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1. Introduction 

Arginine Vasopressin (AVP) and oxytocin (OXT) are peptide hormones found in most 

mammals that have vital physiological and behavioral actions. The major sites of AVP 

production are the paraventricular (PVN) and supraoptic (SON) nuclei in the 

hypothalamus, although AVP and its receptors are found in numerous brain nuclei and 

peripheral tissues. AVP’s physiological roles, which are mediated through both peripheral 

and central mechanisms, include regulating fluid homeostasis and blood pressure. It is also 

an important component of the endocrine stress response through its actions in the posterior 

pituitary gland, where it is a secretagogue of ACTH, stimulating the release of corticosteroid 

stress hormones and catecholamines from the adrenal glands. The three receptor subtypes 

for AVP are V1a, V1b, and V2. V2 receptors mediate the fluid regulating actions of AVP in 

the periphery, where the behavioral and central endocrine functions of AVP are mediated 

by the V1a and V1b receptors in the brain. These receptors are also involved in the central 

control of cardiovascular activity.  

Oxytocin’s major physiological roles are to facilitate uterine contractions during birth 

through a positive feedback mechanism during the second and third stages of labor, and to 

mediate milk letdown. In lactating mammalian mothers, OXT initiates milk letdown in the 

mammary glands, and the release of OXT is stimulated by suckling. OXT has one known 

receptor which has several alleles. The focus of the present chapter will be on the social 

behavior functions of both AVP and OXT. While some of these actions are mediated the 

PVN and SON, several other behaviorally active brain regions will also be discussed. 

The behavioral roles of oxytocin and vasopressin have been studied and characterized in 

several animal species over the past few decades, and these findings have recently 

stimulated related work in humans. While the specific direction of the effects often vary 

between species, the general behavioral functions of AVP and OXT, as well as several 

related ancestral peptides, are conserved across taxa. The study of the diversity of these 

systems in birds [1] and fish [2] has been particularly useful in identifying the mechanisms 
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of the effects of these peptides on behavior. Although the behavioral roles of OXT and AVP 

are good examples of effective translation from animal models to clinical study for some 

topics, such as autism, there is still a need for increased communication and collaboration on 

many relevant issues, especially gender differences and stress related mood disorders. Both 

animal and human studies on depression and anxiety indicate that these neuropeptides 

have gender specific roles, and administering treatments developed in male animals and 

humans to females may be ineffective or have adverse consequences. The objectives of this 

review chapter are to present an updated summary of the gender specific behavioral roles of 

OXT and AVP in both animals and humans and stimulate translationally relevant gender 

specific studies on these hormones. The need for more female specific studies in this area is 

great, and this need will be underscored throughout the chapter. Behavioral topics covered 

include affiliation, aggression, parental behavior, depression/anxiety, and memory. Clinical 

topics discussed include depression, anxiety, addiction, and autism. Due to the broad scope 

of these objectives, this review chapter will highlight selected research and review papers on 

each topic, but will not be comprehensive. 

2. Oxytocin in male animals  

2.1. OXT and male animal affiliation 

While most studies of both AVP and OXT conclude that OXT is a more important mediator of 

affiliative behavior in females than males, there is considerable evidence that OXT may serve 

important social behavior functions in males as well. The most convincing evidence for the 

role of OXT in affiliative behavior in animals is pair bonding in prairie voles (Microtus 

ochrogaster). These voles are relatively unique in their monogamous social structure, which is 

mediated by OXT and AVP activity in the brain. Central OXT infusions facilitate prairie vole 

pair bonding [3], which has been linked to gender specific developmental effects in male voles 

[4]. The distribution of OXT receptors in the brain mediates divergent social strategies in 

monogamous and polygamous vole species [5]. Studies of social recognition and memory in 

male mice, processes important for the establishment of affiliative behavior, conclude that OXT 

actions on social behavior are mediated by changes in recognition and social memory [6, 7]. In 

male rats, OXT facilitates sexual behavior through actions in the PVN [8]. In pair bonded 

tamarin monkeys, peripheral OXT levels vary with levels of affiliation and sexual behavior in 

both genders [9]. Specifically, OXT levels in male tamarins were correlated strongly with 

sexual behavior. In fish it has been postulated that isotocin (the teleostean homologue of OXT) 

is involved in courtship displays and territorial defense [10], and many of the social behavior 

effects of OXT are conserved across taxa [11].  

2.2. OXT and male animal aggression 

The recent data from stickleback fish suggest that the affiliative actions of OXT in 

vertebrates are associated with aggression [10]. OXT levels are highest in male sticklebacks 

that aggressively defend eggs and in subordinate males that fight to change their social 

status. Disruption of the OXT gene in male mice decreases aggression [12], yet OXT 
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knockout mice display elevated aggression which is postulated to be the result of decreased 

fearfulness [13]. One potential explanation for this inconsistency is indirect effects through 

AVP due to the neuroanatomical and biochemical similarities between the two 

neuropeptide systems. The increased aggression in OXT knockout mice may be mediated by 

a compensatory increase in AVP in these males. 

