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1. Introduction 

The quality of a metallic product is validated by tests results. Thus, the product quality is 

depicted by the quality of the testing results that furthermore depends on several factors 

such as: the incomplete knowledge about measurand, the adequacy of the testing method in 

relation to measurand, the equipment adequacy for method, the human factor; the statistical 

inference, etc. The influence factors of a measurement process, whether known or unknown, 

may alter the result of a measurement in an unpredictable way. Thus, a test result bears an 

intrinsic doubt about its closeness to the conventional true value of the measurand, fact 

which is commonly perceived as uncertainty about the test result. One of the most 

important tasks for the experimentalist is to specify an interval about the estimated value of 

the measurand ( ̅ ,	[ ̅ - U;	 ̅ + U] in which the true (conventional) value (μ) could be found 

with specified confidence level, i.e. the probability (p) that μ ∈	[ ̅ - U;	 ̅ + U]. The practice 

exigency requires p95%[1, 2, 3]. The EN ISO 17025 [1] stipulates that the quality of a 

numeric test result is quantified by the expanded uncertainty U(p%), where p is the level of 

confidence (p	  95%). An alternative specification of U is its level of significance expressed 

as 1-p. In order to obtain a higher quality of the test result, the experimentalist should 

perform a set of at least 30 repeated measurements [2, 4]. In the field of metallurgy this is 

quite impossible for technical and economical reasons. Therefore, the quality of the test 

result should be guaranteed by advanced knowledge about the testing method and by other 

means such as: equipment etalonation, Certified Reference Materials (CRMs) usage and, last 

but not least, correct uncertainty estimation based on proper knowledge about the 

probabilistic behavior of the compound random variable derived from a set of repeated 
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measurements (arithmetic mean, standard deviation, etc.). This chapter is intended to 

provide the knowledge for a better statistical evaluation of the outcomes of the metallurgical 

tests, based on proper selection of the probability density function mainly for compound 

variable such as arithmetic sample mean, standard deviation, t-variable etc. The reader will 

find in this chapter the derivations of the Gauss, Student, Fisher-Snedecor distributions and 

also several compound ones. The derivations are intended to provide the information 

necessary to select the appropriate specific distribution for a measurand. Furthermore, the 

chapter addresses the uncertainty estimation based on multiconvolutional approach of the 

measurand by presenting a case study of Rockwell C hardness test, that reveals the 

superiority of the statistical inference based on the approach proposed in this chapter. 

2. Probability density functions for experimental data analysis 

2.1. Elements of Kolmagorov’s theory of probability  

According to Kolmogorov’s theory [4, 5], the behavior of a random experiment or 

phenomenon can be mathematically modeled in the frame of class theory using the sample 

space, the event class and the probability function [5, 6]. Kolmagorov’s theory addresses 

experiments, phenomena or classes of entities having likelihood behavior that can be 

repeated under the same condition as many times as needed. The testing of the occurrence 

of an event will be considered generically as being an experiment or probe. The sample 

space or sample universe (E) is the entire class of outcomes ei, i=1,  , of an experiment that 

are mutually exclusive events, respectively 

 	 	 1, 	where	 ∩ 	 	∀	 	, , 1,    (1) 

An event A is a part of the E, i.e. A ∈ 	  (E). The probability of an event is a function defined 

on  (E) i.e. P: (E)→[0;1], which satisfies the following axioms: 

 	; ∀	 ∈ Ω    (2) 

  P(E) = 1   (3) 

 ∪ 	 	 	; 	 ∩ 	    (4) 

2.2. Discrete and continuous random variables 

A discrete random variable is associated to an experiment that gives finite or countable 

elementary outcomes, having well defined probabilities. The sum of the probabilities of the 

discrete sample space must be one. To a finite set of outcomes of an experiment, a discrete 

random variable X is assigned, which is represented as:  

 	 	 …… . .	 …… . .    (5) 

For a countable set of outcomes, a discrete random variable X is expressed as:  
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 	 			 … ……		 …… . . ……    (6) 

The relationships in (5) and (6) are called the probability distribution functions (pdf) of the 

discrete variable. As it is well known, there are experiments given numeric continuous 

outcomes. To such experiments, continuous variables are associated. For a continuous 

random variable X, the probability assigned to any specific value is zero, whereas the 

probability that X takes values in an interval [a, b] is positive. The probability that a 

continuous random variable X takes values in the [a, b] interval is expressed as 

. The probability that a continuous random variable X is less than or equal with a value x 

is  

 	 	    (7) 

which is called cumulative distribution function (cdf).  

FX(x) should be a continuous and derivable function to fulfill the condition that for any 

infinitesimal interval [x, x+dx] one can estimate the probability that ∈ ,  as: 

 dP( 	 	 	 	 ∙ ∙ 	 	  (8) 

where 	 	
 is the density distribution function of . As it is evident, 0	for	 	while 1 for . 

2.3. Independent and conditional events 

2.3.1. Conditional probabilities  

Let E be a discrete sample space, containing n elementary events of an experience with 

probabilistic outcomes. Let be two events A and B of E that contain k , respectively l 

elementary events so that ∩  contains m. Assuming a trial is done and B occurs, then the 

probability that A occurs simultaneously is the ratio of favorable outcomes for A contained 

in B and of the possible outcomes of B. Thus, the probability of the event A, knowing that 

the compatible event B occurred is named conditional probability of A given B and denoted 

as 	 	 ∩ . In the above example the  is:  

 	 	 ∩
   (9) 

The probability of B given A is:  

 	 ∩
   (10) 

From Eqs.(9) and (10) it can be derived that 

 ∩ 	 ∙ ∩ ∙    (11) 
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Event A is independent of B if the conditional probability of A given B is the same as the 

unconditional probability of A, P(A) e.g . According to Eg.(11) the probability 

of two independent event of E , let say A and B, is: 

 ∩ ∙    (12) 

2.3.2. Pairwise and global independence 

If the event , 1,3 are such that any of pairs are exclusive e.g. ∩ 	∅	, ∀  then 

the events	 , 1,3 may be not totally exclusive i.e. ∩ ∩ 	∅. The classical proof of 

3 events pairwise independent but not totally independent was given by S. Berstain [5, 6]. 

The events ⊂ , 	 1,  are totally independent if for any selection of k events of E, 

written as {AS1, AS2…….ASk}, the following statement is true 

 ⋂ 	 	∏    (13) 

2.3.3. Geometric probabilities 

The probability of an event related to the location of a geometric figure placed randomly on 

a specific planar or spatial domain is called geometric probability. A representative example 

is that of a disk (D) of radius “r”, that is thrown randomly onto a planar domain A (square 

of edge length a) that includes a sub domain B (square of edge length b) as shown in Figure 

1.a. The addressed problem is to estimate the possibility that the disk center falls into the 

domain B. This is the ration between the area of domain B and the area of A, i.e. ∈
(b/a)2. If the event consists of ∩ , then the probability is ∩ (b2+4br+πr2)/a2. 

The examples could be extended to the micro hardness test, e.g. if a field of a steel specimen 

of area A contains compounds of total area B (Figure 1.b) then the probability that at a 

random indentation the indenter tip impinges on a compound is B/A. The most well-

known example of geometric probability is the Buffon’s needle problem [7]. Thus, if a needle 

of length “2l” is dropped randomly on a horizontal surface ruled with parallel lines at a 

distance h  2l apart what is the probability that the needle intersects one of the lines?  
 

 

Figure 1. Schematic representation of the sample space for: a) disk thrown; b) micro-indentation; c) 

Buffon’s needle problem 

(a) (b) (c)
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The probability that a needle thrown randomly crosses a line is the sum of all favorable 

probabilities which, in fact, is the integral: 

 
	 ∙    (14) 

The criterion for estimating the correctness of a Buffon’s needle experiment is the closeness 

of (2l)/(hP) to the value of . The geometrical probabilities are used on a large scale in 

metallography for grain size and grain shape estimation [7]. Their usage may be extended to 

micro and nano-indentation tests etc.  

2.4. Discrete probability density functions 

Discrete probability deals with events that occur in a countable sample space [1-4]. If the 

discrete sample contains “n” elementary events {ei;	 1, } then an “intrinsic” probability 

value is assigned to each ei while for any event X is attributed a probability f(x) which 

satisfies the following properties: 

 	 0,1  for all	 	  E   (15) 

 ∑ 1   (16) 

The function , 1,  that maps an elementar event to the “probability value” in the [0, 

1] interval is called the probability mass function, abbreviated as pmf. The probability theory 

does not deal with f(ei) assessing, but builds methods for probability calculation of every 

event assuming prior known of f(ei), 1, . The pmf is synonymous with pdf therefore pdf 

will be used as the abbreviation for the probability density of X, which is:  

 	X x , x , ………xp , p , ………p    (17) 

where xi= X(ei), pi=f(ei)≡f(xi) ; 1,  

Since the most used pdfs (“pmfs”) in the field of metallurgy are Poisson and Bernoulli 

distribution only these distributions will be addressed in this chapter. 

