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1. Introduction 

Iron is the fourth most abundant element on Earth and is essential for almost all living 

organisms. However, it is not accessible to cells in every environment. Ferric iron solubility 

is low at physiological pH, and in aerobic environments, ferrous iron is highly toxic. Thus, 

iron is not free but bound to proteins [Clarke et al., 2001; Taylor and Kelly, 2010]. In complex 

organisms, the majority of iron is intracellularly sequestered within heme-compounds or 

iron-containing proteins or is stored in ferritin.  

Extracellular ferric iron is bound to lactoferrin (LF) and transferrin (TF). Lactoferrin is found 

mainly in secretions such as milk, saliva, mucosal secretions, and other secretory fluids. TF 

is the iron transporter that allows cellular iron uptake. Additionally, TF and LF maintain 

Fe3+ in a soluble and stable oxidation state, avoiding the generation of toxic free radicals 

through the Fenton reaction (Fe2+ + H2O2→ Fe3+ OH- + OH), which are deleterious to most 

macromolecules [Clarke et al., 2001; Wandersman and Delepelaire, 2004; Halliwell and 

Gutteridge, 2007; Gkouvatsos et al., 2012].  

1.1. Transferrin and the transferrin receptor: An overview 

TF is mainly found in serum and lymph. It binds two atoms of Fe3+ with high affinity (Ka of 

10-23 M). TF is a single-chain glycoprotein with a molecular mass of approximately 80 kDa 

and two homologous lobes. Its saturation is indicative of body iron stores; under normal 

conditions, only 30% of the TF iron-binding sites are saturated. TF and LF maintain the free 

iron concentration at approximately 10-18 M in body fluids, a concentration too low to 

sustain bacteria and parasite growth [Bullen, 1981]. The relative low TF saturation and high 

affinity for iron allows TF to maintain a low iron concentration in the serum, thus acting as 
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the first line of defense against infections in that fluid by preventing invading 

microorganisms from acquiring the iron essential for their growth [Kaplan, 2002; 

Wandersman and Delepelaire, 2004; Halliwell and Gutteridge, 2007; Gkouvatsos et al., 2012]. 

Virtually all cells express a transferrin receptor (TFR) on their surface; the quantity of 

receptor molecules reflects the cellular iron requirement. Human TFR (HsTFR) is a 

glycoprotein of 180 kDa formed by two disulfide-bonded homodimers. The TFR/TF complex 

is endocytosed inside clathrin-coated vesicles in practically all cell types. In early 

endosomes, the content of the vesicle is acidified to approximately pH 5.5. This low pH 

weakens iron-TF binding; then, the iron is removed, reduced by a ferrireductase (Steap3), 

and transported out of the vacuole via the divalent metal ion transporter-1 (DMT1) to form 

the cellular labile iron pool (LIP); this pool consists of a low-molecular-weight pool of 

weakly chelated iron (ferrous and ferric associated to ligands) that rapidly passes through 

the cell. Both apoTF (TF without iron) and TFR return to the cell membrane to recycle the TF 

back to the bloodstream to bind iron in another cycle. At physiological pH, TFR has a much 

higher affinity for iron-loaded TF (holoTF) than for apoTF [Halliwell and Gutteridge, 2007; 

Sutak et al., 2008; Gkouvatsos et al., 2012]. There are two different TF receptors, TFR1 and 

TFR2. TFR1-mediated endocytosis is the usual pathway of iron uptake by body cells. TFR2 

participates in low-affinity binding of TF, supporting growth in a few cell types, but the true 

role of TFR2 is unknown [Halliwell and Gutteridge, 2007; Gkouvatsos et al., 2012]. 

2. Transferrin and pathogens 

The effective acquisition of iron is indispensable for the survival of all organisms. To 

survive, bacteria, fungi and parasitic protozoa in particular require iron to colonize 

multicellular organisms. In counterpart, their hosts have to satisfy their own iron 

requirements and simultaneously avoid iron capture by pathogens. It is very important to 

the host iron-control strategy to keep this element away from invading pathogens: 

intracellular and extracellular iron stores are meticulously maintained so that they are 

unavailable for invaders. As a consequence, pathogens have evolutionarily developed 

several strategies to obtain iron from the host, e.g., specialized iron uptake mechanisms 

from host iron-binding proteins, such as TF, through the use of specific TF binding proteins 

or receptors [Wilson and Britigan, 1998; Wandersman and Delepelaire, 2004; Halliwell and 

Gutteridge, 2007; Sutak et al., 2008; Weinberg 2009]. 

2.1. Prokaryotic pathogens 

Although it is out of the scope of this chapter, it is important to briefly mention as a 

reference what has been found in other pathogens such as prokaryotes. Bacteria have 

evolved specific and efficient mechanisms to obtain iron from various sources that they may 

contact in their diverse habitats and to compete for this element with other organisms 

sharing the same space. Some pathogenic bacteria can produce and secrete siderophores, 

which are low molecular-weight compounds with more affinity than the host proteins for 

Fe3+; iron-charged siderophores are recognized by bacterial-specific receptors that deliver 
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iron into the cell. Other bacteria directly bind iron from host iron compounds and proteins 

such as heme, hemoglobin, LF, TF and ferritin [Wooldridge and Williams, 1993; Wilson and 

Britigan, 1998; Wandersman and Delepelaire, 2004]. Studies in Gram negative bacteria 

describe their interactions with host iron-containing proteins through outer membrane (OM) 

receptors; the iron goes through the inner membrane (IM) and is subsequently stored. Iron 

regulates genes encoding receptor biosynthesis and the uptake of iron proteins 

[Wandersman and Delepelaire, 2004; Halliwell and Gutteridge, 2007]. 

Species of the Neisseriaceae and Pasteurellaceae families are the most studied. They acquire 

iron directly from host TF, through a receptor on the OM that contacts holo-TF and extracts 

its iron and transports it across this membrane. The receptor is formed by two proteins: TF-

binding protein A (TbpA) and TF-binding protein B (TbpB). TbpA is similar to a classical 

receptor; it is an integral membrane protein that depends on TonB for energy transduction 

between the OM and IM. TbpA transports ferric ions across the OM [Cornelissen et al., 

1992]. TbpB is a surface-exposed lipoprotein that binds TF independently [Gray-Owen and 

Schryvers, 1995]. Participation of TbpB is essential for colonizing the host and acquiring iron 

from TF and displays specificity by binding only TF from the infected animal species 

[Calmettes et al., 2011]. Once the Fe3+ is in the periplasm, it is transported to the cytosol 

through the FbpABC transporter, which is composed of FbpA, a periplasmic iron-binding 

protein, and an ABC transporter, formed by the permease FbpB and the ATP-binding 

protein FbpC [Khun et al., 1998; Nikaido, 2003; Wandersman and Delepelaire, 2004]. 

TbpB-deficient mutants of Actinobacillus pleuropneumoniae, a pathogen of the pig respiratory 

tract, are neither virulent nor able to colonize its host; thus TbpB is required for iron 

acquisition in vivo [Baltes et al., 2002; Wandersman and Delepelaire, 2004]. Surface 

lipoproteins such as TbpB have been targeted for vaccine development because they elicit a 

strong immune response, and antibodies (Abs) to this specific surface lipoprotein are 

bactericidal. Nevertheless, there is an insufficient cross-protective response induced by an 

individual receptor protein to be considered as a suitable vaccine antigen [Calmettes et al., 

2011]. The abundance of iron acquisition systems present in most pathogenic species 

undoubtedly reflects the diversity of the potential iron sources in the various niches. Some 

studies have shown that the iron acquisition systems are important determinants of 

virulence and that the inactivation of only one system decreases virulence. Bacterial OM 

receptors can show variability, enabling the pathogen to escape from the host immune 

system [Wandersman and Delepelaire, 2004]. 