2.3. OXT and animal paternal behavior 

In polygamous male meadow voles (Microtus pennsylvanicus), paternal experience is 

associated with increases in OXT receptor binding in the accessory olfactory nucleus, bed 

nucleus of the stria terminalis, lateral septum, and lateral amygdala [14]. It was concluded 

that central OXT infusion increased the tolerance of the offspring by the father. Combined 

treatment with both an OXT antagonist and an AVP antagonist decrease male parental 

behavior in reproductively naïve male prairie voles, where treatments with only one 

antagonist did not affect the expression of alloparenting [15]. It appears that male prairie 

vole paternal behavior may rely on the neural effects of both peptides. Mandarin voles 

(Lasiopodomys mandarinus), which are biparental and express parental behavior towards 

foster pups, increase central OXT expression following the development of male 

alloparental behavior. This increased expression may be mediated by elevated estrogen 

receptor alpha [16]. In support of this association between OXT and mammalian paternal 

expression,  a recent primate study reported that icv OXT increased the transfer of food 

from fathers to their offspring [17]. Similar effects of OXT in male primates are supported by 

clinical data which will be discussed later in this review. 

2.4. OXT and male animal models of depression and anxiety 

Peripheral OXT has antidepressant effects in both young and old rats, and the effects in older 

rats are associated with enhanced memory [18, 19]. In the mouse tail suspension test, both 

systemic and central OXT decrease immobility time, which indicates that OXT decreased 

helplessness [20]. In contrast to these results, intracerebroventricular (icv) OXT did not affect 

behavior in the forced swim test of depressive like behavior in male rats selected for high or 

low anxiety, although it did have an anxiolytic effect [21]. Furthermore, isolated prairie vole 

males exhibit both anhedonia and increased plasma OXT following a resident intruder test of 

aggression [22]. As has been hypothesized for OXT elevation following maternal aggression, 

this increase could be due to the stress of the interaction, and may not be a causal factor for 

anhedonia. It is possible that anhedonia targeting tests of depressive behavior, such as 

saccharin preference or a naturally occurring reward mediated behavior (sexual behavior, 

maternal behavior), would reveal consistent anti-depressive actions of OXT.  

2.5. OXT and male animal learning and memory 

Most of the research on OXT and learning and memory has been limited to male models 

[23]. OXT mediates social recognition in several species [24], and male OXT knockout mice 

exhibit social amnesia [6], while other forms of memory are not affected. This effect on social 
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recognition is reversed by OXT treatment [7] and is mediated by the transmembrane protein 

CD38 [25]. A single dose of OXT can specifically impair memory retention [26], and further 

study indicates that exogenous OXT inhibits cholinergic mechanisms that are necessary for 

memory retention [27]. Another mechanism implicated in the amnesiac effects of OXT is 

glucocorticoid release, as dexamethasone is able to reverse the effects of OXT on memory 

[28]. While OXT may facilitate memory and social interactions in certain contexts such as 

pair bonds at certain levels, robust levels of OXT may impair social memory due to 

substantial glucocorticoid release or impaired cholinergic activity.  

3. Oxytocin in female animals 

3.1. OXT and female animal affiliation 

OXT mediates the establishment and support of social bonds in several female mammalian 

species. Central injection of OXT specifically facilitates pair bonding in female prairie voles, 

similar to the role of AVP in males [3, 29, 30]. Studies of OXT receptor distributions in voles 

have identified expression patterns linked to species patterns of social organization, which 

support the manipulative studies [5, 11]. It has been postulated that the role of OXT in 

female rodent affiliation may be related to its effects on maternal behavior [31]. In primates, 

affiliation has been correlated with urinary OXT levels, including a relationship between the 

solicitation of sex and increased OXT levels [9].  

3.2. OXT and female animal aggression 

The data on the role OXT in female aggression are mixed, including several studies specifically 

on maternal aggression [32]. Although it was initially concluded that OXT in the PVN had 

excitatory effects on maternal aggression [33, 34], more recent studies involving OXT 

manipulations in the CeA and BNST conclude that OXT has inhibitory effects on maternal 

aggression [35]. Other studies reporting a positive association between OXT and female 

aggression postulate that OXT increases aggression by attenuating fear [34, 36, 37], but it is also 

possible that elevated OXT levels following maternal aggression are a result of the stress of the 

encounter [36]. In contrast, maternal separation decreases OXT immunoreactivity in lactating 

female mice, and this decrease was associated with an decreased latency to attack a novel male 

intruder [38], supporting earlier studies reporting an inhibitory effect of OXT on maternal 

aggression [39-41]. Several studies of the effects of cocaine on maternal aggression and 

oxytocin have also concluded that oxytocin has inhibitory effects on aggression [42-44]. In 

multiparous rats which are more aggressive than primiparous dams, OXT or OXT receptor 

levels are decreased in several behaviorally relevant brain regions compared to primiparous 

animals [45]. In general, the majority of the manipulative studies support the conclusion that 

OXT is inhibitory towards female aggression. 