2.4.1. Poisson scheme 

Let us consider a set of n experiences denoted as: E = E1xE2 x….x En. Each experience has two 

elementary events, i.e. the variable Xi attached to the sample space of Ei, 1,  is: 

 			    (18) 

where Ai is the event of interest of Ei, having the probability “pi” while  is the contrary one 

having the probability qi = 1– pi. 

The Poisson's scheme is designed to help estimating the probability of occurrence of k 

expected outcomes when each experiment Ei, 1, , of E is performed once. In this 
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instance, assuming that “k” expected events occurred then one can renumber the events 

starting with these “k” expected and, next, with those (n-k) unexpected as follows: 

  , ,……… . , ̅ , ̅ ………… ̅    (19) 

The probability of the event ∩ ∩ ……∩  is the product of the individual Ajl 

events: 

 	 , , … … .    (20) 

The event En(k) is realized for any combination of k Ai, 1, , events i.e. for Cnk events. 

Thus to calculate the P(En(K))≡ Pn (K) one must sum all different products consisting of “k” 

terms of pi, i = 1,  multiplied by the rest of qi probabilities. This way of calculation is 

identical with the case of calculating the coefficient of Xk of the polynomial: 

 … . ≡ ∏    (21) 

This approach of calculations of Pn(k) as the coefficient of Xk of Pn(x) is known as Poisson’s 

scheme.  

2.4.2. Bernoulli or binominal distribution 

The Bernoulli distribution addresses the case of an array of “n” identical experiences, i.e. the 

particular case of Poisson scheme when pi = p and qi = q, i = 1, . In this case, the probability 

of occurrence of “k” events from “n” trials is: 

 
!! !    (22) 

where n!=1*2*3*...*n 

The mean value of “k”, denoted as , could be calculated as: 

 	 ∑ ∑ ∑    (23) 

The term dispersion is many times used instead of variance. 

The variance of the Bernoulli distribution is: 

 ∑ ∑ ∙ ∑    (24) 

2.4.3. Poisson distribution 

Poisson distribution is a particular case of the Bernoulli distribution when the number of 

events tested is very large, but the probability of the experimental outcome is close to zero 

i.e. it is the distribution of rare events. In this instance, the mean ∙  is considered a 

constant quantity that characterizes the distribution as will be shown forwards. According 

to the Bernoulli distribution the probability of k events realization in a series of → ∞ is: 



Multiconvolutional Approach to Treat the Main Probability Distribution  
Functions Used to Estimate the Measurement Uncertainties of Metallurgical Tests 123 

 
.. ! 1 ∏ 1 ∗ 1    (25) 

The limit of  for → ∞ , denoted as P(k), is:  

 lim⟶∞
∙ !    (26) 

The dispersion of the Poisson distribution is 	 √  .  

The Poisson distribution is often assigned to the quantum particle counting statistics 

because the standard deviation (SD) is simply expressed as square root of the mean number 

<n> , where <n> is the mean of a set of measurements. Many times the SD is estimated as 

sqrt(n) using a single test result. But this approach is many times inappropriate to the real 

situation because the detection probability of a quatum particle is not close to zero.  

There are other interesting discrete pdfs for metallurgist as: hypergeometric distribution, 

negative binomial distribution, multinomial distribution, [1-5] but it is beyond the scope of 

this chapter. 

2.5. Continuous probability density function 

2.5.1. Introduction 

The variable X is called a continuous random variable if its values are real numbers as the 

outcomes of a large class of measurements dealing with continuous measurand such as 

temperature of a furnace, grain size etc. The sample space for a continuous variable X may 

be an interval [a, b] on the real number axes or even entire  space. The probability thar X 

takes a value in the interval [x1, x2], denoted as P(x1<X<x2), is directly proportional with the 

interval length x2-x1 and depends on the intrinsic nature of the experiment to which X was 

assigned. The local specificity of X is assessed by P(x<X<x+dx), where dx is of infinitesimal 

length. The probability that X<x is P(X<x)= F(x), which is called cumulative distribution 

function, abbreviated cdf. By definition, the cdf must be derivable because P(x<X<x+dx)= 

F(x+dx)-F(x) and for any dx the (F(x+dx)-F(x))/dx should be finite and continuous i.e.  

 lim → 	
   (27) 

where p(x) is the probability density function (pdf) over the range a X b.  

The main statistical parameter assigned to a variable X on the base of its pdf is: mean, 

median, mode, sample variance or dispersion, standard deviation and central moments. The 

mean of X variable is: 

 ≡ ∙    (28) 

where [a, b] is the domain of X variable. 

The median value of X (xm) is the value which divides the number of outcomes into two 

equal parts i.e. F(xm)=0.5. The mode of a pdf is the value x0 for which (x0) reaches its 

maximum i.e. dp(x0)/dx=0  
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The variance V of X is expressed as: 

    (29) 

The standard deviation is defined as:  

    (30) 

SD is a measure of the spreading of X values about . A set of measurement results are even 

more centered around  as their dispersion is smaller.The central moment of the order r is 

defined as:  

    (31) 

where r is a natural number and usually r>2. 

The central moments are used for assessing the skewness and kustoisis of the pdfs. [1, 4]  

2.5.2. Continuous uniform probability distribution function 

A random continuous variable X has a uniform pdf if it takes values with the same probability 

in an interval [a, b]. The pdf of an uniform variable, abbreviated as updf, is given as:  

 
	 ; 	 ∈ ,0; 	 ∉ ,    (32) 

The cmd of X is: 

 

0; 		 ; 	 	 ,1	; 	    (33) 

Usually, a updf is transformed in a standard uniform distribution by the coordinate 

transformation:  

 ∙ ∈ 1,1    (34) 

which leads to:  

 	 	 ; 	 ∈ 1, 10; 	 ∉ 1, 1    (35) 

The cdf of a standard updf is: 

 

0	; 	 	 1	 1 	; 	 ∈ 1, 11	; 	 1    (36) 

The graphs of the standard updf, f(x), and of its cdf, F(x), are shown in Figure 2.  
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The main parameters of a updf are: ; /√3;	 0 while for a 

standard updf are μ=0, SD=√3 /3. In testing practice, a updf is assigned to an experimental 

measurand when there is no information or experimental evidences that its values have a 

clustering tendency. This is the case of a measure device having specified only the tolerance 

range as for the pyrometer i.e. 5 oC. 

 

Figure 2. The graphs of the standard updf, f(x), and of its cdf, F(x) 

2.5.3. Trapezoidal probability distribution function 

A trapezoidal pdf is ascribed to a continuous random measurand if the distribution of its 

values around the mean is likely to be uniform while at the extremities of the interval the 

frequency of its occurrence vanishes linearly to zero as is shown in Figure 3.  

 

Figure 3. The graphs of trapezoidal symmetric pdf, f(x), and of its cdf, F(x). 

The length of the larger base of the trapeze is usually denoted as 2a while the lesser one is 

2b=2aβ. The height of the trapeze (h) is determined by the normalization condition i.e. the 

area between f(x) and Ox axis is 1. Thus, for a trapezoidal pdf 1 . In this 

instance, the isosceles trapezoidal pdf is expressed as:  

 

; 	 ∈ ;; 	 ∈ ;	; 	 ∈ ;0; 	
   (37) 

The F(x) of a trapeze pdf is obtained by integrating f(x) over the interval [μ-a; x ].  

0
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The variance of f(x) given by Eq.(37) is:  

  2 2V a 1 / 6β     (38) 

The trapezoidal distribution could be considered as the general form for the class of 

distribution whose graphs are made of linear branches. Thus, for β=1 the trapezoidal pdf 

degenerates into a uniform distribution and for β=0 into a triangular one. Therefore, the 

triangular distribution will be considered as a particular case of trapezoidal which has the 

following parameters: μ, and V=a2/6. The triangular distribution is appropriate for the 

measurand whose values cluster around the mean value. The triangular distribution with 

the width 2a may be considered as a twofold convolution of uniform distribution of 

identical length a. The same, the trapezoidal distribution can be seen as a convolution of two 

different uniform distributions. The triangular pdf is mostly used for uncertainty estimation 

of type B given by an instrument whose tolerance limits are specified. 