2.2. Unicellular eukaryotic pathogens  

Binding proteins to host iron-containing proteins are also important determinants of 

virulence in protozoa, as has been deduced from the diversity of iron acquisition systems 

that have been identified in these protists. In this review, we discuss the current knowledge 

of transferrin binding proteins (Tbps) in some important parasites. These pathogens possess 

elaborate control systems for iron uptake from the mammalian hosts that they invade, and 

these systems ensure their success as parasites. Intracellular parasites are able to live inside 
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of a number of body cells and obtain iron from these sites; for example, in erythrocytes, 

parasites have free access to hemoglobin as an iron source, debilitating the host by causing 

anemia and other major problems. Parasites that are phagocytosed by macrophages need to 

avoid the oxidative stress response of these cells; one of these responses is the production of 

toxic radicals derived from the oxygen metabolism, and ferrous iron is responsible for their 

production by Fenton’s reaction. However, some parasites not only evade oxidative stress 

but are also able to survive and multiply inside macrophages; these parasites need to 

acquire iron for their own growth and to produce the enzyme superoxide-dismutase (SOD), 

which protects the parasites against toxic radicals. One macrophage’s strategy to prevent 

iron availability to parasites is to sequester this metal through different cleavage 

mechanisms, such as by reducing the expression of TFR1, the main cellular iron-uptake 

protein [Mulero and Brock, 1999]. Other mechanisms include increasing the synthesis of 

ferritin, the main iron-storage protein of the cell, and increasing the expression of 

ferroportin, the main protein that releases iron from the cell [Das et al., 2009]. Nevertheless, 

as we will see next, pathogenic parasites have evolved several counterstrategies to stay 

inside macrophages and acquire cellular iron. 

2.2.1. Trypanosomatids  

Trypanosomatid parasites face different challenges in their fight for iron in the diverse 

niches that they inhabit inside a host. In extra- and intracellular parasitic forms, iron plays 

roles in infection as well as in metabolism. Studies of parasite iron acquisition have led to 

extraordinary therapeutic possibilities of interfering with parasite survival inside the host.  

2.2.1.1. Trypanosoma brucei 

T. brucei is most likely the most-studied parasitic protozoan with respect to iron acquisition 

from host TF. This parasite is responsible for producing sleeping sickness or human African 

trypanosomiasis, a disease widespread throughout the African continent. It causes at least 

50,000–70,000 cases every year, which can be fatal if not treated correctly [Kinoshita, 2008]. 

The transmission vector is the tsetse fly, which inoculates T. brucei parasites in the blood of 

its mammalian host during feeding. Trypanosomiasis presents two stages: first, 

trypanosomes are observed in the hemolymphatic system, producing fever, splenomegaly, 

adenopathies, endocrine disarrays, and cardiac, neurological and psychological disorders. In 

this stage, trypanosomes multiply rapidly, infecting the spleen, liver, lymph nodes, skin, 

heart, eyes and the endocrine system. In the second stage, trypanosomes are distributed in 

the central nervous system (CNS) leading to several sensory, motor and psychic disorders 

and ending in death [Kennedy, 2005; de Sousa et al., 2010]. 

Use of host transferrin by T. brucei  

In mammals, T. brucei lives as a trypomastigote in the bloodstream and tissue fluids [Bitter et 

al., 1998; Subramanya, 2009; Taylor and Kelly, 2010; Johnson and Wessling-Resnick, 2012]. 

As an extracellular parasite, it depends on endocytosis to take up nutrients from the host 

blood [Subramanya, 2009]. This organism uses host TF as the main iron source for growth 
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and has the ability to bind TF from several origins, thus increasing its capacity to colonize a 

large range of mammals [Salmon et al., 2005]. This ability is important because by taking up 

different TFs, the parasite favors its own growth without being affected by the host immune 

system due its variability, leading to chronic infection; in this way, the ability to switch 

between different TFR genes allows T. brucei to cope with the large sequence diversity in the 

TFs of its hosts [Bitter et al., 1998; Van Luenen et al., 2005]. In contrast, T. equiperdum presents 

a restricted host range, infecting only horses [Isobe et al., 2003; Witola et al., 2005].  

T. brucei transferrin receptor (TbTFR) 

T. brucei binds TF through a transferrin receptor, TbTFR. Although TbTFR and human 

transferrin receptor (HsTFR) bind the same iron transport protein (TF), they have no 

detectable amino acid homology [Borst, 1991; Schell et al., 1991; Taylor and Kelly, 2010]. 

TbTFR is present in only bloodstream forms and not in insect forms of the T. brucei life cycle. 

In fact, T. evansi, a derivative of T. brucei, does not appear to have a life cycle stage in an 

insect vector; it presents similar TFR to T. brucei [Kabiri and Steverding, 2001]. TbTFR is 

encoded by two of the expression-site associated genes (ESAGs), ESAG6 and ESAG7, of the 

variant surface glycoprotein (VSG), the major surface antigen of the bloodstream form of T. 

brucei. ESAG6 and ESAG7 proteins evolved to bind TF [Salmon et al., 1994; Salmon et al., 

1997]. The VSG gene is at a telomeric expression site (ES) that contains at least seven 

expression-site associated genes. Each strain of T. brucei contains 20 different copies of ESAG 

with a corresponding 20 copies of TbTFR, but only a single ES is active at a time. The 

receptor expression occurs independently of the ES employed for antigenic variation [Borst, 

1991; Schell et al., 1991; Salmon et al., 1994; Salmon et al., 1997; Salmon et al., 2005; Van 

Luenen et al., 2005]. Antigenic variation prevents receptors from being recognized by the 

immune system and allows parasites to use TF from different mammalian hosts [Borst, 1991; 

Bitter et al., 1998]. The surface of the parasite bloodstream form is covered with VSG protein, 

which is required for nutrient uptake; its variability provides protection from the 

mammalian immune system [Schell et al., 1991; Taylor and Kelly, 2010]. When some 

parasites in the population switch VSG gene expression, they produce resistant phenotypes. 

VSG are powerful antigens, and the initial set of Abs is no longer useful for controlling 

trypanosomiasis. A proliferation of survivors is produced with posterior infection of the 

CNS, when parasites move across the blood-brain barrier [Kinoshita, 2008].  

TbTFR is a heterodimer consisting of ESAG7, a 42 kDa soluble protein attached to the 

membrane by the 50-60 kDa ESAG6 protein through a glycosyl-phosphatidylinositol (GPI) 

residue in the C-terminal tail [Borst, 1991; Schell et al., 1991; Ligtenberg et al., 1994; Salmon 

et al., 1994; Steverding et al., 1995; Salmon et al., 1997; Steverding, 2000; Maier and 

Steverding, 2008; Taylor and Kelly, 2010]. ESAG6 and ESAG7 can homodimerize, but only 

heterodimers bind TF; thus, each subunit provides a necessary component for the specific 

ligand-binding site [Salmon et al., 1994; Salmon et al., 1997]. The two subunits show 

differences in their C-terminal region in the four blocks of 5-16 amino acids that generate 

the ligand binding site. The sequence of the N-terminal half is highly conserved [Salmon et 

al., 1997]. Near the middle part of the gene is a hypervariable region of approximately 32 

nucleotides [Pays, 2006].  
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Affinity binding of TbTFR for TF is important when the host begins to make a significant Ab 

response against invariant regions of the receptor that could interfere with TF uptake [Borst, 

1991; Salmon et al., 1994; Steverding et al., 1995; Steverding, 2003; Steverding, 2006; Stijlemans 

et al., 2008]. In some cases, these Abs compete with TF for the receptor binding site, and only 

a high-affinity receptor could maintain the required iron level for trypanosome replication 

[Bitter et al., 1998]. Nevertheless, during the course of trypanosomiasis, Abs produced against 

the TbTFR are too low to deprive the parasite of iron [Steverding, 2006]. This factor could be 

important for the characteristic anemia observed in chronic illness, in which TF levels are 

decreased. Because iron is sequestered by macrophages and bloodstream pathogens can 

obtain iron, the “anemia of chronic infection” results, and erythropoiesis diminishes because 

there is no available iron to produce hemoglobin. Then, parasites produce a high affinity 

receptor to TF, which is present in very low quantities [Taylor and Kelly, 2010].  

There is a controversy surrounding the purpose of the TFR variability. Some authors report 

that each TFR encoded by trypanosomatids is slightly different and that these differences 

affect the binding affinity to TF from different hosts [Van Luenen et al., 2005; Pays, 2006]. 

