolving genetic algorithm. The system being evolved is encoded into a long
valued string called a chromosome. Initially a random population of these
strings is generated. Each string is then evaluated according to a given per-
formance criterion and assigned a fitness score. The strings with the best score
are used in the reproduction phase to give the next generation. Here, the ge-
netic algorithm is presented as a seven-tuple entity and is abstracted in the fol-
lowing encapsulated form:

GA={M(), I, D, @, sel, pcross, pmut } (28)
where:

M) = {my, ... ,ms}! encoding chromosome (-1<mj e R<1).

leX length of chromosome.

DeX population size.

Dr: M- fitness function.

sel : CromP — Crom parent selection operation

pcross: Crom? — Crom? crossover operation.

pmut : Crom — Crom mutation operation.

Each individual chromosome represents a complete rule base solution formu-
lated as a set M of the generated KxL fuzzy if-then rules such that:

Mi={m/ | i=1, .., D;j=1, .., I} (29)

The set of all the individuals represents a population. If we denote by P(t) a
population at a time ¢, then we can write:

P@t)={M"(t), M*(t), ... M" (1)} (30)

Where m/ € S, € R, are the j-th consequent parts of the fuzzy rules of the i-th

individual. It takes its value from the set S,,={-1, -0.66, -0.33, 0.0, 0.33, 0.66, 1}.
These values correspond to the projection of the peaks of the membership
functions on the normalized universe of discourse of the action.



Soft Computing Based Mobile Manipulator Controller Design 481

4.2 Mobile platform fuzzy control design

If we consider the vehicle moving in a free obstacle environment, then the op-
timal trajectory from its current position to its end configuration is naturally a
line joining these two extreme points as it is shown for instance by Figure 5,
where @is the angle between the symmetric axis of robot and the line that joins
the control point of the robot to its final point.

Figure 5. Example of situation " Reaching a point "

If we link the points with segments, then the goal is to control the driving
point A of the autonomous robot with respect to these segments and to come
the closest possible to the end point. The distance p becomes zero when the
vehicle stabilizes at its final configuration. Figure 6 gives a schematic block
diagram of this architecture. From this figure one can notice that the inputs to
the fuzzy controller are p and §, and its output is the steering angle 3 (Abdes-
semed, F. & Benmahammed, K. 2004)

P
Calculation p Fuzzy Logic { Robot
of pand 6 Controller
Odometry
Xp Yy @

Figure 6. Block diagram of the controlled system

The best fuzzy system is implemented with five and eight triangular member-
ship functions for the controller input variable p and 6 respectively. The sec-
ond step in designing an FLC is the fuzzy inference mechanism. For instance,
the knowledge base of the system consists of rules in the form:
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Rule Rj: IF pis S AND @ is NM THEN ¥ is np i=1,2,..N;j=1,2,..,K;p=1,2, .., L.

Such that:

nk)=Flp(k), (k)] (31)

p(k) and Gk) are inputs to the map F, and the output yk) denotes a numerical
value within the interval [-90°, +90°], characterizing the relative variation in
the direction that should be taken by the vehicle to reach the final point. The
rules could be defined by using the human-like description of the vehicle's
movement behaviour. But, this approximate human reasoning may lead to cer-
tain unsatisfactory rules. Furthermore, the global behaviour of the vehicle may
result from the combination of several basic behaviours for instance, the trajec-
tory tracking, the vehicle speed, and the obstacle avoidance. As a matter of
fact, it is not obvious to define the respective rules. Therefore, and following
the same approach described in the last section, we propose an evolutionary
algorithm as an efficient solution for the extraction of the consequent part of
the rules. A (u+A)-evolutionary programming is described by an octuple entity
defined by the following format:

EP={I(t), L, u, A, sel, pmut, f, g} (32)

For which the components are defined as follows:

- I=[a1, a2, ..., ax] Encoding chromosome

- 2Le X Length of chromosome

- pe R Population size

- Ae X Number of offspring = u
- pmut: I =1 mutation operator

- ERL-SR fitness function

- g RL-R set of constraints

The design of the EP is based mainly on three mechanisms:

e The representation of individuals,
e Implication of the variation operators,
e The generation procedure.
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Each individual chromosome represents a complete rule base solution. The
components: (¢, =m,, a,=m,, ..., a, =m,) determine the consequent part of the

fuzzy rules and the remaining components, (q,, =0, q,,,=0,, ..., a,, =0,) con-

tain the standard deviation, which controls the mutation process. A complete
string of chromosome could be written in the following way:
aa, ... a,a,,.,4,., ... 4, , representing one individual. The set of all the individu-
als represent a population. If we denote by P(k) a population at a time k, then
we can write:

Piky=J I'th) with I'={a, ) (33)

i=l..u

Where It designates the i-th individual in which the components a; describe the
consequent parts of the rules and the standard deviations. In this application,
we have rather chosen the floating point encoding instead of the binary code.
The algorithm seeks many local optima and increases the likelihood of finding
the global optimum, representing the problem goal.