2.6. The normal or Gaussian probability distribution function  

Herein will be presented a derivative of normal pdf to emphasize the circumstances of its 

application The normal or Gaussian pdf was formulated by F. Gauss in 1809 and since then it 

became the most prominent pdf encountered in testing practice. For example, the result error 

in a test is usually assumed to follow a normal distribution. The Gaussian function is 

defined on the entire axis of real number as [4-6]: 

 ; , √ 	    (39) 

where μ is the mean and σ2 is the variance of the continuous random variable X. 

The Gaussian distribution with μ=0 and σ2=1 is called the standard normal distribution, 

denoted by Φ(x) or N(0,1) which is expressed as: 

 √ 	    (40) 

N(μ,σ2) can be expressed as: 

 ; , )   (41) 

The function cdf of the standard normal distribution is: 

 √    (42) 

The integral (40) cannot be expressed in terms of elementary functions but as error function 

as: 

 1 erf √ , ∈    (43) 

The cdf of N(μ,σ2), F(x; μ, σ2), can be expressed as: 
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 F x; 	μ, σ Φ    (44) 

The normally distributed variable has a symmetric distribution about μ, which is in the 

same time the median and the mode. The probability that X~N(μ,σ2) takes values far from μ 

(i.e. more than a few standard deviations) drops off extremely rapidly. 

From the perspective of the test result analysis, it is important to derive the ; , . An 

easy and meaningful approach to derive ; , 	is based on binomial pdf with p not close 

to zero and for a very large n. In such a case,  has a maximum for  and drops off 

very rapidly as k departs from . When n is very large,  varies smoothly with k and 

practically k can be considered a continuous variable. Because  takes significant values 

only in the vicinity of k, then its values will be well approximated by formally constructed 

Taylor series for ln(Pn(k)), around  as follows: 

 ≅ 	 ! 	 ! ! 	 | ⋯ (45) 

The second term of the right side of the equation is null because 0. 

For deriving the ln  it is assumed that the Stirling’s first approximation is valid i.e.  

 
!! ≅ ∙ ln 	 	ln 	–	 	ln	    (46) 

Based on Eq.(46) the derivative of 	of the r order, 2, was deduced as: 

 1 . ! !
   (47) 

Thus, the terms containing derivative of the order 2 could be neglected in the Taylor’s 

expression of . With these considerations and taking into account that  

then Eq.(45) can be written as: 

 	 ≅    (48) 

where μ is the mean and σ2 is the variance of binomial pdf 

The next assumption based on n sufficient larger is to consider k as a continuous variable X.  

The X variable may be extended on R based on exponential decreasing of the probability 

that X takes values far from μ. In this instance, Eq.(48) can be written as: 

 ; , 	 ∁	. √    (49) 

where ∁ is a constant determined from the normalized condition.  

Deduction mathematical expression of the Gauss distribution, ; , , on the base of the 

binomial pdf clearly shows that the Gaussian pdf is valid for a very large number of 

experiments. Therefore, by analogy, it is a matter of evidence that Gaussian pdf addresses 

experiments having a large number of influence factors that give rise to random, unbiased 
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errors. Usually, an uncertainty budget comprises a number of influence factors less than 20. 

Thus, at the first glance, it results that a normal pdf is not sufficiently justified to be applied 

in such a case. On the other hand, if each influence factor has its own influence factors so 

that the number of the overall contributors to the uncertainty of the measurand exceeds 30, 

then assigning a normal pdf to the measurand is justified. 

2.7. Continuous probability distribution functions used in metallurgy practice 

In principle, any continuous function defined on an interval , ⊂  can be used as a pdf 

on condition that: 

 1   (50) 

For metallurgists, the most useful pdfs other than the normal one are the log-normal, 

Weibull, Cauchy (Cauchy-Lorentz) and exponential pdf [6, 7]. The log-normal pdf is used 

mainly for grain-size data analysis [6]. The mathematical expression of log-normal 

distribution is derived from normal one by substituting ln(x) for x as follows: 

 √ . .    (51) 

where μg is the “geometric mean” and σg is the “geometric standard deviation”. 

The log-normal pdf is proven by empirical facts. Thus, intended used of a log-normal pdf for 

a specific sample remains at the latitude of the experimentalist.  

In the field of metallurgy, the Weibull pdf is used mostly for failure rate or hazard rate 

estimation. The pdf of a Weibul random variable X is: [5, 8] 

 ; ; . . ; 	 00; 	 0    (52) 

where 0 is the shape parameter and 0 is the scale parameter of the distribution. 

The Cauchy (Cauchy-Lorentz) function is used successfully to describe the X-ray diffraction 

or spectral lines profiles which are subjected to homogeneous broadening. The Cauchy 

function is many times used as a pdf of X variable defined on R, as follows [5, 6, 8]: 

 , ,    (53) 

where xo is the peak location and γ is the half-width at half-maximum. 

As for normal pdf, f(x; 0, 1) is called the standard Cauchy distribution whose pdf is: 

 ; 0; 1    (54) 

The exponential distribution is fitted to describe the random behavior of a process in which 

events occur independently at a constant average rate. The pdf of the exponential 

distribution is: 
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 ; ; 	 00; 	 0    (55) 

where λ>0 is the rate parameter. 

The mean of an exponential pdf is μ  while its standard deviation is 
√ √2μ. 

The exponential, Cauchy, log-normal and Weibull pdfs were presented very shortly for the 

sake of the chapter completeness but normal and uniform distributions will be used 

extensively in the next subchapters. 

3. The probability distribution function of the compound variables 

A random variable Y is defined as a function of other variables Xi, i=1, , denoted as Y= f(Xi). 

In this chapter only the functions met in testing practice are considered and expressed as: 

Y=aX+b, Y=(X1+…Xn)/n; Y=X2 and √ ; Y=X1/X2 and Y=X21/X22.  

3.1. The probability distribution function of the variable Y=aX+b 

The simplest case of a compound variable is that of the variable Y=aX+b where a and b are 

two positive real numbers. Assuming that the pdf of X is defined on  then the probability 

probability  is equal with PX(X≤ x). In this instance, the cdfs of Y and X 

for Y = aX+b have the same value i.e. 

    (56) 

Substituting the variable t=av+b for v in Eq.(56)  

 ∞    (57) 

Accordingly,  

    (58) 

3.2. The probability density function of linear compound variables 

Consider two random variables X1 and X2:	 → . If a variable X is defined on the intervals, 

it can be considered defined on  because their pdfs can be extended to  as follows:  

 
; ∈ ,0; ∉ ,    (59) 

The extension to  for  and  is necessary in order to make possible their 

convolution. The cdf of the variable Y is: 

 P Y 	 ∪    (60) 

where ∪  is the event, conditioned by . If the pdfs of the X1, X2, Y 

variables are used then the Eq.(60) becomes: 
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 ∙    (61) 

 1 2x x y   

Substituting the variable u for x1 and v for x1+x2 in Eq.(61) 

 	 	 ∙    (62) 

Accordingly, 

 ⊗    (63) 

where  is the convolution of the of and  pdfs. 

The convolution of two functions is a mathematical operator which has specific properties 

as commutatively and associatively, but the most important property lies in the fact that the 

Fourier transform of ⊗  is the product of the Fourier transforms of the respective 

functions. 

Based on Eq.(63) one may supposes that the pdf of the variable Yn(y)=X1+X2+….Xn is:  

 ⊗ ……⊗	    (64) 

where: , 1,  are the pdfs of the Xi variable.  

The validity of Eq.(64) is proved by mathematical induction method. Thus, the above 

assumption is valid on condition that the pdf of the variable Yn+1(y)=X1+X2+….Xn+Xn+1 is of the 

same form as that given by Eq.(64). To prove that, Yn+1 is written as: 

 Yn+1(y)=X1+X2+….Xn+Xn+1=Yn+Yn+1   (65) 

Accordingly, 

 ⊗ ⊗ … .⊗ ⊗    (66) 

Consequently, , Eq.(66) proves that  Eq. (64) is valid for any n. In the case fXi=fX, 1, , the 

pdf of Yn variable is the convolution product of n identical functions, denoted as : 

 ⊗    (67) 

The pdf of a Yn variable defined as: Yn= a1X1+a2X2+……+anXn where Xi, 1,  are random 

variables, ai, 1,  are real numbers, can be calculed in two steps. In the first step, the 

variables Zi =aiXi are introduced and then their pdfs are calculated as; 

 | | ∙    (68) 

Next,  is calculated using the Eq. (64): 

 ⊗ … .⊗    (69) 
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Note: The variables: ∑ , with Xi=X, 1,  and Yn=n⋅  are diffrent.  