3.3. OXT and animal maternal behavior 

The importance of OXT in the establishment of maternal care was initially reported in the 

late 70’s and early 80’s through icv injections of OXT [46, 47], which have been supported by 
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OXT antagonist administration [48-50]. OXT receptor knockout mice exhibit deficits in 

maternal care [51]. However, central OXT activity may not be a factor in all aspects of 

maternal care. The initiation of maternal care is impaired by the disruption of central OXT 

activity by lesions and antagonism of OXT [11], but since OXT disrupting lesions to the PVN 

of sheep do not disrupt maternal care once it has been established, OXT appears to be more 

important in the initiation of maternal care than the maintenance [52]. Other investigations 

in sheep have supported the hypothesis that OXT specifically mediates the induction of 

maternal care [53]. Comprehensive studies of natural variations in rodent maternal care 

indicate that OXT receptors mediate these differences, with high levels of OXT activity being 

associated with elevated levels of maternal care [54, 55]. These OXT actions are related to 

associated changes in dopamine activity [56] and both OXT receptor levels and maternal 

care are altered by exposure to gestational stress [57]. It is postulated that impairments in 

maternal care following gestational stress may be mediated by decreases in central OXT 

activity. The actions of OXT receptors in the nucleus accumbens have also been implicated 

in spontaneous maternal care in prairie voles [58]. OXT’s role in maternal care induction 

parallels the importance of this peptide in parturition and lactation, and there is clinical 

interest in these parallels. Future animal work which includes the behavioral and 

physiological effects of OXT in maternal animals may identify treatments for disorders 

involving deficits in both maternal care and lactation. 

3.4. OXT in female animal models of depression and anxiety 

Despite the established role of OXT in maternal care, a potent reward mediated behavior; 

little effort has been directed at studying the role of OXT in female depression and anxiety. 

Much of the current focus on translational OXT work is centered on effects on social 

behavior, and related disorders such as seasonal affective disorder and autism. Central OXT 

decreases anxiety in pregnant and lactating rats, despite having no effect in virgins [59]. 

However, chronic icv OXT is anxiolytic in female rats selected for high levels of anxiety [21]. 

Studies using ovariectomized rats indicate that circulating estrogen is required for the 

anxiolytic effects of OXT, which is likely to involve dynamic estrogen dependent changes in 

OXT receptor levels [60]. This dependence on estrogen may explain the divergent results in 

maternal and nulliparous rats considering the robust hormonal changes of pregnancy and 

lactation [61]. Elevated plus maze (EPM) testing indicates that the anxiolytic effects of OXT 

may be most potent in stressful context, as OXT is only anxiolytic when the EPM is 

presented as a novel environment [62]. These data are relevant to the clinical observation 

that exposure to stress is a significant predictor of depression in females [63]. The animal 

literature on OXT and maternal care and the consistency between animal and human work 

make this neuropeptide a strong target for human studies of postpartum depression. 

3.5. OXT and female animal learning and memory 

The majority of the studies on OXT and memory in female animals investigate social 

recognition. The disruption of endogenous OXT activity impairs short-term olfactory 

memory in female rats [64], and mice with a conditional OXT knockout display impairments 
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in social recognition [65]. In sheep, a functioning OXT circuit in the olfactory bulb is 

required for offspring recognition [52]. These effects of OXT on offspring recognition are 

mediated by GABA, norepinephrine, and acetylcholine and are crucial to the role of OXT in 

maternal care induction [66]. It has also been postulated that the effects of OXT in pair 

bonding involve a social recognition function [67]. Similar to studies of the roles of 

dopamine and AVP in rodent maternal memory (the ability of a dam to quickly return to 

maternal care following a separation from her pups) [68, 69], central OXT is involved in the 

consolidation of maternal memory [70]. One hypothesis is that the effects of both OXT and 

AVP are mediated by their actions on dopamine. Although some studies of ongoing 

maternal care conclude that OXT is not necessary once offspring care has been established 

[11, 52, 71], these data on maternal memory indicate that its importance to maternal care 

may extend beyond the initial stages of maternal care. 

4. Oxytocin in male humans 

4.1. OXT and male human affiliation 

The investigations of OXT and affiliation in humans do not necessarily examine affiliation 

directly. For instance, intranasal OXT promotes trust and prosocial behaviors which are 

critical to human bonding and it is also associated with trustworthiness [72, 73]. Intranasal 

OXT increases cooperation following unreciprocated cooperation in a social experiment 

and this behavioral effect was associated with increased fMRI activity in OXT regions 

associated with affiliation [74]. Studies investigating affiliation and/or sexual behavior 

conclude that the effects of OXT are often mediated by direct physical contact as increased 

plasma OXT has been recorded in men during social contact with a partner [75], and 

during orgasm [76-78].  