5. Motion Control of a Mobile Manipulator

The control strategy combines the mobile base behavior and the manipulator
behavior to produce an integrated system that performs a coordinated motion
and manipulation. If we refer to the arm manipulator by agentl and the mobile
platform by agent2, then the architecture shown by Figure 7 illustrates the ac-
tions on the environment by the two defined agents.

Action

Action

Figure 7. Configuration of the coordinated motion and manipulation of the robotic
system architecture
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To provide a solution to the mobile manipulation motion, we have arranged
the direct geometric model equations (1) into a sort of adaptive graph of opera-
tion made up of three layers, and which we have called a neural-like-network
(Fig. 8). Each layer has a number of transfer functions each of which is defined
by the expressions given by equations (34). This neural-like-network is the ker-
nel of our proposal; it is very interesting and uncommon in robot trajectory
generation (F. Abdessemed, et al. 2006). In this case, the two mechanical stru
tures are considered as a unique entity. This arrangement will facilitate the
implementation of the back propagation algorithm as a learning rule to adapt
the weights so that the output values of the neural-like-network come close to
the desired reference values describing the task space trajectory. The accom-
plishment of the task is the result of the permanent movement of the two
structures for which the success is based on the satisfaction of the tracking er-
ror. Figure.8 illustrates the model architecture of this combined structure. For
convenience we define x31, x32, x33 as the outputs of the network, and which
designates the Cartesian coordinates of the task variable E : x;",y," and z,’

respectively. Where:

S0, w,) = x,, =cos(w,0)

J12(6;, wy,) = x,, = cos(w,0,)

fi3(x,) = x5 = cos™ (x;,)

4 (x5, 65, wyg) = x4 = (x5 + w3,0,)

fo1(x,)) = x,, =sin(cos™ (x,,))

For (s %) = Xy =1 cO8(x,,) + 1,3, (34)
3 (X3) = x53 =1, sin(x, ;)

Saa(3x4) = xpy = 5 8In(x;)

S (X X)) =25 = XX, + By

S (X315 X00) = X3, = X,,.X0, + D,

S (Xg35 Xp0) = X553 =1 =X — Xy,
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Xp - b,a

Layers: 1 2 3

Figure 8. The adaptive graph of operations

For convenience we define x; as the outputs of the network, and which

X,,Xy,,%, are the outputs of the network, and wich designates the Cartesian
w w_Ww

coordinates of the task variable E.(x; ,y; z; ). Let q(k) be the input vector,

3177%327

such that ¢" (k)=[6.6,,6,,x,,y,] and "X}’ the measured output vector such
that X[ (k)=["x.","yy "z ]",, and the weighting vector W such that
W' (k) =[w,,w,,, w,;]. If we set the criterion E, be the tracking error given by

equation (35), then the control objective is to design a control law, which guar-
anties: E, to go zero when k goes to infinity,, k is the running time.

=

3)
Ep: (x3k_rk)2:[(xsl_’”1)2+(x32_”2)2+(x33_”3)2] (35)

1

L
Il

Where

XY =(r,1,m) =%, "yl , "z )", represent the desired operational coor-

dinates and "X]' =(x,,x,,,%;) =("x; , "y, , "z, )" the operational meas-

ured coordinates in the world frame. The effect of adjusting the weighting vec-
tor W to the error Ep is determined by the ordered derivatives d"E, /dW (k)

(Werbos, 1974). Now, we apply the back-propagation learning rule to generate
the appropriate parameter-weighting vector W(k) (Rumelhart et al, 1986). Once
determined, the weights are used to update the input vector g. The elements of
this vector will serve as inputs to the low level controllers of the two agents as
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illustrated by the block diagram of Fig. 9. The reference states of the plant at
time k+1 are functions of the reference states at time k and the computed
weights at time k+1, and can be expressed symbolically as

q(k+1)=¥(q(k), W(k+1)) (36)
Back-
Propagation [«
Algorithm
o) Agent | Neural- E,
like flevey)
Network

Figure 9. Configuration of the controlled system including the adaptive graph of op-
erations

6. Back-Propagation Learning Rule

6.1 Output Layer

The error signal for the j-th output node can be calculated directly:

. :8+Ep:8Ep
> ox;, ox;,
Therefore

3= 2(X0 x5, ), €5, =200 —Xy,), €33 = 220 = X35)
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6.2 Internal Layers

The error signals of these internal nodes at the j-th position are calculated us-
ing the following equation

_a+Ep _N(l+1) a+Ep Xaﬁ

£ +1,m
" ox, &0 d
Error Error (38)
Signal of Signal of
layer 1 layer 1-+1
N(I+1)
_ aﬁﬂ,m
€= Elr1m 3 (39)
m=1 X1,i
Such that: 0< [ < L—-1
2 /-
= — 40
gzﬁj Zilglm ox . ( )
"= 27 j=12

Therefore the error signals of the nodes at the internal layer are as follows:

&, T80 X5 5, &, 1.X 1 TE X, €,;5—E5;, & ,=&;;