The variable , assigned to the mean of n numerical results obtained in repeatability 

conditions, also called as sample mean variable, is the typical variable to which the linear 

compound variables theory is applied. Thus, the  has the expression: 

 ⋯ ⋅    (70) 

where Xi, 1,  , are the variable assigned to each measurement. 

The pdf of  is:  

 ̅ ⋅ ̿ ⋅ ⋅ ⊗ ⋅ ̿    (71) 

 If fX(x) is known then the experimental mean distribution can be calculated, and 

subsequently, the dispersion of the experimental mean around the conventional true mean μ 

of X can be estimated as well. 

3.3. The probability density function of Y=X2 variable 

Consider a random variable X with ∶ → 	and a variable Y=X2. By its definition Y has 

the following cdf: 

 
0	; 	 0	 	 ; 0   (72) 

where  is the pdf of Y for 0. 

The condition u y implies that x2  i.e	 	 ∈ , , respectively. Accordingly, the 

probability that u	∈ [0,y] is equal to the probability that	 	 ∈ ,  i.e. 

 	    (73) 

The Eq.(73) may be expressed as: 

 	 √√√ √    (74) 

where 	, 	 √√   

Substituting the variable √  for X into I1  

 √ √ √√    (75) 

Likewise, if in I2 is applied the substitutions	√ , for x then 

 
√√    (76) 

From Eqs. (74), (75) and (76) it is deduced that: 
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 1 2⁄ ∙    (77) 

The repartition density of X2 variable differs significantly from that of X. For example, if X is 

a variable with the N(0,1) pdf then the the pdf of variable Y= X2 is: 

 √ 	    (78) 

which is of Weibull type.  

3.4. The probability distribution function of Y= √  variable 

Consider X as a random continuous and positive variable with the pdf fX(x): → 	. The 

Y=√  variable has the value y=√  when X=x. The cdf of Y is:  

    (79) 

On the other hand,  is equal to ) i.e. 

    (80) 

If on the right hand side of Eq.(80) one substitutes v2 for t then  

 2    (81) 

Accordingly, 

 2    (82) 

Generally, Eq.(79) is used for estimating the pdf of the standard deviation when the pdf of 

sample dispersion (variance) is known.  

3.5. The probability distribution function of the ratio of two distributions 

Let be the two random and independent variables X1 and X2 and their pdfs  and 

 , respectively defined on . The variable Y=X1/X2 has the repartition function: 

 ∞    (83) 

Substituting u for x2 and ∙ 	for x1 in Eq.(83)  

 	 ∙ ∙ ∙ ,,    (84) 

where 
,, 1 0  is the Jacobian of the coordinate transformation  

From Eqs.(83) and (84):: 

 	 ∙ ∙ ∙ ,,    (85) 
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The pdf of Y=X1/X2 variable with X1 and X2 of N(0, 1) type is: 

 √ ∙ ∙ √ | |    (86) 

Eq.(86) shows that the pdf of the ratio of two variables with standard normal distribution is 

the Cauchy standard distribution.  

3.6. General approach for deriving the pdf of the sample mean variable 

As reported in literature [2, 8] the sample mean of a sample size “n” i.e. {x1, x2, …, xn} is an 

estimator for the population mean. On the other hand, the mean has two different meanings: 

1) numeric value of the sample mean calculated from observed values of the sample and 2) a 

function of random variables from a random sample. This subchapter addresses the pdf 

assigned to the mean of the outcomes of n repeated tests. Therefore, the mean as a function 

is a sum of n identical functions divided by n. The pdf of X, as it was derived in § 3.1, is: 

 ̅ ⨂ ̅    (87) 

In the next three paragraphs the  will be deducted for Gaussian, uniform and Cauchy pdfs. 

3.7. The probability distribution function of mean of “n” Gaussian variables 

Let Yn be a compound variable of n identical Gaussian variable X defined as Yn = 

X1+X2+…+Xn, where: ≡ , 1, . The pdf of X is: 

 ; , ≡ √    (88) 

As proven in § 3.1.2., the pdf of Y2 = X1 + X2 is: 

 ∙    (89) 

Eq.(89) shows that the pdf of Y2 is of Gaussian type with the mean μ2 = 2μ and standard 

deviation √2 ∙ . Based on the above result, let’s assume that the Yn variable has a pdf of 

the form 

 √ 	 ∙√ ∙    (90) 

According to the complete induction method the above assumption is true if on the basis of 

Eq.(90) it can be proven that the pdf of the Yn+1 variable is: 

 √ ∙√ ∙    (91) 

The variable Yn+1 = Yn +Xn+1, therefore pdf of Yn+1 may be written as; 

 √ ∙ ∙ ∙√    (92) 
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Eq.(92) proves that Eq.(90) is true and permits to state that the pdf of a sum of “n” identical 

Gaussian variable is of Gaussian type having the mean μn = n∙ 	and the standard deviation √ ∙   

As it was proven in § 3.1. the pdf of the sample mean variable  is: 

 ̅ ̅ ∙ , ̅ ∙ √ ∙√ ∙ = ∙√    (93) 

where ̅ 	 /√  is the standard deviation of the mean when the sample size is n. 

Eq.(93) shows that the mean values ( ̅) are centered on the population mean μ and their 

standard deviation is √  times smaller than standard deviation of the population. 

The mean and the variance of X could be easily estimated on the base of mean operator (M) 

and of variance V one applied to a vector of statistical variable, i.e.[6] 

 ∑ ∙ ∑ ∙ ∙     (94) 

 ∑ ∙ ∑    (95) 

where:	 1/ , 1,  , but these operations has no meaning for the experimentalist. 

3.8. The probability distribution function of mean of some uniform variable 

In real world testing situations are often found where there is no knowledge about the pdf of 

the measurand. In such cases, the experimentalists have to consider that the pdf assigned to 

the measurand is of the uniform type. The same, metallurgical practice implies statistical 

modeling using additive uniform variable. Simple examples are: weight or length of a chain 

with n links, strength resistance of a series of n bars, fiability assessment of a product 

composed of n parts. According to §2.3.2 any updf may be related to a so called standard 

updf having the width 2, =0 and SD=√3/3 

Based on the above consideration this section addresses only standard updf given by Eq.(34).  

As was derived in §3. 2.1, the pdf assigned to arithmetic mean of n outcomes is: 

 ∙ ⊗    (96) 

where , 1,  .The first step in deriving the pdf of X is to calculate the ⊗ . The 

expression of ⊗  will be derived by recurrence approach i.e 
⊗

= ⊗ ⨂ . Thus, the 

two fold convolution of f is: 

 	 ⊗ ∙ ∙    (97) 

where  is equivalent with a translation of the graph of with  related to the 

origin of coordinate. The value of the above integral is proportional to the overlapping area 

of the graphs of the X1 and X2 pdfs, which is: 
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 ⊗ 2 | | ; ∈ 2,20	; 	∉ 2,2    (98) 

The ⊗  is known and as Simpson distribution [9]. The convolution of two uniform 

variables gives a triangle distribution with the same height as convoluted pdf but two times 

larger.  

The ⊗  is calculated as: 

 ⊗ ⊗ ∙ 3 	; ∈ 1,13 | | ; 	 ∈ 3 1 ∪ 1,3 	1 | | 30	; 	| | 3   (99) 

⊗  is very important because it is the keystone from where the pdf of a sum of identical 

uniform distribution turns in a polynomial shape (Figure 4). The first order derivative of ⊗ 	is continuous in X = 1 but the second order one is not. 