Other researchers propose that each receptor with low or high affinity allows trypanosome 

growth independent of the in vitro or in vivo TF levels [Salmon et al., 2005]. After the synthesis 

and heterodimer formation of TbTFR, this receptor is transported to the flagellar pocket by 

the conventional route of glycoproteins. The flagellar pocket is the site for exocytosis and 

endocytosis in bloodstream trypanosomes, and it is formed by an invagination of the plasma 

membrane at the arising flagellum. This pocket protects the parasite from Abs and cell-

mediated cytotoxic mechanisms directed against important functionally conserved proteins 

such as the TFR (Fig. 1) [Balber, 1990; Borst, 1991; Schell et al., 1991; Van Luenen et al., 2005].  

 

Figure 1. Transferrin endocytosis and iron acquisition in Trypanosoma brucei. Transferrin is bound by 

the TbTFR  localized at the flagellar pocket; the complex is then internalized in clathrin-coated  

pits. The pH is acidified in the endosomes, and the iron   is released and transported to the 

cytoplasm. Apotransferrin  is degraded in lysosomes, and the TFR is recycled to the membrane by 

Rab11-positive  vesicles. 

VSG proteins leave the flagellar pocket and spread from there to cover the surface, but 

receptors such as TbTFR are prevented from spreading [Borst, 1991; Mussmann et al., 2004]. 
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Apparently, TFR is retained in the flagellar pocket by the single GPI anchor, while those that 

present two GPI anchors are targeted to the cell surface [Schwartz et al., 2005; Taylor and 

Kelly, 2010]. Then, GPI is essential for the correct formation of the VSG coat, for the 

expression of TbTFRs on the flagellar pocket, and to signal for clathrin-coated endocytosis 

[Allen et al., 2003]. The lack of TFR leads to lethality; for this reason, some authors have 

proposed the GPI biosynthetic pathway as a target for the development of anti-trypanosome 

drugs [Kinoshita, 2008]. 

Retention of the receptor in the flagellar pocket is a very regulated and saturable process. 

TbTFR expression depends on the host in which the trypanosome finds itself and on the 

quantity of iron present. Upregulation of TFR gene expression produces a mislocalization of 

the receptor onto the cytoplasmic membrane, most likely resulting in binding to more TF 

molecules. The upregulation of the receptor expression implies that the parasite can sense 

the reduction in TF availability by sensing cytosolic iron [Van Luenen et al., 2005]. 

Signal transduction and endocytosis of transferrin by clathrin-coated vesicles 

On the flagellar pocket membrane, TbTFR captures TF, and the complex is endocytosed in 

clathrin-coated pits in a saturable way [Borst, 1991; Schell et al., 1991; Salmon et al., 1994; 

Taylor and Kelly, 2010] . TF endocytosis is a temperature- and energy-dependent process 

(Fig. 1) [Ligtenberg et al., 1994; Steverding et al., 1995]. Other proteins that participate in the 

endocytosis of TF are dynamin, epsin, the adaptor AP-2 [Allen et al., 2003], and small 

GTPases such as TbRab5A, β-adaptin [Morgan et al., 2001; Pal et al., 2003], and 

phosphatidylinositol-3 kinase (PI-3K), TbVPS34 [Hall et al., 2005]. Interestingly, TbTFR does 

not discriminate between apoTF and holo-TF [Steverding et al., 1995; Steverding, 2003]. TF 

endocytosis is activated by diacylglycerol (DAG), a diffusible second messenger produced 

in GPI digestion by the GPI-phospholipase C (GPI-PLC) expressed in bloodstream T. brucei. 

GPI-PLC can cleave intracellular GPIs, producing DAG and inositolphosphoglycan. DAG 

receptors in trypanosomatids contain a divergent C1_5 domain and DAG signaling pathway 

that depends on protein tyrosine kinase (PTK) for the activation of proteins in the endocytic 

system by the phosphorylation of clathrin, actin, adaptins, and other components of this 

machinery. TF uptake depends on PTK because TF endocytosis diminishes when Tyrphostin 

A47, an inhibitor of PTK, is used in T. brucei and Leishmania mayor, another member of the 

trypanosomatid family [Subramanya and Mensa-Wilmot, 2010]. 

When the ligand-receptor complex is delivered into the endosomes, the acidic pH triggers 

the release of iron from TF and the formed apo-TF dissociates from the receptor [Steverding, 

2000]. The TFR is recycled into the flagellar pocket via TbRab11 vesicles [Steverding et al., 

1995; Jeffries et al., 2001]. TF is delivered into the lysosomes, where it is degraded by the 

cathepsin-like protein, TbcatB. A small reduction in TbcatB produces the accumulation of 

TFR within the flagellar pocket and the upregulation of TFR levels as a response to iron 

starvation [Maier and Steverding, 1996; O'Brien et al., 2008]. Later, degraded fragments are 

exocytosed by the same Rab11 vesicles (Fig. 1) [Steverding et al., 1995; Pal et al., 2003; Hall et 

al., 2005]. TbTFR has a long half-life, so the receptor is not degraded with TF but is recycled 
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back to the flagellar pocket in approximately 11 min [Kabiri and Steverding, 2000; Kabiri 

and Steverding, 2001]. 

The mechanism by which iron crosses to the cytoplasm from the endolysosomal system has 

not yet been determined; it could be through a ferric reductase. In the T. brucei genome, two 

putative ferric reductases have been found, a cytochrome b561-type (Tb927.6.3320) and an 

NADPH-dependent flavoprotein (Tb11.02.1990). These enzymes could act in cooperation 

with some divalent putative cation transporters, but none of them have been related with 

iron transport [Taylor and Kelly, 2010]. 

Iron storage 

Depending on the growth conditions, TbTFR can be found at very low concentrations of 

approximately 1.0 – 2.3 x 103 molecules per cell [Borst, 1991; Steverding et al., 1995] or 1.88 – 

2.71 x 104 molecules per cell [Salmon et al., 1994]; thus, the parasite is very efficient at taking 

iron from TF. TF is taken up at rates 100–1000 times higher than those for phase fluid 

endocytosis [Borst, 1991]. The iron necessity is approximately 85,000 Fe3+ 

ions/parasite/generation [Steverding et al., 1995] to 1.4 x 106 atoms/trypanosome [Schell et al., 

1991], but its requirements are approximately 40,000 Fe3+ per generation [Steverding, 2003]. 

For this reason, it is possible that T. brucei accumulates iron in some way [Steverding et al., 

1995]. When iron provisions are depleted due to TF starvation, a rapid increase in TbTFR 

takes place, and the capacity to capture TF increases [Mussmann et al., 2004]. During chronic 

trypanosomiasis in cattle, anemia occurs, in which the host TF level is decreased and the 

bloodstream pathogens develop the ability to grow at very low iron concentrations 

[Steverding et al., 1995]. It is in this stage of iron deprivation and chronic infection when a 

TFR other than TbTFR, with higher affinity for its ligand, is produced; this occurs because 

TbTFR is not able to discriminate between holo- and apo-TF [Taylor and Kelly, 2010]. 

Iron chelation and therapeutic improvement 

In the absence of iron, the parasite DNA synthesis rate decreases, oxidative stress levels 

increase, electron transfer stops, and other functions are affected, all of them leading to 

death. Iron chelation affects T. brucei growth; thus, it could be a therapeutic method for 

combating the infection. The iron chelator deferoxamine (DFO) prevents iron incorporation 

in newly synthesized enzymes, decreasing the growth rate and oxygen consumption [Taylor 

and Kelly, 2010]. Acute iron starvation leads to a rapid increase in TbTFR, allowing an 

increased capacity to uptake TF [Mussmann et al., 2004].  