6.3 Input Layer

The first layer contains four neurons arranged in the way presented by Figure
8. The general form for the error signal is given by the following equation:

4
2,m
81:28’,”5’ (41)
b ok, ;

Explicitly the error signals are found to be

—— + £ ,.X,, (42)

81,2=_82,2-12_81,3ﬁ (43)
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& 3=E, 31, cos(x, ;) +€, (44)
&=L & .c08(x,) - &,sin(x,,) | (45)
6.4 Weight adjustment

To adjust the weights we make use of the following known equation:

whk+1)=w.(k)—u 9, (46)
ij ij waj (k) w (k)

Where

0'E, J'E,d"f, . o).
ow dx,, ow T 9w

(47)

Therefore the weights are updated according to the following resulting equa-
tions:

w, (k+1)=w;, (k) +7¢, . 6. sin(w,,.0) (48)
Wy (ki +1) = wyy (k) + 778, 5.6, $in(w,6, ) (49)
wyy (k +1) = wy, (k) —116,6, , (50)
b (k+1)= b, (k)—1x,8; (51)
by(k+1) = b,(K)~11v,¢,, (52)

Where, the two last equations represent the updates of the biases b; and b..
Nevertheless, the steepest descent algorithm is slower for on-line applications.
For that reason, it is rather advisable to use the Levenberg-Marquardt algo-
rithm, which has proved to be an effective way to accelerate the convergence
rate. Its principal advantage is that it uses information about the first and sec-
ond derivatives and does not need to invert the Hessian matrix.

xn=x, [ ST +ul ] JTe (53)



Soft Computing Based Mobile Manipulator Controller Design 489

The weights are updated on each iteration by the following found expressions:

w, (k+1)= Wll(k)_Lgl,l

2

jll+/’l
Wy, (k+1) =w,, (k) - .2J22 &,
Jn TH
J33
k+1)= k)——==—¢
Wi ( ) =wy; (k) j323+ﬂ 1,4 (54)
bk +1)=b (k) -—4—e,
JuuTH
by(k+1)=b,(k)~—2—e,
Jss T H
Where

j11 = _(61 + (p)sin(w”((?] + (P))
jzz = _62 Si”(wzzaz)

j33 =63 (55)
j44 =X
jss =V

Where, I is the identity matrix. At this end stage, we give the reference state
variables at time k+1 and which are represented by the following expressions:

O(k+1)=w,,(k+1)8(k)

0, (k+1)=wy, (k+1)6,(k)

0, (k+1) = wy; (k+1)6,(k)

6,=0-¢ 56)
Xg(k+1)=b,(k+1)x,(k)

V(k+1)=b,(k+1)y, (k)



490 Industrial Robotics: Theory, Modelling and Control

7. Simulation Results

Simulation examples are carried out in order to evaluate the developed ap-
proach. It is desirable to move the end effector from its initial position P (1, 1,

0.2) to its final position P, (5,5,0.5), by tracking instantaneously a linear speci-

fied trajectory of the end effector generated by a uniform Cartesian movement.
Neural-like-network learns the desired values presented and adjusts the
weights appropriately in order to present to the system the corresponding ref-
erence state variables. The results of the simulation are shown in Figures 12 to
15 and indicate how successfully the Cartesian coordinates of the endeffector
track their corresponding reference values very closely. We notice that the
small departures from the reference trajectories are due to the cumulated tol-
erable errors from the learning process. The learning algorithm was run by us-
ing a learning rate p=0.05 for a laps of time not exceeding real time control. All
the weights have been initialised to the value of one. At each step, the learning
rate is updated depending on the behaviour obtained. If the overall error is
improved, then the learning rate is increased by the value p=p*p_inc; other-
wise, it is deceased by the value p=p*p_dec, knowing that p_inc and p_dec take
the values of 1.05, and 0.95 respectively. Figures 16 to 19 show the plots of the
manipulator angular values as well as the orientation of the mobile platform,
and Figure 20 clearly shows the trajectories of the end effector and the mobile
platform in the xyz space. Figure 21 depicts a 3D perspective of the simulation
environment.
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8. Conclusion

Soft computing is an emerging field that consisting of complementary ele-
ments of fuzzy logic, neural computing, evolutionary algorithms, and machine
reasoning. In this

paper we propose the use of a back propagation to train a neural-like-network
to coordinate the motion of a robotic manipulator with the motion of the mo-
bile platform over which a robot manipulator is mounted. The network pr
vides reference output values of the desired motion to the mobile manipulator
system. The parameter weighting vector determined is used to compute inputs
to the platform and to the manipulator so that the end-effector trajectory is
tracked with minimum error. Robot manipulator and platform control is pre-
dominately motion control. The mobile platform is considered as a “macro-
mechanism” with coarse, slow dynamic response, and the arm is a fast and ac-
curate “mini-device. For this reason we consider the kinematics model for the
mobile platform and the dynamic model for the robot manipulator. Fuzzy con-
trollers are used as means to control each of the two subsystems separately;
and the overall system demonstrates very good control characteristics.
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