 

 

Figure 4. The graphs of the sample means pdfs for n=1,5 

Thus, at x1,2 = 1 are two inflection points. In the same way as for ⊗ , ⊗ 	can be calculate 

as;  

 ⊗ ∙ ! 32 12 3| | ; 	| | 2
∙ ! 4 | | ; 2 | | 40; 4    (100) 

The ⊗  pdf is deduced as:  

 ⊗ ∙ ! 115 30 3 	; 	| | 1
∙ ! 55 10| | 30 10| | 	; 1 | | 3

∙ ! 5 | | 	; 	3 | | 50	; 	| | 5
   (101) 
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The expressions of the k-convolved standard updfs are difficult to be calculated for k>5, but 

one can get help using the general form of a sum of n identical standard uniform variables 

given by Renyi[9]: 

 ⊗ ! ∑ 1 ∙ 2 ;	 	, 0	; 												    (102) 

where , 	is the largest integer less than   

The pdf of the sample mean of the 5 uniform distributed outcomes obtained in repetitive or 

reproductive condition, denoted 5 ,⊗  is 

 

∙ ! 115 6 ∙ 5 3 ∙ 5 ∙ 	; 	| |
∙ ! 55 50| | 6 ∙ 5 2 ∙ 5 ∙ | | 5 ∙ ; | |

∙ ! 1 | | 	; 	 | | 10	; 	| | 1
  (103) 

The graphs of the sample means for n=2,5 are given in Figure 4. A special attention is drawn 

to  because it is appropriate for the hardness test where the standard recommends 

five reproductive measurements. Based on the  there were calculated:	 | | ≅25,5%; | | 44.8%; | | 1 0.7%. On the other side, the probability 

that the mean lies in the interval ,  is about 29,5% while in , ∪ ;  is 

25,5 %. Thus, the probability that the mean depart from zero decreases relative slowly, not 

so rapidly as is argued elsewhere [10]. Based on the convolution approach or on Renyi’s 

formula the experimentalist could calculate the pdf of the sample mean for its own n number 

of repeated tests. 

3.9. The pdf of mean of some Cauchy distributed variable 

Let us consider two Cauchy variable X1 and X2 whose pdfs defined on  are:  

 	and	    (104) 

The pdf of the variable Y2=X1+X2 is: 

    (105) 

In testing practice X1 and X2 are the same i.e. a1=a2=a therefore 	is:  

 	    (106) 

There expression of n-fold convolved Cauchy pdfs is : 

 x    (107) 
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The pdf assigned to the mean of a set of n outcomes having Cauchy distribution is: 

 ∙    (108) 

Eq.(108) shows that the pdf of mean is identical with that of the measurand. As a paradox, 

repeating a test many times on a measurand whose pdf is of Cauchy type is of no use. Since 

the dispersion of the Cauchy distribution is infinity then it should be avoided being 

assigned to a measurand. 

3.10. Student’s or t-distribution 

The Student’s distribution, also referred to as t-distribution, is used on a large scale to test 

the exactness of a set of numerical outcomes of repeated tests when μ and σ are not known. 

The power of t-tests consists in making use of μ and σ as hidden or implicit variable for 

statistical inference while they remain unknown. Thus, let be a set of n outcomes {x1, x2,...,xn} 

whose mean ̅ and sample dispersion s2 are, respectively  

 ̅ ∑    (109)  

 ∑ ̅    (110) 

The experimentalist is concerned about the exactness of ̅, i.e. the accuracy ̅ μ related to 

the standard deviation of mean ̅ /√ . Thus, the parameter ̅ / ̅  was found to 

be the best estimator for the case of a test with unknown μ and σ. Fortunately, a t-parameter 

can be written as: 

 
̅ μ√ / √√ ̅ μ /    (111) 

The pdf of the variable T assigned to t values will be derived as the ratio of the variables Z 

assigned to ̅ μ / ̅  and R to ( ̅/ ̅). The Z variable has a pdf of N(0,1) type while the pdf 

of R will be defined a little bit later. Before proceeding to derive the expression of the pdf of 

R variable, let make some reconsiderations about the actual way of deriving the pdf of S2. 

Thus, on the basis of the well known Eq.(110) the variable S2 assigned to s2 is considered as: 

    (112) 

where μ ⋯ μ  

Here it is considered that the above issue is quite unproductive because the (n-1) factor 

replaces the n factor in Eq.(107) just because sn2 approximates better the sample variance 

related to μ. i.e.  

 	 ∑ ̅ ≅ ∑ μ ∑    (113) 

Therefore the variable attached to S2 should be: 



 
Metallurgy – Advances in Materials and Processes 138 

 ∑    (114) 

where 0,1 , 1,  and ∑ . 

The pdf of , as it was shown in § 3.3.), is: 

 	    (115) 

The pdf of Sn2 variable is: 

 	    (116) 

The pdf of  variable is: 

 2 ∙ 	    (117) 

The pdf of the variable /  is: 

 	 	    (118) 

The pdf of Ø / , according to §3.1, can be calculated as: 

 √ 	 ∙ √ 	 2 ∙    (119) 

Substituting x for [u2(t2+n)]/2 in Eq.(119)  

 √ 	 ∙ 	 	√ 1    (120) 

The expression of  is consistent with those given in different works [6, 8] if n is replaced 

by υ which is the so called number of degrees of freedom (ndf) of the variable under 

consideration. 

The derivation of , frequently denoted as f(t), is important for two reasons: a) the 

Student’s pdf must be applied only for a set of identical Gaussian variables or n repeated test 

when the pdf of the measurand is of normal (Gaussian) type; b) to correctly establish the ndf. 

The cdf of T, FT(t), cannot be estimated as analytical primitive of fT(t), but its values were 

tabulated and can easily be found in the open literature [5, 6, 8].The arguing that υ=n is very 

important when n is 2, 3, 4 because the tn(0; 0.05) varies significantly in this range. Thus, it is 

a matter of evidence that many times 3 repeated measurements are considered to be enough. 
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In this case, using t2(0.005)=4.303 instead of t3=(0.05)=3.182 increases the expanded 

uncertainty significantly. 

3.11. Fisher-Snedecor distribution 

The proficiency testing (PT) is a well defined procedure used for estimating the performances 

of the collaborative laboratories [11, 12]. ANOVA (ANalysis Of VAriance) is one of the 

methods used for analysis of sample variances reported by the laboratories. ANOVA is based 

on Fisher-Snedecor distribution of the two sample variances of a measurand X. Thus, if for the 

same sample a laboratory labeled A, gives a sample dispersion. 

 ∑    (121) 

while B laboratory gives: 

 ∑    (122) 

where xi, 1,  and 1,  are the outcomes obtained for the same X measurand by the 

laboratories A and B, respectively. 

As it was argued in §3.4, to the	 	 and  may be assigned the variables  and  whose 

pdfs are, respectively: 

 
∙ ∙∙ ∙    (123) 

 
∙ ∙∙ ∙    (124) 

The pdf of the variable ratio S2A/S2B=F is: 

 ∙ ∙ ∙ ∙ ∙ ∙∙ ∙ ∙ ∙ ∙	 ∙ ∙∙ ∙ ∙ ∙ ∙    (125) 

If the variable y is replaced by /2  in Eq.(125) then: 

∙ ∙∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
																																														 ∙ , ∙ ∙   (126) 

The derived expression for  is identical to that given by Cuculescu, I., [5]. Herein, again 

arises the problem where ndf is n-1 or n. By my opinion =n. The cdf of Fisher-Snedecor 
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distribution is not an elemental analytical form, but its value for different significance level 

(sl) and different n1, n2, F(sl,n1,n2), are tabulated and can be easily found in open literature [5, 

6, 8]. The way of using Fisher-Snedecor distribution as F-test consists of comparing the 

obtained value of s2A/s2B=fe with the value of F(sl; n1,n2) taken from a Fisher cdf table. If 

fe ; , , then the s2A and s2B are consistent, otherwise one of them is a straggler or an 

outlier.  

Note. A straggler should be considered a correct item, but a statistical outlier is discharged 

[11]. 

4. Measurement uncertainty estimation 

4.1. General concepts regarding measurement uncertainty estimation 

Apparently the terms “test result” and “measurement result” have the same meaning i.e. a 

numeric outcome of a measurement process. But in metrology a measurement is defined as 

a “set of operations having the object of determining a value of a quantity” [13, 14] while a 

test is defined as a “technical operation that consists of the determination of one or more 

characteristics of a given product, process or service according to a specific procedure” [14]. 

Thus, a test is a measurement process well documented, fully implemented and 

permanently supervised. In a test process, the environmental and operational conditions 

will either be mentioned at standard values or be measured in order to apply correction 

factors and to express the result in standardized conditions. Besides the rigorous control of 

the “test conditions“, a test result bears an intrinsic inaccuracy depending on the nature of 

the measurand, on the performance of the method and on the performances of the 

equipment. Thus, the entire philosophy of the metrology is based on the fact that the true 

value of the measurand remains unknown to a certain extent when it is estimated based on a 

set of test outcomes. In this sense, the measurement uncertainty (MU) is defined as an 

interval about the test result, which may be expected to encompass a large fraction of values 

that could reasonably be attributed to the measurand. The half width of this interval is 

called expanded uncertainty, denoted by U or U(xx), where xx is the index of the level of 

confidence associated to the interval. The confidence level is frequently 95% but may be 

about 99% or 68% depending on the client requirements or on the test performances. 