Impaired affiliation has been associated with decreased plasma OXT in autistic patients [79]. 

Normal affiliative expression is especially impaired in autistic males, and some autistic 

males have deficits in OXT receptor expression [80, 81]. Several cases were associated with 

hypermethylation of the OXT receptor gene and a decrease in OXT receptor mRNA. 

Furthermore, clinical studies have reported enhanced social interactions (eye contact, social 

memory) in autistic patients following intranasal OXT [82]. Several labs have investigated 

the use of OXT for the treatment of social behavior deficits in autism [82-84] and social 

anxiety disorder [85], and research in this area is ongoing. 

4.2. OXT and male human aggression 

Compared to the interest in OXT and human prosocial behavior, there are few studies of the 

role of OXT on male aggression. The established effects on affiliation and prosocial behavior 

in animals and humans support the hypothesis that OXT has inhibitory effects on 

aggression. Conversely, some have postulated that OXT’s anxiolytic effects could result in 

increased aggression, but there are no behavioral data in support of this theory. One 

potential clinical role of OXT is in the treatment of PTSD associated aggression. 
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4.3. OXT and human paternal behavior 

There is some evidence that OXT mediates human paternal care as well as maternal care. 

Plasma and salivary OXT has been associated with paternal social engagement, affect 

synchrony, and positive communication sequences, and fathers who exhibit high levels of 

stimulatory contact with 4-6 month old infants have elevated OXT levels compared to 

fathers that do not exhibit high levels of contact [86]. Intranasal OXT increases the 

responsiveness of fathers during play with their children, and may decrease hostility, which 

supports a causal role for OXT and positive paternal behavior [87]. The decrease in hostility 

offers indirect support for an inhibitory effect on male aggression. Finally, both maternal 

and paternal plasma OXT levels predict coordination of behaviors between parents and 

their children, indicating that OXT may have a positive effect on family interactions [88, 89]. 

Collectively, these recent studies indicate that OXT modulates several forms of family 

associated social behavior. 

4.4. OXT and male human depression and anxiety 

The interest in OXT as a potential treatment for mood disorders is based on the animal 

literature supporting the involvement of OXT in reward mediated and social behaviors [90, 

91], which are often impaired in depressed individuals. Reduced plasma OXT has been 

observed in humans suffering from depression [92, 93], and detailed investigations of 

depressive symptoms indicate that high levels of plasma OXT are associated with a decrease 

in the severity of symptoms [94]. However, some studies have been unable to find 

depression related differences in plasma OXT [95]. Since OXT has both central behavioral 

effects and peripheral physiological effects, the exact functions of elevated plasma OXT are 

not clear. The few studies which have measured OXT activity in postmortem samples of 

depressed patients have reported increases in depression associated OXT immunoreactivity 

[96] and OXT mRNA in the PVN [97]. The increase in OXT mRNA in melancholic patients 

compared to non-melancholic depressives suggests that changes in OXT are specific to the 

type of depression. With anxiety, intranasal OXT has minor effects in male patients with 

seasonal affective disorder [85]. Given the strength of the animal work on the prosocial and 

reward mediated actions of OXT, it is surprising that there is not more interest in this target 

for treating depression and/or anxiety. 

4.5. OXT and male human learning and memory 

Intranasal OXT facilitates socially reinforced learning and emotional empathy in men [98], 

consistent with the data from animal models and the initial studies of the effects of OXT in 

autistic patients. Another study reported that OXT’s effects were specific to the social 

stimuli of facial expressions, and did not affect financial associations in an associative 

learning task [99]. The available evidence supports the conclusion that OXT facilitates social 

reinforced learning and memory in human males, and these effects may be mediated at the 

amygdala [98]. 
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5. Oxytocin in female humans 

5.1. OXT and female human affiliation 

OXT levels in females rise during massage, genital stimulation, copulation, and orgasm [11, 

100] which parallels the association between OXT and physical contact in men. In a study of 

intrapersonal couple conflict, intranasal OXT increases positive communication and 

decreases plasma cortisol [101]. It is suggested that OXT may facilitate pair bonding in 

humans, as in voles. Women with more supportive partners have increased OXT before, 

during, and after a 10 minute period of physical contact [75]. In contrast, OXT is positively 

correlated with interpersonal conflict [102, 103], but the relevance of these changes in OXT is 

debated [104]. This increase in OXT may be in response to the conflict and not a causal 

factor. Some have speculated that plasma OXT may be a reliable biomarker of distressed 

relationships in female humans [105]. Intranasal OXT alters the neural response to 

emotional faces in women, and these effects differ from the effects in males (Domes 2010). 

One hypothesis is that OXT increases as a mechanism to ameliorate the negative effect of the 

conflict on the social bond, but further manipulative studies are needed in this area. 