TbTFR is immunologically important, and it has been studied for its antigenic potential in 

the production of vaccines. Using the complete collection of TFRs as a vaccine, the 

proliferation of trypanosomes was blocked; however, some authors are not convinced and 

suggest that antigenic variation makes the production of a vaccine against sleeping sickness 

improbable [Kinoshita, 2008]. ESAGs could also be targets for immune attack. Flagellar 

pocket proteins were used for immunization of mice and were able to confer protection 

against superinfection with trypanosomes [Olenick et al., 1988]. A functional TbTFR was 

expressed in insect cells and could be helpful in crystallographic studies to determine the 
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structure and characterize the interface between TF and its receptor, which could lead to a 

new approach to combat infection [Maier and Steverding, 2008]. TF uptake is very 

important in trypanosomes for obtaining iron, so endocytic uptake systems were developed 

earlier in evolution compared with TF endocytosis in mammalian cells. Nevertheless, this 

process has numerous similarities between the two groups. 

2.2.1.2. Trypanosoma cruzi 

This parasite causes human Chagas disease, a chronic and debilitating condition affecting 40 

million people in Africa, South America, Europe, and Asia, according to data of the World 

Health Organization (WHO). T. cruzi is transmitted either by an insect vector that has access 

to the host via breaches in the skin or through mucosal membranes, mainly the conjunctiva 

or the gastric mucosa. It is an obligate intracellular parasite that disseminates from the initial 

infection site to the heart and smooth muscle, with several rounds of invasion, growth and 

egression from infected cells during acute infection. Very little is known regarding the early 

interaction between the parasite and its host that facilitates the establishment of infection 

[Mott et al., 2011]. 

T. cruzi transferrin receptor (TcTFR) and endocytosis 

It has been suggested that the internalization of TF is mediated by a receptor in T. cruzi. 

However, until now, there is no biochemical evidence of the presence of a TFR. 

Epimastigote forms of T. cruzi could use a TFR to obtain iron and transport TF through 

uncoated vesicles formed in the most posterior portion of the cytostome/cytopharynx 

system, a plasma membrane invagination that penetrates deeply into the cytoplasm towards 

the nucleus. All the endocytic vesicles formed in the cytostome are uncoated and are 

associated with lipid raft markers in detergent membrane-resistant (DMR) domains [Correa 

et al., 2007]. Endocytic vesicles originate either from the cytostome or from the flagellar 

pocket, and they fuse with early endosomes and then with reservosomes (prelysosomal 

compartments); endocytosed TF is taken into the reservosomes, which are structures that 

present numerous proteases [Correa et al., 2008; Cunha-e-Silva et al., 2010; Rocha et al., 2010]. 

Other proteins that participate in endocytosis have been identified, such as TcRab7, an 

indicator of high traffic between the Golgi apparatus and reservosomes, and TcRab11, which 

is involved in the recycling process [Cunha-e-Silva et al., 2010; Rocha et al., 2010]. 

Amastigote forms replicate in the host cell cytoplasm, where TF is almost absent, so the 

relevance of these forms during infection is not clear. The importance of the receptor is 

observed in trypomastigotes in the bloodstream and epimastigotes in bloodmeal, where TF 

was observed in the reservosome [Soares and de Souza, 1991; Soares et al., 1992].  

Iron chelation 

There is not enough information about how cytoplasmic iron is taken up by T. cruzi 

parasites. They replicate in macrophage cytoplasm; therefore, the macrophage iron-

withholding response would benefit the parasite, allowing access to iron [Taylor and Kelly, 

2010]. An increase of parasitemia and mortality associated with high levels of iron were 

observed, as was a reduction in parasitemia with the use of chelants such as DFO or 
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benznidazole [Lalonde and Holbein, 1984; Taylor and Kelly, 2010; Johnson and Wessling-

Resnick, 2012]. The obtained iron is stored in specialized electron-dense organelles; these 

organelles are different from lysosomes and reservosomes [Scott et al., 1997]. The infection in 

mouse models involves the production of anemia. This anemia is due to interference with 

the stimulation of the IFN-induced GTPase LRG-47, which produces severe effects in the 

hematopoietic system [Taylor and Kelly, 2010]. When the parasite is extracellular, it must 

obtain nutrients from host proteins. The possibility of infecting several organisms makes it 

possible that this parasite could use different iron sources, including TF. Because TF 

accumulation reported an organelle in which TF could be accumulated could exist. Very 

little is known about the T. cruzi iron uptake mechanisms either in its different extracellular 

or intracellular forms of its life cycle. 

2.2.2. Entamoeba histolytica 

E. histolytica is the causal protozoan agent of amoebiasis in humans, a disease characterized 

by dysentery and intestinal ulcers. The parasite is able to invade and destroy tissues, 

affecting not only the large intestine but also other extra-intestinal organs such as the liver; 

these infections can be fatal. Amoebiasis shows high level of morbidity and mortality 

worldwide, particularly in developing countries. Worldwide, 500 million people are infected 

with E. histolytica, causing disease in 50 million and 100,000 deaths each year [Ali et al., 2008; 

Anaya-Velázquez and Padilla-Vaca, 2011]. 

Iron and E. histolytica 

Iron is essential for E. histolytica trophozoites living inside the human host because these 

parasites require a high quantity of iron (approximately 100 μM) for growing in vitro and 

are able to use iron from several iron-binding proteins [López-Soto et al., 2009b]. High 

amoebic damage was caused in the liver of hamsters that were fed with ferrous gluconate. 

In addition, there is a significant relationship between amoebic growth and the mechanisms 

of iron acquisition modulated by determinants of virulence [Diamond et al., 1978; Smith and 

Meerovitch, 1982]. Within the host, amoebae face the hostility of nonspecific defense 

systems such as oxidative stress and the lack of nutrients. Several protective mechanisms 

have been developed by E. histolytica, such as the induction of the superoxide dismutase 

(SOD) gene under iron-limited conditions; this enzyme defends amoeba from the toxicity 

and damage caused by oxygen metabolites. Thus, SOD is useful during tissue invasion, 

when amoebae are exposed to great amounts of superoxide radicals [Bruchhaus and 

Tannich, 1994a]. 

If iron is reduced in the culture medium to < 20 μM, amoebae do not survive. Several 

studies have shown responses of the parasite to the absence or excess of iron and to the 

presence of iron-containing proteins [Serrano-Luna et al., 1998; Reyes-López et al., 2001; 

León-Sicairos et al., 2005; López-Soto et al., 2009a]. The concerted use of strategies to bind 

and use iron from different sources provides the parasite with the ability to use various host 

proteins for its benefit. In the absence of iron, E. histolytica expresses several genes that 
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encode for cysteine proteases CP1, CP2 and CP3; these proteases are virulence factors, as 

they degrade the mucus barrier in the intestinal epithelium. However, there is no 

information concerning the mechanisms for iron regulation in this parasite. Genes involved 

in translation were identified to be expressed in the absence of iron [Park et al., 2001], as 

occurs with the ferric uptake regulator (Fur) in bacteria and in iron responsive element (IRE) 

and IRE-binding proteins of mammalian cells [Wang et al., 2007]. 

Use of host iron-containing proteins 

E. histolytica has developed specific mechanisms to obtain iron from host iron-containing 

proteins. This assertion is based on the parasite growth in vitro in media depleted of iron 

and to which different iron proteins have been added. Trophozoites have been tested in 

cultures with hemoglobin, LF, TF, ferritin, and as the sole iron sources, and all of them have 

been utilized by the parasite for growth [Serrano-Luna et al., 1998; Reyes-López et al., 2001; 

León-Sicairos et al., 2005; López-Soto et al., 2009b]. In this way, amoebae could ensure the 

presence of iron for the colonization of the different organs and tissues involved in amoebic 

infection. 

E. histolytica transferrin binding proteins, EhTFbps  

Iron-loaded TF (holoTF) but not apoTF binds to the E. histolytica trophozoite surface. 

Interestingly, this parasite has two methods of obtaining iron from TF: one is mediated by 

receptor-independent internalization [Welter et al., 2006] and the other is through three 

specific TF-binding proteins (EhTFbps) of 70, 96 and 140 kDa of molecular mass, identified 

by overlay assays with holoTF. The 140 kDa protein is recognized by an anti-HsTFR mAb 

B3/25 (Boehringerheim cat. No. 1118-048), and the 96 kDa protein is recognized by the anti-

HsTFR mAb H68.4 (Zymed cat. No. 13-6800). Apparently, the EhTFR forms a complex with 

TF to be endocytosed (Fig. 2). Using pharmacological and immunofluorescence microscopy 

studies, the participation of clathrin protein in the endocytic process was demonstrated. 