According to EN ISO/IEC 17025 a testing laboratory should apply a procedure to estimate 

the MU [1]. In a similar manner, when estimating the MU all relevant uncertainty 

components in a given situation should be taken into account using the appropriate method 

of analysis. The sources of uncertainty include but are not limited to the reference standards 

and reference materials used, the method and equipment used, the environmental 

conditions, the properties and conditions of the item being tested and the operator. The 

degree of rigor of the uncertainty estimation depends on many factors as those above, but 

the test result quality is better as the MU is smaller. Thus, the MU is the most appropriate 

quantitative parameter for test result quality evaluation. As a consequence, the approaches 

of MU estimation were the subject to different committees of the renowned organizations 

such as ISO, ILAC, EA, EURACHEM, AIEA etc. Among the MU estimation approaches, the 



Multiconvolutional Approach to Treat the Main Probability Distribution  
Functions Used to Estimate the Measurement Uncertainties of Metallurgical Tests 141 

one of ISO given in GUM [2] may be considered as the master one. Accordingly, consistency 

with GUM is generally required for any particular procedure for MU estimation. The basic 

concepts of GUM are:  

1. The knowledge about any influence factor of the measurand is in principle incomplete, 

therefore its action shall be considered stochastic following a pdf; 

2. The expected value of the pdf is taken as the best estimate of the influence factor;  

3. The standard deviation of the pdf is taken as the best estimate of the standard 

uncertainty associated to that estimate; 

4. The type and the parameter(s) of the pdf have been obtained based on prior knowledge 

about the influence factors or by repeated trials of the test process. 

The MU estimation procedure consists of two main steps. The first step, called formulation, 

consists of measurand description (physical and mathematical modeling), statistical 

modeling, input-output modeling and, finally, assigning a pdf to the measurand. The second 

step, called calculation, consists of deriving the pdfs for the test result estimation (mean, 

standard derivation, etc.) and the formulas or the algorithm for estimating the MU 

attributed to the test result. 

4.2. Uncertainty estimation according to GUM 

4.2.1. Formulation step 

The formulation begins with the measurand definition. The X measurand may be classified 

as directly accessible to the measure or indirectly measured. The directly measurable 

measurands as length, mass, temperature etc. are not addressed here but those indirectly 

measured as elemental concentrations, Young modulus, hardness etc. Anyhow, a SI unit of 

measure shall be assigned to each measurand whenever it is possible, and also a reference 

for traceability. The indirect measurand may have a deterministic mathematical model as for 

Young modulus 

 
∙∙    (127) 

where E is the Young modulus, F is the applied force (N), S is the area (m2), lo is the initial 

length of the specimen, ∆  is the elongation (m). 

Generally, the deterministic model of a measurand Y which is estimated based on the values 

of a set of measurands , 1,  is a function that described the relationship between 

outcome size and sizes of the inputs expressed as:  

 , , … . ,    (128) 

Eq.(125) is called the input-output model of the test process. A particular value y of Y is 

calculated based on the xi values of : 1,  as: 

 , … .    (129) 
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But, from the statistical point of view the mathematical (statistical) model of the measurand 

Y is [11, 13]: 

 y  b eμ      (130) 

where μ is the general mean or the true value of Y, b is the systematic error or bias and e is 

the random error occurring in every measurement.  

The bias b may be detected and corrected by statistical means. The random error e is caused 

by the whole set of the influence factors of the input measurands that form the so called 

uncertainty budget. The , 1,  measurands may be directly accessible to the 

measurement or may not but each Xi has its own uncertainty budget. Thus, the statistical 

model of the Xi ; i=1,n are of the form: 

 i i i iX μ b e    (131) 

where μi is the test value of Xi, bi is the bias of Xi and ei is the random error of Xi  

Thus, the systematic errors and the random ones of the input measurands : 1,   

are incorporated in the overall uncertainty of the output measurand Y. Each : 1,   

has an uncertainty budget (UB) containing ni influence factors Fij, 1,  , denoted  as UBXi= 

{ Fij}; 1, . In this instance, the uncertainty budget of Y, denoted as UBY, could be 

expressed as: 

 ⋃    (132) 

Eq.(132) shows that the design of an accurate uncertainty budget for a measurand needs 

advanced knowledge and extended data about the input measurands that, many times, are 

quite impossible to be achieved. In this context, the pdf of Y remains the most appropriate 

target for the experimentalist. The pdf assigned to the Y may be of Gaussian type if the 

influence factors are all of the Gaussian type or if its uncertainty budget contains more than 

30 uncorrelated influence factors. Otherwise, to the Y shall be assigned a pdf having a less 

clustering tendency than the normal one. Same pdfs having less clustering tendency could be 

ordered as uniform, trapezoidal, Cauchy, etc. The assigning of an appropriate pdf to a 

measurand is a difficult task which has to be solved by the experimentalist. One of the 

arguments that underpins the previous affirmation consists the evidence that each 

measurand has its own variability which is enlarged by the testing process.  

4.2.2. The calculation step 

Suppose that the pdf of a measurand X, fX(x), is established. As it was shown in §3.1, the 

arithmetic mean of a set of test results carried on in repetitive or reproductive conditions is 

the best estimator for the conventional true value of the measurand. The variable assigned 

to the mean, M, is described by a linear model as: 

  1 2 . /nM X X X n     (133) 
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where xi, 1,  , are the statistical variable assigned to each repeated measurement. 

The mean is a statistic [2, 5, 6,] with a pdf obtainable by a convolved product as it is shown in 

§3.2 

 ⊗    (134) 

Once having the fM(y) then it is quite easily to calculate the probability	 | ̅ |  i.e. to 

estimate the level of confidence for	 ̅ ̅ .  

On the other hand, the design of the mathematical model of the measurand and, 

subsequently, of the sample mean needs substantial scientific efforts and costs that may be 

prohibitive. As a consequence, many times laboratories adopt an alternative approach based 

on prior empirically achieved information.  

4.3. The empirical estimation of MU 

If a testing laboratory does not have a mathematical model as a basis for the evaluation of MU 

of the test results then it has to implement an empirical procedure for MU estimation. The 

flowchart of such a procedure is a stepped one [3]. Thus, the first step consists of listing those 

quantities and parameters that are expected to have a significant influence on the test result. 

Subsequently, the contribution of each influence factor to the overall MU is assessed. Based on 

the level of contribution to the overall MU, each factor shall be classified as significant or 

irrelevant. The irrelevant influence factors are discarded from the list. The equipment, the 

CRMs, the operator are among the most frequently considered as significant influence factors. 

If there is a lack of knowledge or prior data about an influence factor then it is strongly 

recommended to the laboratory to perform specific measurements to evaluate the contribution 

of that factor. If the contribution of an influence factor to the overall MU is estimated based on 

a set of outcomes whose variability is assigned exclusively to that factor then its contribution 

to the overall MU is considered of the A type. Else its contribution is of type B. 

4.4. Combined uncertainty calculation 

The combined uncertainty incorporates the contributions of the influence factors Fi, 1, , 

to the overall MU i.e. uncertainties of the A type and of B type. The calculus of the combined 

uncertainty is based on error propagation law [2, 4, 8]. Metallurgical testing practice shows 

that the influence factors are about always considered as independent. Thus, the combined 

uncertainty is calculated as: 

    (135) 

where uA and uB are the combined uncertainty of A type and of B type, respectively. 

The combined uncertainty of the type A is calculated as: 

 ∑    (136) 
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where uAi is the uncertainty of type A assigned to the influence factor Fij, 1, . 

The combined uncertainty of the type B is calculated as: 

 ∑    (137) 

where uBi is the uncertainty of type B assigned to the influence factor Fj, 1, .  

4.5. Estimation of the expanded uncertainty 

The degree of confidence associated with the combined uncertainty (uc) is considered, many 

times, as incompetent, therefore the uncertainty attributed to the measurand is increased to 

a certain extent in order to comply with a previously stated confidence level, usually 95%. 

The increased uncertainty is called expanded uncertainty and is usually obtained by 

multiplying uc with a factor k, called coverage factor. For example, the k factor for a 

measurand with Gaussian pdf is 2 for a 95% confidence level, i.e. the expanded uncertainty 

for the 95% confidence level is U=2uc. The value of k for a specific confidence level depends 

on the pdf type of the measurand and on the number of test results that were used to 

calculate the sample mean and sample standard derivation. If the pdf of the measurand is 

Gaussian or the number of test results exceeds 30 then it is justified to consider that the 

mean is normally distributed. If the pdf of the measurand is Gaussian but n < 30 then the 

Students’ t-distribution shall be used. 