5.2. OXT and human maternal behavior 

OXT is an important mediator of maternal-infant bonding in humans [106]. Increasing OXT 

during pregnancy is associated with enhanced maternal bonding [107]. Maternal behaviors 

such as gazing at the infant, touching, and attachment related thoughts are associated with 

OXT levels in both early pregnancy and postpartum periods [108]. Mothers who display 

high levels of affectionate contact exhibit an increase in plasma and salivary OXT, while 

similar increases are not exhibited by mothers displaying low levels of contact [86]. The 

primary importance of OXT in human maternal behavior appears to be in enhancing 

bonding during the first few weeks of lactation [71, 109]. Furthermore, mothers viewing 

images of their own infants increase brain activity in reward nuclei that contain high levels 

of OXT and AVP receptors [110]. In breastfeeding women, basal OXT levels are negatively 

correlated with anxiety and guilt [111], and plasma OXT in mothers is also associated with 

affectionate touch between mothers, fathers, and offspring [88]. It is concluded that OXT is 

an important mediator of the formation and maintenance of the family unit. Mothers that 

may have less efficient OXT systems display lower levels of sensitive responsiveness to their 

2 year old toddlers [112]. Intranasal OXT treated mothers use less handgrip force in 

response to infant cry sounds, but this effect is only present in mothers who were not 

harshly disciplined as children [113]. One explanation for these effects is that high levels of 

early life discipline have developmental effects on central OXT circuits which make these 

individuals less responsive to exogenous OXT. In mothers who used cocaine during 

pregnancy, decreased OXT levels were associated with greater hostility and depressed 

mood, results consistent with animal studies reporting inhibitory effects of OXT on 

aggression. These mothers were also less likely to hold their babies, suggesting impaired 

bonding [114]. In a fMRI study, securely attached mothers exhibited a more robust OXT 

response to images of their own infants when crying and smiling, and also had increased 
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neural responses in brain regions association with reward, such as the ventral striatum 

[115]. Most notably, it has recently been reported that low plasma OXT concentrations 

during pregnancy are associated with an increased risk for postpartum depression. Plasma 

OXT concentrations in mid pregnancy significantly predicted PPD symptoms at 2 weeks 

postpartum [116]. Taken together, the data on OXT and maternal behavior strongly support 

the targeting of central OXT in the development of new treatments for maternal mood 

disorders. 

5.3. OXT and female human depression and anxiety 

Although plasma OXT is difficult to measure and has a high degree of variability, reduced 

plasma OXT has been documented in both males and females suffering from depression 

[117]. Changes in the variability of OXT pulses have also been reported in women with 

major depression [118]. Given the gender differences reported for the roles of AVP and OXT 

in animal studies, it is likely that there are neuroendocrine differences in the role of OXT 

and AVP in human depression as well. Studies of maternal humans suggest that OXT may 

be specifically involved in the development of postpartum mood disorders. Women with 

lower plasma OXT while interacting with their own infants are at an increased risk for 

depression due to low attachment ratings as adults and low attachment ratings for their 

children [115]. Cocaine addicted mothers, who are at an increased risk for postpartum mood 

disorders which result in impaired maternal infant attachment also have depressed plasma 

OXT levels [114]. Childhood trauma, which is a reliable predictor of adult depression, has 

been associated with decreased CSF OXT and high levels of anxiety [119, 120]. Both prior 

stressful events and current exposure to stress are significant predictors of postpartum 

depression, so the association between stress and OXT may be involved in a common 

mechanism for the development of postpartum mood disorders. As mentioned previously, 

low plasma OXT during pregnancy predicts an increased risk for postpartum depression 

[116] and elevated OXT in postpartum women is associated with low levels of anxiety [111]. 

The advantage of targeting clinical studies of OXT and depression at postpartum depression 

is that improvements in these patients is also beneficial to the rest of the family, and may 

represent a preventative target for the offspring of depressed mothers. Furthermore, there 

has been recent speculation that failed lactation and perinatal depression have related 

neuroendocrine mechanisms [121]. Failed lactation is common in depressed mothers, and in 

many cases can exacerbate symptoms of depression in mothers. 

5.4. OXT and female human learning and memory 

The strongest support for a role of OXT in human memory is found in studies of affiliation. 

Social bonds require memory related components of social recognition. It is postulated that 

OXT’s role in bonding involves social recognition and memory mechanisms [122]. Studies 

from male subjects suggest that despite a potential amnesiac function of OXT in certain 

paradigms, central OXT may enhance social memory [123]. It is unknown whether OXT has 

similar effects in women. 
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6. AVP in male animals 

6.1. AVP and male animal affiliation 

There is a wealth of studies of AVP and affiliation in voles [11]. Central administration of AVP 

to monogamous prairie voles that live in burrows with extended families induces several 

forms of bonding behaviors [124, 125], and AVP V1a receptor antagonist treatment blocks pair 

bonding behaviors in males [124, 125]. In polygamous montane voles (Microtus montanus) that 

live in solitary burrows, AVP or V1a antagonist treatments have no effects on social behavior. 