Once inside the vacuoles, TF is transported into the endolysosomal system [Reyes-López et 

al., 2001; Reyes-López et al., 2011]. However, when the endocytic process was followed using 

high TF concentrations, the TF was internalized independently of the binding protein 

[Reyes-López et al., 2011]. This result is in agreement with the observation that TF 

internalization is unsaturable [Welter et al., 2006]. The presence of clathrin has been 

demonstrated in some protozoa [Morgan et al., 2001] and in E. histolytica [León-Sicairos et al., 

2005; López-Soto et al., 2009a; Reyes-López et al., 2011]; clathrin may be important in 

parasites for the acquisition of nutrients. The gene encoding the clathrin protein has been 

identified in the E. histolytica genome [Loftus et al., 2005]. Once inside the lysosomes, TF 

could be degraded by specific cysteine proteases (Fig. 2) (our unpublished data), as was 

observed in T. brucei. 

In addition to the phagocytosis of erythrocytes to use hemoglobin, the direct binding of host 

TF to specific proteins on the amoeba surface may be another strategy used to capture iron 

in the blood and liver, which is important in the human host invasion process of this 

parasite. The 96 kDa protein was identified as the enzyme acetaldehyde/alcohol 
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dehydrogenase-2 (EhADH2) by mass spectrometry after its isolation by 

immunoprecipitation with the mAb H68.4 [Reyes-López et al., 2011]; to our knowledge, this 

report is the first in which an enzyme was shown to bind TF in parasitic protozoa. 

Internalization of TF through a receptor is a fast, saturable, and temperature-, time-, and 

concentration-dependent process. It is possible that the EhADH2 protein, which requires 

iron for its activity, participates in the regulation of iron-Tf uptake and utilization. EhADH2 

enzyme is essential for amoeba survival and is able to discriminate between iron-loaded TF 

and apoTF, possibly because iron is the enzyme cofactor of the protein [Espinosa et al., 2009].  

 

Figure 2. Transferrin endocytosis in  Entamoeba histolytica. HoloTF is detected by the EhTbp  and 

the TFR  and internalized in clathrin-coated  pits. 

It has been reported that bacteria such as Staphylococcus aureus and Staphylococcus epidermidis 

use the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to bind TF [Modun 

and Williams, 1999], and the parasite Trypanosoma brucei uses an organelle in which TF 

could be accumulated could exist.GAPDH for binding LF rather than TF [Tanaka et al., 

2004]. Apparently, glycolytic enzymes have several functions; an example is enolase, which 

also regulates the activity of cytosine 5-methyltransferase 2 (Dnmt2), an enzyme that 

catalyses DNA and tRNA methylation in amoeba [Tovy et al., 2010]. The EhADH2 amino 

acid sequence and that predicted for the HsTFR are not similar, so the recognition of both 

proteins by the mAb could be explained by a structural connection. EhADH2 is an essential 

enzyme used for obtaining energy by glucose fermentation [Bruchhaus and Tannich, 1994b; 

Yang et al., 1994; Flores et al., 1996; Espinosa et al., 2001; Avila et al., 2002; Chen et al., 2004; 

Espinosa et al., 2004; Espinosa et al., 2009]. Due to the properties of EhADH2, such as its 

ability to bind to host extracellular matrix proteins, its presence on the cell membrane, and 

its requirement for iron, the blocking of this enzyme with iron chelators as a therapeutic 

strategy against E. histolytica is an interesting future perspective [Espinosa et al., 2009].  
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EhTFbp is able to bind TF with either high or with low affinity (1.81 and 1.1-5.7 x 10-9 M). 

This observation could be due to the presence of two binding proteins or only one protein 

with two different affinities [Reyes-López et al., 2011]. Comparing the affinity for TF in 

bacteria (0.7 a 4 x 10-7 M) [Pintor et al., 1993] and Trypanosoma cruzi (2.8 X 10-6 M) [Testa, 

2002], the amoebic receptor presents the higher affinity. The fact that E. histolytica 

trophozoites possess a variety of mechanisms to obtain iron from TF is advantageous to the 

parasite. However, in amoebiasis, the host usually has lower iron levels and TF saturation 

than that showed in uninfected people; this defense is a normal response to limit iron from 

pathogens during infection, a phenomenon known as hypoferremia of infection [Van Snick 

et al., 1974; Otto et al., 1992; Jurado, 1997; Griffiths et al., 1999; Weinberg, 1999; Weinberg 

2009]. Further studies are necessary to comprehend the role of all the proteins that 

participate in the iron acquisition system of TF and in the iron metabolism of this important 

parasite.  

2.2.3. Tritrichomonas foetus 

T. foetus is a venereal protozoan pathogen of cattle that infects the female genital tract, 

resulting in abortion, endometritis, and infertility [Manning, 2010; Pereira-Neves et al., 2011]. 

This parasite has a worldwide distribution and causes significant economic losses to cattle 

producers. Strains of T. foetus have also been recognized that cause diarrhea in cats [Gookin 

et al., 1999] and mild rhinitis in swine [Lun et al., 2005]. As an obligate parasite, T. foetus 

depends on endogenous bacteria and host secretions for nutrients such as iron. This 

organism has high iron requirements for in vitro cultivation (50–100 μM) [Tachezy et al., 

1996], surpassing those of eukaryotic cells, although comparable to other anaerobic 

amitochondriate protists. T. foetus inhabits the vagina, cervix, and the lumen of the bovine 

uterus, with the last one being characterized as rich in TF [Roberts and Parker, 1974]. 

Therefore, TF could be an important source of iron for T. foetus. 

The involvement of iron and holo-TF in T. foetus virulence has been examined in 

experimental infection of mice with the moderately virulent KV-1 strain (~5% mortality 

rate). Administration of ferric ammonium citrate to infected mice increased the mortality 

rate to the level associated with the highly virulent LUB-1MIP strain (~80% mortality rate) 

[Kulda et al., 1999]. When examined in vitro, the KV-1 strain showed significantly lower iron 

acquisition from holo-TF and low molecular mass complexes than the highly virulent strain. 

These data indicate a correlation between strain virulence and iron acquisition from holo-TF 

[Kulda et al., 1999]. Growth of parasites using holoTF as a sole iron source has been reported 

in vitro [Tachezy et al., 1996]. Accordingly, iron from 59Fe-TF was efficiently accumulated 

into T. foetus, specifically in the labile iron pool (LIP). Interestingly, the concentration of 

protein-bound iron that restored 50% cell growth (5 μM for Fe-TF) was approximately 5-fold 

lower than that of low molecular weight iron complexes [Tachezy et al., 1996; Suchan et al., 

2003], indicating that T. foetus uses TF iron more efficiently. This finding agrees with results 

in studies of other pathogens that require higher iron concentrations from these complexes 

than those from host proteins (holoLF and HG) [Wilson et al., 1994; Jarosik et al., 1998]. 
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Retrieval of iron from TF may depend on the extracellular release of iron from this ligand 

caused by the acidification of the microenvironment by T. foetus [Tachezy et al., 1996]. This 

hypothesis is based on the observation that the pH of the conditional media decreased from 

pH 7.4 to 5.6 after incubation with T. foetus. As predicted at this pH, there was a marked 

release of iron from holoTF (up to 47%) measured in the cell-free medium (Fig. 3) [Tachezy 

et al., 1996]. Iron uptake from TF was almost exponential, which possibly reflected the 

accelerated release of iron from the protein by the acidification of the cellular 

microenvironment [Tachezy et al., 1996]. Nevertheless, further studies are needed to 

demonstrate the actual role of microenvironmental acidification in iron uptake, for example, 

by measuring the iron uptake by T. foetus using a stronger buffered medium to prevent 

acidification. 