According to [10,14], in many cases the uniform distribution may be assigned to the 

measurand. In this case, U(95) is calculated as: 

 95 1,65 ∙    (138) 

where uc is the combined uncertainty of the test result 

4.6. Reporting the test result 

The test process yields a value as the estimate for the conventional true value of the 

measurand. In principle, this value is the sample mean  or simply y. As standards strongly 

recommend [1, 2, 4], the y value must be reported together with its expanded (extended) 

uncertainty U for a specific confidence level (typically 95%) as follows: 

 y U   (139) 

The laboratory may specify the pdf type and k value as substitutes for the confidence level 

specification. If in a testing situation a laboratory could not evaluate a metrological sound 

numerical value for each component of MU then this laboratory may report the standard 

uncertainty of repeatability, but this shall be clearly stated as it is recommended in [3, 14]. 

The laboratory practice shows that MU estimation is in many cases a time-consuming and 

costly task. This endeavor shall be justified by the advantage of MU evaluation for testing 

laboratories. EA 4/16 argues that MU assists in a quantitative manner important issues such 
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as risk control, credibility of the test results, competitiveness by adding value and meaning 

to the test result etc. But, in the author’s opinion, the MU estimation imposes the operator 

increased awareness about the influence factors and higher interest in the means to improve 

the quality of the test results.  

5. Uncertainty estimation for Rockwell C hardness test. Case study 

5.1. Hardness testing-general principles 

Hardness is the measure of how resistant a solid bulk material is against ingression by 

spherical, pyramid or conical tips. Hardness depends on the mechanical properties of the 

sample as: ductility, elasticity, stiffness, plasticity, strain, strength, toughness etc [15]. On the other 

hand, quantity ”hardness” cannot be expressed as a numeric function of a combination of 

some of these properties. Therefore, hardness is a good example of measurand that cannot 

be mathematically modeled without referring to a method of measurement [4, 15]. In this 

view, there is a large number of hardness testing methods available (e.g. Vickers, Brinell, 

Rockwell, Meyer and Leeb) [15, 16]. As a consequence, there is not a measure unit for 

hardness independent of its measurement method. In time, based mainly on empirical data, 

standard methods for hardness testing appropriate to the material grades were developed. 

In the metallurgical testing field the Brinell, Rockwell and Vickers methods are the most 

frequently used. For this reason, this case study addresses the well-known Rockwell C 

hardness by measuring the depth of penetration of an indenter under a specific load. There 

are different Rockwell type tests denotes with capital letter A÷H [16, 17], but herein referred 

only C type. 

5.2. Description of the measurand 

The Rockwell C hardness is the measure of how resistant a solid bulk material is against 

penetration by a conical diamond indenter, having a tip angle of 120o, which impinges on 

the flat surface of the sample with a prescribed force. 

The Rockwell C hardness scale is defined as: 

 hRC 100x(0.002)	-	d   (140) 

where d is the penetration depth. 

The most meaningful measure for metallurgists is the Rockwell C index, defined as:  

 HRC	=	hRC/0,002	  (141) 

5.3. Description of the test method 

The method used for Rockwell C is given in ISO 6805 standard [16]. The Rockwell C test is 

performed on bulk sample having geometrical dimensions complying with the ISO 6805 

specifications. The indenter is diamond cone having the tip angle of 1200  0.50. The tip ends 
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with a hemisphere of 0.002 mm in diameter. The indentation is a stepwise process i.e. in the 

first step the indenter is brought contact with the sample surface and loaded with a 

preliminary test forces F0=98 N with a dwell time of 1-3 s. Subsequently, during a period of 

1s - 8 s, an additional force F1= 1373 N is loaded. The resulting force F=1471 N is applied for 

42s. In the third step the F1 force is released and the penetration depth h is measured in the 

period 3s-5s. The ISO 6805 recommends that the number of tests carried on in repetitive 

(reproductive) conditions to be a multiple of 5. In this instance, 5 indentations are 

established as practice for estimating the conventional true value of HRC of the specimen 

that has undergone the test.	The recommended environmental conditions of the test are [16]: 

temperature 10-35oC, protection against: vibrations, magnetic and electric fields, avoiding 

the soiling of the sample.	
5.4. The mathematical model of the measurand 

The mathematical model given by GUM for estimating MU of the hardness reference blocks 

is the most appropriate for the MU estimation in the industrial hardness testing. The 

mathematical model given by GUM takes into account the correction factors coming from 

equipment calibration as follows: 

 RC	 	 ̅; ∆ ; ∆ ; ∆ 100 0.002 ̅    	    (142) 

where ̅ is the mean of the penetration depth; ∆ 	is the correction assigned to the equipment ; ∆  is the difference between the hardness of the areas indented by reference equipment and 

the calibrated area; ∆  is the correction assigned to the uncertainty of the reference equipment.  ∆ 	is assigned to the equipment by comparing its penetration depths, done in a primary 

hardness reference block, with those of a reference equipment („national etalon machine”).  

Although ∆  and ∆  are negligible corrections, they are introduced in the expression of the 

mathematical model to be taken into account as contributors to the MU budget. According 

to ISO 6508-1:2005 [16] a „Hardness Reference Block” may be considered as CRM (Certified 

Reference Materials). Based on the above model it was considered that the hRCX of a X 

specimen may be expressed as: 

 RCX	 	 ̅; ∆ ; ∆ ; ∆ 100 0.002 ̅  	    (143) 

where ̅  is the mean of the penetration depths given by the testing machine on X specimen; ∆ 	is the correction assigned to the equipment resulted by comparring the mean penetration 

depth done on a CRM with those specified by its certificate i.e. 

  ̅    (144) 

where ̅  is the mean of the penetration depth given by the test machine on CRM, doCRM is 

the expected penetration depth derived as: 

 	 100 ∗ 0.002   (145) 
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where HRC-CRM is the certified Rockwell C hardness of the CRM 

5.5. Estimation of the contribution of the influence factors to the overall MU 

5.5.1. Contribution assigned to the mean indented depth on specimen ( ̅  

The contribution of ̅ 	to the averall MU is assessed by the standard deviation of the mean 

which is a standard uncertainty (type A). In addition to the data spreading around ̅ , the 

uncertainty of the resolution of depth measuring system will be considered. The 

contribution of ̅ 	to the overall MU is: 

 ̅ 	 	 	    (146) 

where  is the sample variance of the identation depths, n is the number of indentations, t 

is the Student factor, 2/12 is uncertainty assigned to depth reading having a triangle pdf [2] 

The  can be calculated as:  

 ∑ ̅    (147) 

where di are the indentation depth, 1, ., n is the number of indentations 

5.5.2. Contribution assigned ∆  

The uncertainty assigned to ∆ 		has two contributors i.e. the standard uncertainty assigned 

to the measurement process on CRM and that assigned to the CRM itself, which is of B type. 

The MU attributed to ̅  is of the same type with that assigned to ̅ 	therefore it may be 

expressed as: 

 ̅ 	 	 	    (148) 

where  is the sample variance of the depths given by indentations carried on the CRM, 

2/12 has the same significance as in Eq.(7), t is the Student factor. 	can be calculated using the Eq.(147) 

The uncertainty assigned to the CRM is taken from its certificate for k=1 and is denoted as 

uMRC. In this instance, the combined uncertainty assigned to ∆ 	 is: 

 ∆ 	 	 	    (149) 

The common practice of the MU assessment is to take into account the uncertainties 

assigned to machine calibration and that attributed to the operator. But, these 

contributions are included in the MU assigned to ̅  and to ∆ 	. Thus, the supplementary 

addition of the mentioned MU will involve an overestimation of combined uncertainty of 

the hardness test. 
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5.6. Combined uncertainty calculation 

It is a matter of evidence that the contributions to the overall uncertainty of Rockwell C 

hardness test are mutually independent and, consequently, the combined uncertainty  

assigned to h is: 

 ̅ ∆ 	 =	 	    (150) 

5.7. Extended uncertainty calculation 

The reference documents such as [2, 17] do not specify a calculation methods for extended 

MU of . These reference documents only specify the combined uncertainty of the 

measurement. ISO 6508 gives clear clues that a Gaussian pdf is assigned to ̅ . These are: t 

factor e.g. t=1.14 for n=5, and k=2 for UCRM (Eq.(B.6) in [16]). Underpinned on ISO 6805 one 

can assign a Gaussian pdf to ̅ . Thus, the extended uncertainty can be calculated by 

multiplying  with a coverage factor k, for instance, k=2 for a confidence level of 95%. 