These behavioral differences are reflected in the neural OXT and AVP maps of these species 

[5]. Over-expression of V1a receptors in the forebrain of male prairie voles enhances pair 

bonding [126], and V1a antagonist injection into specific brain regions inhibit pair bond 

formation [127, 128]. The pattern of AVP mediated pair bonding in males and OXT mediated 

pair bonding in females has been identified in several other species [129]. Although there is no 

clear picture of how AVP expression patterns relate to social structure, AVP is an important 

mediator of affiliation in many vertebrate species, including fish [2] and birds [1]. The variety 

of social structures and central AVP circuitry among vertebrate species presents a valuable 

opportunity for both descriptive and manipulative comparative studies. 

6.2. AVP and male animal aggression 

Initial studies in male hamsters reported that V1a antagonist administration into the anterior 

hypothalamus inhibits aggression [130, 131], results which have since been confirmed in 

several other labs [132-134]. Exogenous AVP in the anterior hypothalamus can stimulate 

offensive aggression [133, 135], but this effect may be modulated by social environment 

[136]. Further work in hamsters has revealed that an orally active V1a antagonist decreases 

aggression in male hamsters, but does not affect social investigation or sexual motivation 

[137]. Anabolic steroid treatment of adolescent males increases aggression which can be 

inhibited by V1a antagonist treatment in the AH [138], indicating that the elevated 

aggression is mediated by central AVP activity. A similar effect of amphetamine has been 

documented in male prairie voles, where increased aggression is associated with increased 

V1a receptor binding in the AH [134]. Developmental effects of AVP have been reported in 

male prairie voles, where early postnatal peripheral injections of AVP increase adult 

aggression [139]. However, maternal separation in mice increases AVP in the 

paraventricular nucleus and decreases intermale aggression [38]. This effect is similar to 

much of the behavioral data from female animals, which indicate that AVP has suppressive 

effects on maternal aggression and intraspecies aggression.  

6.3. AVP and animal paternal behavior  

Research on AVP and offspring care by males includes studies in several rodent species. The 

increase in paternal behavior in cohabitating meadow voles is mediated by AVP, as 

treatment with AVP antagonist decreases paternal behavior [14, 140]. Elevated AVP in 

meadow voles stimulates paternal behavior through both a decrease in pup directed 
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aggression and an increase in paternal behaviors [14]. Alloparental behavior in naïve male 

prairie voles also involves central AVP actions [15]. Monogamous male California mice are 

more paternal and aggressive towards nest intruders than polygamous male while footed 

mice, and these differences are associated with elevated AVP in the BNST and LS [141]. 

These paternal styles may be transmitted through behavioral effects, as cross-fostering 

paternal behavior is similar to the foster parent behavior [142]. Pup directed aggression may 

be decreased and paternal care increased through social bonding mediated changes in 

central AVP. It is likely that the effects of AVP on paternal behavior are related to its general 

role in social bonding.  

6.4. AVP and male animal models of depression and anxiety 

Anxiety related behavior on the elevated plus maze is decreased following septal AVP 

antagonist treatment or antisense treatment in male rats [143, 144]. In contrast, other studies 

report that intraseptal and intraperitoneal AVP is anxiolytic [145]. An anxiogenic role of 

AVP is supported by male AVP V1a receptor knockout mice which exhibit lower levels of 

anxiety compared to wild type [24, 146]. Once again, other investigations of this line have 

failed to find differences in anxiety [147]. The oral and intraperitoneal administration of an 

AVP V1b antagonist is anxiolytic in several tests of anxiety [148-150], but AVP V1b receptor 

knockout males may not exhibit decreased anxiety [147, 151]. The lack of differences in 

anxiety related behaviors in these knockout mice may be due to compensatory mechanisms 

during development. In male rats bred for high levels of anxiety, AVP level and release from 

the PVN are elevated when compared to low anxiety males [152-154] and the differential 

expression of AVP in rats selected for high anxiety has been linked to specific single 

nucleotide polymorphisms [155, 156]. Central AVP V1a receptor antagonist treatment 

decreases anxiety and depression associated behaviors in high anxiety males [154]. The 

forced swim test induces both depression associated behavior and elevated AVP in the SON 

and PVN [157, 158]. V1a antagonist treatment to both the mediolateral septum and 

amygdala has antidepressant like effects in male animals [159, 160], and similar effects are 

documented following V1b receptor antagonist treatment [148, 161]. For male animals, there 

is evidence to support the hypothesis that depression and anxiety related behaviors are 

associated with elevated AVP activity in both brain and plasma. 