Iron uptake from transferrin in T. foetus 

Iron uptake from TF is a process dependent on the energy produced by glycolysis, as 

sodium fluoride affected the uptake [Tachezy et al., 1998]. The mechanism also involves 

extracellular iron reduction from holo-TF. This idea is supported by the inhibitory effect 

of BPSA (a membrane impermeable, ferrous-iron specific chelator) on iron uptake from 

holo-TF, as iron is originally in the ferric state in this molecule. Additionally, the presence 

of ascorbic acid, a strong reducing agent, stimulated iron accumulation by T. foetus from 

holo-TF [Tachezy et al., 1998]. Which mechanism is actually used by T. foetus to reduce 

holo-TF iron is unknown. Iron released from holo-TF could be acquired by a mechanism 

related or identical to that used for acquisition from the low molecular weight iron 

chelator nitrilotriacetic acid (Fe-NTA) because these processes displayed similar kinetics 

and susceptibility to various agents [Tachezy et al., 1998]. Iron uptake from Fe-NTA by 

this microorganism also depends on iron reduction and is better characterized. 

Extracellular iron reduction from Fe-NTA seems to be non-enzymatic, as the reduction 

activity is thermo-labile and unaffected by proteases, and the majority is filterable 

through a membrane with a cut-off of 3 kDa. Additionally, iron acquisition is not 

enhanced by the presence of NADH, a nucleotide reported to provide electrons to 

ferrireductases [Low et al., 1986; Berczi and Faulk, 1992; Riedel et al., 1995]. In fact, 

trichomonads are able to produce reducing volatile agents such as H2S [Thong and 

Coombs, 1987] or methanethiol [Thong et al., 1987], which have been suggested to 

participate in oxygen detoxification [Thong et al., 1986]. It could be that trichomonads are 

able to take advantage of their reducing environment to take up iron from holo-TF (Fig. 

3). This hypothesis needs to be tested and does not completely rule out the possibility that 

a ferrireductase may also participate. 

The extracellular release of iron from holo-TF could be independent of proteolysis because 

less than 40% of the parent molecule was digested even after 24 h of contact with 

extracellular T. foetus proteases [Talbot et al., 1991]. Iron acquisition from TF seems to be 

independent of endocytosis because lysosomotropic bases such as ammonium chloride 

and chloroquine acting as inhibitors of endosome acidification did not decrease iron 

accumulation from TF [Tachezy et al., 1998]. However, work from Affonso shows that 
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endocytosis of TF by T. foetus actually takes place [Affonso et al., 1994]. It was shown that 

TF binds to the parasite surface, and because unlabeled TF does not compete with labeled 

TF, this binding does not seem to be through specific surface receptors. In agreement with 

this result, holo-TF binding does not display saturable kinetics [Tachezy et al., 1996]. The 

initial binding of gold-labeled human TF may be due to low-affinity interactions, as 

occurs with T. vaginalis [Peterson and Alderete, 1984]. Gold-labeled TF is internalized by 

the parasite through endocytic vesicles and concentrated into vacuoles of variable 

dimension, peripheral tubular and tubulovesicular structures all without a typical clathrin 

coat. The absence of a specific receptor suggests a principal role for fluid phase 

endocytosis [Tachezy et al., 1996].  

 

Figure 3. Transferrin acquisition in Plasmodium falciparum. The parasite produces its receptor by an 

unknown mechanism. The receptor is transported to the erythrocyte membrane, where it is able to bind 

TF . Then the iron from TF is transported back to the parasite by an unknown mechanism. 

Further studies are necessary to fully understand the mechanism of iron acquisition from 

holoTF by T. foetus, specifically to characterize the mechanism of iron reduction and of iron 

transport through the membrane and to clarify the role of holo-TF endocytosis in iron 

acquisition. Moreover, due to its unusually high nutritional requirement for iron, the 

inhibition of iron uptake from holo-TF might be an attractive therapeutic strategy against T. 

foetus.  
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2.2.4. Plasmodium spp. 

Malaria is a mosquito-borne infectious disease of humans and other animals caused by 

parasite protozoa of the genus Plasmodium. The disease results from the multiplication of 

parasites inside red blood cells (erythrocytes), causing fever, headache, splenomegaly, 

cerebral ischemia, hepatomegaly, hypoglycemia, and hemoglobinuria with renal failure, 

progressing in severe cases to coma and death [Trampuz et al., 2003]. It is widespread 

mainly in the tropical and subtropical regions of Sub-Saharan Africa, Asia, and America. 

Five species of malaria can be transmitted to humans. Severe disease is largely caused by P. 

falciparum, while the diseases caused by P. vivax, P. ovale [Sutherland et al., 2010] and P. 

malariae are generally milder and rarely fatal. P. knowlesi is a zoonosis that causes malaria in 

macaques but sometimes can infect humans [Fong et al., 1971; Singh et al., 2004]. Malaria has 

been a widely prevalent disease throughout human history. The World Health Organization 

has estimated that malaria annually causes 250 million cases [WHO, 2008]. In 2010, it was 

estimated that 655,000 people died from the disease [WHO, 2010]. However, a 2012 meta-

study published in The Lancet reported 1,238,000 people dying from malaria in 2010 [Murray 

et al., 2012]. The majority of cases occur in children under 5 years old [Greenwood et al., 

2005]; pregnant women are also especially vulnerable. P. falciparum is responsible for the 

vast majority of deaths associated with the disease [Snow et al., 2005].  

The life cycle of malaria parasites in the human body begins when a mosquito infects a person by 

taking a blood meal. Malaria develops via two phases: an extra-erythrocytic and an intra-

erythrocytic phase. The extra-erythrocytic phase involves infection of the hepatic system, 

whereas the intra-erythrocytic phase involves infection of erythrocytes. When an infected 

mosquito pierces a person's skin, sporozoites in the mosquito's saliva enter the bloodstream and 

migrate to the liver, infecting hepatocytes, multiplying asexually and asymptomatically for a 

period of 8–30 days. After this dormant period in the liver, parasites differentiate to yield 

thousands of merozoites, which, following rupture of their host cells, escape into the blood and 

infect red blood cells [Bledsoe, 2005]. The parasite escapes from the liver undetected by wrapping 

itself with the host cellular membrane. Within the red blood cells, the parasites multiply further, 

again asexually, periodically breaking out of these cells to invade fresh red blood cells. Several 

such amplification cycles occur [Sturm et al., 2006]. The parasites are relatively protected from 

attack by the body's immune system because they reside within the liver and blood cells and are 

relatively invisible to immune surveillance for most of their life cycle in humans. However, 

circulating infected blood cells are destroyed in the spleen [Chen et al., 2000]. 

P. falciparum parasites need iron to support their growth 

Treatment with iron supplementation in Plasmodium-infected patients increases malaria 

morbidity [Oppenheimer, 1989]. Interestingly, despite the fact that the intra-erythrocytic 

parasite is surrounded by hemoglobin, it is unable to utilize this ferrous molecule, and 

therefore, heme accumulates in hemozoins (crystalline particles) within the parasites [Roth et 

al., 1986; Goldberg et al., 1990]. The delivery of extracellular iron from serum TF to infected 

erythrocytes has been postulated [Pollack and Fleming, 1984; Haldar et al., 1986; Rodriguez 

and Jungery, 1986]. The uptake of 125I- or 55Fe-labeled human TF has been detected in 
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parasitized cells during several days of culture [Pollack and Fleming, 1984]. Furthermore, two 

independent studies have reported the identification of proteins on the surface of P. 

falciparum-infected erythrocytes that have an affinity for ferric TF [Haldar et al., 1986; 

Rodriguez and Jungery, 1986]. Rodriguez and Jungery [Rodriguez and Jungery, 1986] 

described the presence of a 93 kDa protein that bound to a TF affinity-column. These authors 

claim that this protein could be a parasite-derived TFR, synthesized by P. falciparum (PfTFR), 

because the vast majority of mature erythrocytes lack the expression of TFR (CD71) [Marsee 

et al., 2010]. Almost at the same time, Haldar et al. [1986] identified another probable PfTFR of 

102 kDa synthesized by the intracellular parasite and inserted in the erythrocyte membrane 

of mature infected cells. This protein recognizes only holoTF. Biochemical analysis indicated 

that this protein is acylated via 1,2-diacyl-sn-glycerol, which may be important for its 

association with the membrane. Fry [1989] described a diferric reductase activity in P. 

falciparum-infected erythrocytes. This activity was absent in uninfected mature erythrocytes, 

suggesting its synthesis and incorporation by P. falciparum. The author suggests that the 

presence of the diferric TF reductase together with the parasite–derived TFR in the 

erythrocyte membrane could form a TFR –mediated uptake mechanism.  