Thus, the expanded uncertainty assigned to  is:  

    (151)  

According to metallurgical practice, the expanded MU of the test result is: 

 95 2 )   (152) 

Thus, the expanded uncertainty of the HRC index is calculated as: 

 	 /0.002   (153) 

5.8. Reporting the result 

If the bias of the test is corrected then the result in HRC unit is: 

 100 ̅ ∆ 	 /0.002   (154) 

In this case, the result shall be reported as: 

  corrHRC U  (155) 

on condition that the level of confidence of U or the k value shall be specified. 

If the HRC value is not corrected then the HRC index is:  

  100	 	 	 /0.002)   (156) 

and the assigned expanded MU to the test result is estimated as:  

 	 	∆ 	/0.002	  (157) 

In this case, the result shall be reported as: 



Multiconvolutional Approach to Treat the Main Probability Distribution  
Functions Used to Estimate the Measurement Uncertainties of Metallurgical Tests 149 

 HRC		 U ∆ 	/0.002    (158) 

5.9. Numerical example 

5.9.1. General data about the Rockwell C hardness test 

A Rockwell C hardness test was performed in reproductive conditions on a steel specimen 

using a Balanta Sibiu Rockwell Machine indirect calibrated on a CRM i.e. a hardness 

reference block having a certified hardness of 40.1 HRC with a U(95) = 0.22 HRC. The 

calibration data obtained on CRM SN 48126 are given in Table 1. 

 

No. 1 2 3 4 5 Mean SD SDmean 

di 0,1202 0,12 0,1192 0,1191 0,1189 0,12 0,00058 0,00026 

hi 0,0798 0,08 0,0808 0,0809 0,0811 0,08 0,00058 0,00026 

HRCi 39,90 40,00 40,40 40,45 40,55 40,26 0,290 0,130 

Table 1. The calibration data obtained on CRM SN 48126 

Subsequently, according to [16] 5 indentations were carried on the specimen, denoted X. 

The hardness test data for the X specimen are given in Table 2. 

 

No. 1 2 3 4 5 Mean SD SDmean 

di 0,1166 0,1148 0,115 0,1154 0,117 0,12 0,00098 0,00044 

hi 0,0834 0,0852 0,085 0,0846 0,083 0,08 0,00098 0,00044 

HRCi 41,7 42,6 42,5 42,3 41,5 42,12 0,49 0,22 

Table 2. Test data for the X specimen 

From Table 1 and Table 2 it results c= - 0.15 HRC. 

5.9.2. MU estimation for the test result according to the classical approach 

The  assigned to the test result is estimated based on data provided by: testing, calibration 

procedure, certificate of the CRM and on the specification of operating manual. The data 

used for  calculation are given in Table 3.  

 

No. Uncertainty source Symbol Uncertainty[HRC]
Evaluation 

type 
Assigned pdf 

1 Indirect calibration SM-MRC 0.15 A Gaussian1 

2 MRC UMRC 0.11 B Triangular1 

3 Sample SM-X 0,25 A Gaussian1 

4 Displaying resolution 0.05 B Triangular1 

Table 3. The input data used for u  calculation. 1-the assigning of pdfs are taken after [16] but there are 

no evidences for these assignments. 

The combined uncertainty calculated by replacing the values given in Table 3 in Eq.(147) is:  
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 0.31	    (159) 

According to [16] the corrected HRC (see Eq(154)) is: 

 	 41.96	 0.62	    (160) 

where	 0.62	  is the expanded uncertainty for the 95% confidence level calculated 

with a coverage factor 2 according to Anex B of ISO 6805-2. 

5.9.3. MU for the test result according to the multiconvolutional approach 

Whatever is the way of reporting the results, it is quite impossible to assign a confidence 

level to the expanded uncertainty of the result based on irrefutable arguments. The 

alternative approach is to consider that the measurand has a uniform pdf. The worst case is a 

uniform pdf having a width equal to the interval of obtained values i.e.  

 
	 , 	 ∈ ;0,   (161) 

where  and  are the maximum and the minimum penetration depths among the 

five test data. The mean of  is /2 while the half width of the 

rectangular distribution is /2 . According to the data given in Table 2, 

 0.1159	 , 	∆ 	= 0.003 mm and 0.0125 mm. As shown in &3.2.3 the probability that 

the mean m of a 5 reproductive outcomes, each one being uniformly distributed in [-a, a], to 

belong to the interval /10; /10  is 29.4%. while in /5; /5  is 57.64% 

Thus, the conventional true value of the penetration depth lies in the 

interval	 0.1157; 	0.1161 	  with a confidence level of 55%. In this instance, the HRC index 

of the specimen could be reported as:  

 	 corr	 	41.89	 	0.55	    (162)  

for the 55% confidence level calculated on the basis of pdf of mean. 

The confidence level for  is about 99%. In this case, Rockwell C index could be 

reported as: 

 	 corr	 	41.89	 	1.1	 	  (163) 

The above result should be interpreted as the HRC conventional true value of the specimen 

lies in the interval [40.79, 42.99] (HRC) with 99% confidence level. For the conventional case 

adopted by ISO 6805 and presented above, the 99% confidence level corresponds to a 

coverage factor k=3 i.e. to a U(99%)=0.93 HRC. By comparison, the reported test result, 

according to [16], as 41.96	 0.93	  with 99% confidence level or, according 

multiconvolutional approach, as 41.89	 1.10	  seems to be quite the same to 

some extent depending on the rigor claimed by the client. But, from scientific and 

mathematical statistics point of view one may feel comfortable to use a founded test result 

having assigned a little bit larger uncertainty than to use a doubtful one.  
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5.10. Discussion 

The most important finding of this case study is that, when dealing with a measurand 

whose assigned pdf is not known or is insufficiently documented, the best approach is to 

consider it has a uniform distribution. The interval of variance of the outcomes may be 

considered, at first glance, as the distribution width. Another important issue is that for 

estimating MU using the multiconvolutional approach, only data provided by the testing 

process are used, while the classical approach uses supplementary data. A sound question 

regarding the multiconvolutional approach is how to decrease the MU i.e. to improve the 

test result quality? The classical solution is that the experimentalist should increase the 

number of reproductive or repetitive tests. The common practice of five tests appears 

insufficient, but ten tests should be acceptable. Using a ten-fold convolved uniform pdfs one 

can describe quite accurately the probability of mean displacement about the conventional 

true value () with at least 0.1 increment.  

6. Summaries  

This article addresses a more meaningful approach for measurement uncertainty estimation, 

particularly in the metallurgical test field. The chapter contributes to the state of the art by 

the development of a consistent approach for calculating the pdfs of the sample mean 

statistic, of the variance and of t parameter. To this end, the concepts of probabilistic theory 

and the derivation of the main pdfs used for measurement uncertainty evaluation as Poisson, 

Gauss are presented briefly. The theoretical backgrounds are presented in the paper in the 

aim to make clear for an experimentalist the specific pdfs to be assigned to a measurand. A 

considerable part of the chapter addresses the deriving of the pdfs of the compound 

variables as Y=aX+b, Y=(X1+....+Xn)/n, Y=X2, Y=X, Y=X1/X2 because these form the basis for 

deriving the probability density functions of sample mean, of variance, of Student and of 

Fisher-Sedecor. The pdfs of sample mean and of Chi distribution are derived in extenso 

following the convolution approach because it provides an easy-to-use and intuitive way to 

understand how these distributions should be applied for measurement uncertainty 

estimation. Thus, this approach allows an in-depth understanding of the mathematical 

formulas in order to avoid their usage exclusively based upon the mathematical literature 

without understanding of or without concern about the appropriateness to the case 

addressed. An important contribution of the chapter is the argument for using a number of 

repeated test, n, as the number of degrees of freedom and not n-1 as is common practice. The 

last part of the chapter deals with measurement uncertainty estimation using GUM method 

because it is required by EN ISO/CEI 17025. The GUM approach was applied for the 

uncertainty estimation of the Rockwell C hardness test according to the ISO 6825 standard. 

As is underlined in the chapter, this standard does not provide clear evidence for assigning 

Gaussian distribution to the hardness HRC. Alternative approach to estimate the 

uncertainty of the Rockwell C hardness test result is given based on the pdf of the sample 

mean obtained by 5-fold convolved product of the uniform distribution assigned to the 

measurand.  
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The entire chapter is designed to emphasize the risk of wrongly estimating the test result 

uncertainty due to erroneous assumptions regarding the pdf attributed to the measurand or 

to the influence factors of the uncertainty budget. 
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