6.5. AVP and male animal learning and memory 

Infusion of AVP into the lateral septum of wild type and AVP deficient Brattleboro rats 

enhances social memory, and these effects are impaired by antagonist or antisense 

treatments [162, 163]. The over expression of vole V1a receptors in rats enhances social 

discrimination abilities [164]. However, studies of V1a and V1b KO mice have had mixed 

results, with some reporting impaired social recognition [24, 151] and others failing to find 

impairments [165]. AVP has also been implicated in both memory consolidation [166] and 

memory retrieval [167, 168]. The social aspects of AVP’s effect on memory suggest the roles 

of this nonapeptide in memory and affiliation are related. 
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7. AVP in female animals 

7.1. AVP and female animal affiliation 

Most of the work on AVP and pairbonding in voles has focused on the male vole. Several 

studies indicate that OXT is more important than AVP for female pair bonding [169]. It is 

known that OXT receptor and AVP V1a antagonists prevent pair bond formation in both males 

and females [170]. Studies of AVP and maternal behavior indirectly support the hypothesis that 

AVP is a mediator of female affiliation [48, 171], but it is unknown if these effects pertain to 

adult conspecific affiliation. Additional studies on females are needed to determine if central 

AVP also is a significant mediator of the female component of pairbonding. 

7.2. AVP and female animal aggression 

Several studies have reported that AVP has inhibitory effects on maternal aggression 

towards a male intruder, which contrasts with the stimulatory role of AVP in male rodent 

aggression. V1a antagonist treatment increases maternal aggression in both primiparous 

and multiparous dams, and AVP injection decreases maternal aggression in highly 

aggressive multiparous rats [171, 172]. An inhibitory role for AVP in females is also 

supported by multiple experiments in non-maternal female hamsters [173]. Gene expression 

analysis of primiparous and multiparous rats indicates that changes in both AVP and OXT 

may be involved in the parity associated increase in maternal aggression in multiparous 

rats, as high levels of aggression are associated with low levels of AVP and OXT activity in 

several nuclei [45]. fMRI study of the neural effects of V1a antagonist treatment during the 

presentation of a novel male intruder reveal that this treatment may increase aggressive 

responding by enhancing the somatosensory responses to a male intruder and reducing fear 

responses in the cortical amygdala and ventromedial hypothalamus [174]. One hypothesis 

derived from these data is that AVP increases the perceived threat from the male intruder. 

Although some studies have found increased AVP release associated with maternal 

aggression, it is hypothesized that this release is triggered by the stressful nature of the 

encounter [36]. Manipulations of AVP in rat strains selected for anxiety behaviors reveal an 

excitatory function of AVP on aggression, but this effect on aggression only involves 

behavioral frequencies, and it is not known if the decreased frequencies are associated with 

increased durations of aggressive bouts [175].  

7.3. AVP and animal maternal behavior 

Recent studies indicate that OXT is not the only nonapeptide involved in the modulation of 

mammalian maternal care. Both AVP and V1a antagonist treatments decrease maternal care 

during exposure to a male intruder, with the effects of AVP associated with increased self 

grooming and the effects of V1a antagonist associated with elevated maternal aggression 

during resident intruder tests of maternal aggression [171]. Studies focusing specifically on 

maternal care conclude that central AVP promotes ongoing maternal care [48]. Furthermore, the 

blockade of V1a receptors around parturition impairs maternal memory, the ability of a 
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maternal dam to return to maternal care following a prolonged separation from her pups [68]. 

Although it has been postulated that maternal nurturing is linked to innate anxiety and OXT 

and AVP activity, this is based mostly on studies of rodent lines selected for anxiety [175]. Low 

anxiety mice display lower levels of maternal care compared to high anxiety mice, and acute icv 

injection of AVP increases maternal care and has anxiogenic effects [176]. These effects in mice 

were only moderately attenuated by cross fostering. An association between maternal care and 

innate anxiety was not supported in another study of maternal mice, although V1a receptors 

were correlated with pup grooming [177]. Animal studies suggest that AVP may be a 

worthwhile target for the development of treatments for anxiety associated disorders that affect 

maternal behavior, such as postpartum depression, which is often comorbid with anxiety. 

7.4. AVP and female animal models of depression and anxiety 

Many of the mechanistic studies of AVP and depression and anxiety have focused on males, 

and there is a need for more detailed studies in both nulliparous and pregnant and maternal 

females. As mentioned in the maternal behavior section, high anxiety rats and mice have 

elevated AVP activity in the PVN and display increased anxiety and depression behaviors [31, 

176]. However, recent studies on a novel social stress mediated model for postpartum 

depression suggest that AVP can increase maternal care in animals subjected to the social 

stress paradigm that attenuates maternal care and aggression and impairs dam and pup 

growth during lactation [220]. At the present time, much of the available data on AVP and 

maternal behavior conflicts with the depression data from males, and treatments with 

V1a/V1b antagonists aimed at decreasing anxiety may have negative effects on maternal care. 