 

Figure 4. Tritrichomonas foetus uptake of iron from Transferrin by a reducing mechanism. HoloTF  

binds Tritrichomonas surface most likely through low-affinity interactions, and then iron is released due 

to the microenvironment acidification. Ferric iron  is reduced to the ferrous  form by an 

unknown mechanism, most likely non-enzymatic, and is then internalized by the parasite to become 

part of the labile iron pool (LIP). 

In contrast, a controversial study performed by Pollack and Vera Schnelle in [1988] was 

unable to detect a TFR in P. falciparum-infected erythrocytes. This study concluded that the 

binding of TF to the erythrocyte surface was not specific because it was neither saturable nor 

limited to TF, as LF and albumin were also bound to the parasitized cells. These authors 
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suggested that TF was non-specifically bound and in this way endocytosed and degraded 

inside the parasite. Furthermore, in [1992], Sánchez-López and Haldar described a TFR-

independent iron uptake activity in P. falciparum, and this activity was also apparent in 

uninfected erythrocytes. These authors demonstrated that normal levels of TF in human 

serum were not required for intra-erythrocytic P. falciparum growth. However, although the 

iron uptake activity was not parasite specific in parasitized erythrocytes, apparently 

radiolabeled iron (55Fe) was found in association with parasites mechanically released from 

the infected erythrocyte, indicating that it was delivered to the intracellular organism.  

In view of the controversial state of the research regarding to Plasmodium TF iron uptake, we 

think that more careful studies have to be performed to determine whether there is a 

complete PfTFR in parasitized erythrocytes, in which state the iron travels through the 

erythrocyte cytoplasm until reaching the parasitic surface, and lastly, how iron is internalized 

by the parasite (Fig. 4). Another interesting question is that if P. falciparum can obtain iron 

from different sources, which of these sources are important in parasitic iron uptake  

2.2.5. Leishmania spp. 

Leishmania species are dimorphic-protozoa that cause leishmaniases, a range of diseases 

displaying a large spectrum of clinical symptoms in mammals. Approximately 2 million 

new cases occur every year, with an estimate of 150 million people infected around the 

world [Kaye and Scott, 2011]. Five main species of Leishmania can infect human beings: L. 

tropica, L. major, L. donovani, L. braziliensis and L. mexicana. There are mainly three clinical 

forms of infection: the self-healing cutaneous leishmaniasis (CL), the mucocutaneous 

leishmaniasis (MCL), and the often fatal visceral leishmaniasis (VL) that affects people of the 

South American continent. The severity of symptoms depends on the parasite species and 

strain; exposure dose; and genetic, health and immune status of the host [Anstead et al., 

2001; Marquis and Gros, 2007; Kaye and Scott, 2011].  

Leishmanias can live in two stages: flagellated promastigotes and non-flagellated 

amastigotes. When promastigotes are inoculated in the host human dermis by the vector 

insect (sandfly), they are phagocytosed by macrophages, and then transform into 

amastigotes within a membrane-rounded organelle named the parasitophorous vacuole 

(PV) that belongs to the endocytic route, and progressively acquires characteristics of a late 

endosome/lysosome [Courret et al., 2001; Courret et al., 2002]. Inside the PV, the parasites 

replicate leading to cell lysis, and free parasites infect the surrounding cells. Leishmanias 

surviving intracellularly produce multiple effects in phagocytes: inhibition of the respiratory 

burst, prevention of apoptosis, chemotaxis inhibition in both macrophages and neutrophils, 

and suppression of the Th1 type protective response [Olivier et al., 2005].  

Some species of Leishmania possess specific transferrin binding proteins  

More than 20 years ago, a putative TF binding protein in L. infantum promastigotes was reported 

[Voyiatzaki and Soteriadou, 1990]. The binding of human iron-free 125I-TF to Leishmania-purified 

membrane preparation was found of high affinity (Kd 2.2 x 10-8 M); in addition, this binding was 
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saturable and specific for TF. The affinity of the LiTbp for TF is comparable with that reported in 

mammalian cells. Interestingly, the anti-human TFR mAb B3/25, which recognizes a Tbp of 140 

kDa in E. histolytica, did not recognize the LiTbp, suggesting that the HsTFR and LiTbp do not 

share epitopes. Binding of human apo-TF was also tested on living avirulent L. infantum 

promastigotes, and on L. mexicana amastigotes obtained from infected mice with promastigotes. 

In both cases the binding was specific and saturable, suggesting that the LiTbp is functionally 

similar to the human TFR. Although the experiments were performed with iron-free TF, these 

data suggest that both stages of Leishmania are able to bind human TF, an important iron protein 

for the parasite iron requirement; indeed, TF-mediated uptake of iron was observed in these 

parasites. Later, the same authors isolated and identified the LiTbp as an integral membrane 

monomeric glycoprotein of 70 kDa [Voyiatzaki and Soteriadou, 1992]. The purification of this 

receptor was carried out through the use of affinity chromatography with human TF from 

membrane preparations of L. infantum and L. major promastigotes.  

 

Figure 5. Iron uptake from Transferrin by Leishmania chagasi promastigotes. A non-specific receptor, 

LcTbp , binds TF , allowing a parasite-associated or secreted reductase to reduce the ferric iron 

 from holoTF, and in this way, the TF affinity for iron diminishes, allowing ferrous iron  to be 

internalized by the parasite. 

L. chagasi also showed a 70 kDa protein that binds TF (LcTbp); however, this protein is not 

specific for TF because LF and albumin were also bound. Apparently, a parasite-associated 

or secreted reductase is needed to reduce the ferric iron from holoTF, and in this way, the 

affinity of TF for iron diminishes allowing iron be internalized by the parasite (Fig. 5) 
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[Wilson et al., 2002]. L. chagasi promastigotes require a lower iron concentration than other 

parasites (8 μM hemin). Lactoferrin, as an extracellular protein, interacts with 

promastigotes, and it can be used by them as an iron source in vitro [Wilson et al., 1994]. 

Promastigotes were able to take up 59Fe-LF more rapidly than that from hemin or holoTF, 

suggesting that iron uptake from holoTF and holoLF occurs via a non-specific receptor 

because apoLF, apoTF and holoTF competed with holoLF for the uptake. In other 

experiments [Britigan et al., 1998], it was demonstrated that the binding to TF is markedly 

greater if this protein is iron-charged; also, if L. chagasi does not excrete proteases that cleave 

TF, then the proteolytic cleavage is not a mechanism to obtain iron in this parasite.  

Leishmania can live inside macrophages  

The access of iron inside the macrophage's phagosome plays a central role in Leishmania 

infection. Nramp1 protein is located in macrophage lysosomes and in tertiary granules of 

neutrophils, and it is rapidly recruited towards the membrane of leishmania-containing 

phagosomes. In that membrane, the iron transporter protein Nramp1 chelates Fe2+ in the 

intraphagosomal environment and in this way, Nramp1 avoids the parasite multiplication 

and activation of macrophages. However, L. amazonensis upregulates the expression of its 

own ferrous iron transporter LIT1 after being endocytosed by the macrophage. Mutations in 

Nramp1 (Slc11a1) gene are responsible of mouse propensity to be infected with Leishmania 

because macrophages permit its replication [Forbes and Gros, 2001; Marquis and Gros, 2007; 

Huynh and Andrews, 2008; Jacques et al., 2010].  

 

Figure 6. Iron uptake by intracellular Leishmania donovani amastigotes. From its parasitophorous 

vacuole (PV), Leishmania expresses its ferrous iron transporter (LIT1) to scavenge iron  and deplete 

the macrophage labile-iron pool (LIP); this activates the host cytosolic iron-responsive element sensor 

proteins IRP1 and IRP2. These proteins increase the stability of the TFR mRNA  , increasing 

macrophage iron uptake from TF and the intracellular iron parasite needs for survival. 
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Interestingly, studies with L. donovani suggest that there is an intraphagosomal competition 

for free ferrous-iron between the iron transporters from host and those from the parasite. This 

competition may, by depleting the macrophage labile-iron pool (LIP) (Fig. 6), activate the host 

cytosolic iron-responsive element sensor proteins IRP1 and IRP2. These proteins increase the 

stability of the mRNA of the TFR by binding to iron-responsive elements (IREs) present in the 

3´UTR of the TFR1 gene, which in turn leads to increased production of the TFR1 and, thus, 

to TF-mediated iron uptake [Das et al., 2009]. In this study, the authors clearly demonstrate 

that instead of macrophages sequester iron, virulent parasites directly scavenge iron from the 

host LIP (Fig. 6), which activates the interaction IRE-IRP leading to an up-regulation of the 

macrophage´ TFR1, increasing the intracellular iron needed for parasite survival. 

2.2.6. Toxoplasma gondii 

Toxoplasma gondii is an intracellular obligate protozoan that belongs to the phylum 

Apicomplexa and is unique in invading a large diversity of mammals and birds [Ossorio et al., 

1994; Ajioka et al., 1998; Joiner and Roos, 2002]. It is thought that approximately 25% of the 

world human population is infected by Toxoplasma [Tenter et al., 2000]. Toxoplasmosis can 

produce severe damage in humans with often fatal results, mainly in immunosuppressed 

patients suffering from AIDS or cancer and in people undergoing immunosuppressive 

treatments. The most frequent damages include chorioretinitis with consecutive loss of 

vision and damage to the CNS, lungs, and heart, and when infection occurs during 

pregnancy, parasites reach the placenta and infect the fetus, causing abortion [Luft and 

Remington, 1992; Barragan and Sibley, 2002]. However, in immune competent people, 

infection occurs in a transitory and asymptomatic fashion. The success of T. gondii as an 

intracellular pathogen is based on its high capacity for invasion and dissemination in 

practically all tissues due to its migration through biological barriers such as intestinal, 

hematic-encephalic, hematic-ocular, and placental; parasites can be detected in amniotic, 

cerebrospinal, bronchoalveolar, ocular, pleural and ascitic fluids, as well as in urine and 

peripheral blood [Derouin and Garin, 1991; Barragan and Hitziger, 2008; Unno et al., 2008]. 

Due to the high incidence of toxoplasmosis in AIDS patients, in the last few years, much 

attention has been placed on the pathology caused by this parasite.  

The T. gondii life cycle involves two types of hosts: definitive hosts, which include members 

of the Felidae family such as the domestic cat in which the sexual reproduction cycle takes 

place, and intermediate hosts, which include warm-blood animals such as cattle, sheep, pigs, 

and humans in which asexual reproduction occurs [Dubey, 1998; Tenter et al., 2000]. Parasite 

replication takes place in the gut, resulting in the production of oocysts, which are shed in the 

feces. After sporulation, the resultant sporozoites are infective when ingested by humans and 

other mammals, and tachyzoites multiply and enter into all host nucleated cells, creating the 

parasitophorous vacuole (PV), a highly specialized non-fusogenic compartment [Martin et al., 

2007] delimited by a membrane that allows the passage of small molecules [Gail et al., 2004]. 

After the parasite undergoes repeated replication rounds, the host cells lyse and tachyzoites 

are disseminated via the blood and lymph. When the host immune system becomes activated 
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due to the presence of the parasite, immune cells such as macrophages and lymphocytes 

respond with proliferation, activation, and the release of diverse cytokines including IFN-γ. 

The presence of IFN-γ induces tachyzoite differentiation in bradyzoites and modification of 

the infected host cell in tissue cysts, in which this form of the parasite remains in latency for 

several years, giving rise to chronic infections [Dimier and Bout, 1998]. 

Role of iron in cell invasion by T. gondii  

Iron is an essential component in the intracellular survival and multiplication of T. gondii. 

Obtaining iron from the invaded host cell is a key process that Toxoplasma has to regulate to 

secure an adequate provision at the intravacuolar level. As a strategy, the parasite activates 

the increase of iron regulator proteins (IRPs), which apparently function to stabilize the TFR 

mRNA of host cells; therefore, a high expression of TFR is induced at the membrane in the 

invaded cells, leading to TF-iron capture, which is taken up by intracellular tachyzoites to 

aid in proliferation (Fig. 7). This positive regulation seems to be mediated by soluble factors 

secreted by Toxoplasma that are not yet identified [Gail et al., 2004]. As occurs with other 

parasites, iron chelating agents such as deferoxamine can limit tachyzoite development. This 

effect is reverted through the addition of exogenous holo-TF or ferrous sulfate as sources of 

Fe, conditions that allow successful intracellular replication of the parasite and demonstrate 

the importance of iron in the intracellular development of this parasite [Dimier and Bout, 

1998; Mahmoud, 1999].  

 

Figure 7. Iron uptake by intracellular Toxoplasma gondii. T. gondii lives inside a parasitophorous vacuole 

(PV) within the host cell; from there, it sequesters iron  and depletes the macrophage labile-iron pool 

(LIP), activating the host cytosolic iron-responsive element sensor proteins (IRPs). These proteins 

increase the stability of the TFR mRNA , increasing host cell iron uptake from TF . This positive 

regulation system increases the intracellular iron that the parasite requires for survival. Iron uptake by 

the parasite is limited by TNFγ through an unknown mechanism. 
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In addition to the participation of macrophages and neutrophils in the immune response to 

Toxoplasma, fibroblasts, endothelia, and intestinal cells might also protect against this 

pathogen, most likely through a mechanism that involves the incorporation of iron from 

plasma TF, consequently limiting the availability of Fe resources to the parasite. An 

alternative strategy is the participation of exogenous IFN-γ in the inhibition of intracellular 

tachyzoite replication, a phenomenon observed in a dose-dependent manner in primary 

cultures of rat enterocytes. Interestingly, the exogenous addition of ferrous sulfate or holo-

TF neutralizes entirely the effect of IFN-γ on the enterocytes. Although the precise 

molecular events initiated in enterocytes as a result of IFN-γ exposure are not clear, it has 

been suggested that IFN-γ inhibits tachyzoite replication by a mechanism that involves the 

limitation of available intracellular Fe (Fig. 7) [Dimier and Bout, 1998]. 

Dziadek et al. reported in [2005] that T. gondii tachyzoites of the BK strain bind to human 

holoLF but not holoTF, suggesting the presence of specific membrane receptors of 

Toxoplasma to host mucosal LF. Tanaka studied the expression of Lbps on tachyzoites of the 

RH-strain maintained through Vero cells incubated with labeled bovine LF and bovine TF. 

Both iron-carrier proteins were recognized by a single protein of 42 kDa, suggesting a non-

specific binding to a common receptor [Tanaka et al., 2003]. In additional studies, it was 

determined that both the absence and the excess of Fe produce an inhibition of the 

intracellular proliferation of RH-strain tachyzoites grown in cultured host cells, however, 

the mechanism of action by which this phenomenon occurs is unknown [Tanaka et al., 1997].  

3. Concluding remarks 

Our knowledge of iron-uptake mechanisms from host TF by parasitic protozoa has 

improved in the past few years. These new insights have demonstrated the importance of 

effective iron uptake for virulence and increased the understanding of several mechanisms. 

Although substantial progress has been made, there is surprisingly little information 

available, including information about T. brucei and T. cruzi, which have been extensively 

studied, present interesting differences in their iron internalization mechanisms, and have 

enormous therapeutic potential. In other pathogens with serious medical implications as 

Leishmania, P. falciparum and E. histolytica, there is very limited information available, 

although the importance of iron for their survival is evident.  

It is necessary to obtain more knowledge on the iron acquisition mechanisms in unicellular 

eukaryotic pathogens in order to develop new chemotherapeutic strategies that avoid the 

utilization of host iron by these parasitic organisms that have intense iron requirements. 
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