7.5. AVP and female animal learning and memory 

The little work that has focused on AVP and female memory has predominately used 

pregnant or maternal females. Female V1b knockout mice do not display the Bruce effect, 

where a previously mated female will block the implantation of fertilized eggs if exposed to 

an unfamiliar male after mating [178]. This suggests that the female’s long-term social 

memory is impaired. As noted in the maternal behavior section, a V1a antagonist around 

parturition impairs the ability of a dam to re-initiate maternal care [68]. In general, the 

available data on AVP and female memory supports the literature from males concluding 

that AVP mediates various forms of memory consolidation and retention and has particular 

relevance to social memory. If the role of AVP in memory is substantial in human females, it 

is possible that depression and anxiety treatments targeted at antagonizing central AVP may 

impair memory processes. 

8. AVP in male humans 

8.1. AVP and male human affiliation 

Intranasal AVP has been reported to enhance the encoding of emotional facial expressions in 

humans [179], as well as improving the recognition of sexual cues [180]. Other studies 
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indicate that intranasal AVP increases the negative emotional response to neutral facial 

expressions [181, 182]. These effects appear to be gender specific, as intranasal AVP in men 

stimulates agonistic responses to the faces of novel men, but stimulates affiliative facial 

responses in women and increases positive perceptions of these faces [181]. AVP increases 

cooperative behavior in men in response to a cooperative gesture in a social experiment, and 

this behavioral effect was associated with fMRI activity in brain regions involved in 

affiliative responses [74]. It has been suggested that plasma AVP may be a biomarker of 

distressed relationships in men [105]. Similar to several other behavioral topics, these gender 

specific effects need to be considered with respect to treatment development. 

8.2. AVP and male human aggression 

AVP levels in cerebrospinal fluid (csf) have been correlated with aggression in male humans 

[183]. However, a study comparing csf AVP in violent offenders vs. controls found no 

differences [184]. Patients with PTSD often have difficulties controlling their aggression 

levels, and clinical studies suggest that plasma levels are elevated in war veterans with 

PTSD [185]. Furthermore, intranasal AVP enhances physiological responding to combat 

images in male Vietnam veterans compared to saline and OXT [186], and AVP has been 

identified as a likely mediator for the effects of early life stress on the development of PTSD 

[187]. The available clinical evidence supports continued investigation of central AVP in the 

development of treatments for aggression disorders. 

8.3. AVP and male human depression and anxiety 

The first study suggesting that AVP was involved in mood disorders was from 1978 [188]. 

Plasma AVP is elevated in male patients with depression [95], and it has been suggested that 

increased AVP mRNA in the SON mediates the elevated plasma AVP levels [97]. Some have 

hypothesized that plasma AVP is specifically correlated to melancholic depression [97] as 

well as suicide [189, 190]. In terms of the prevalence of depression within a population, 

elevated plasma AVP is correlated with anxiety and a family history of depression [191, 

192]. Resilience against depression has been associated with a SNP of the V1b receptor gene 

[193]. These data have generated continued interest in AVP antagonists in the treatment of 

mood disorders [194, 195]. 

8.4. AVP and male human learning and memory 

Administration of an AVP analog enhances memory in human males [196, 197]. Treatment 

of boys with learning disorders with acute or chronic AVP increases the ability to remember 

stories. However, synthetic AVP may only affect reaction time, not memory [198]. In elderly 

humans, however, repeated intranasal AVP does not improve long term memory [199]. One 

hypothesis is that the memory enhancing effects of AVP are mediated by a general increase 

in arousal [200], although animal work suggests that AVP has specific effects on the 

molecular mechanisms of long term memory consolidation [201, 202]. 
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9. AVP in female humans 

9.1. AVP and female human affiliation 

In contrast to the pro-aggressive effects of intranasal AVP in men, AVP induces affiliative 

facial motor patterns in women in response to the faces of unfamiliar women and increases 

the perception of the faces as friendly. This gender specific effect supports the animal work 

on AVP. In contrast, the AVP treatment increased anxiety in both sexes [181]. Homozygosity 

for the RS3 allele 334 doubles the risk of marital difficulties, and negatively influenced how 

the relationship was perceived by the spouse [203]. Central AVP activity may be a 

worthwhile target for gender specific treatments aimed at improving human pair bonds. 

9.2. AVP and human maternal behavior 

Studies of multiparous humans report that maternal sensitivity is associated with the AVP 

V1a receptor gene. Mothers with 2 copies of the long RS3 alleles were less sensitive than 

mothers with one or zero copies of the long allele, and this association was most prevalent 

in mothers exposed to high maternal adversity [204]. A valid question is how this 

polymorphism affects affiliation in females, as in the Walum et al. 2008 study. Exposure to 

maternal neglect is associated with depressed urinary AVP levels in children [205]. The 

effects were persistent despite being in a stable environment for three years following the 

maternal neglect. It was concluded that social deprivation inhibits the long-term 

development of the central AVP system, and this effect may be involved in the etiology of 

neglect associated mood disorders. 

9.3. AVP and female human female depression and anxiety 

Much of the research on this topic is focused on the interaction between stress, AVP, and 

depression. Specific V1b receptor haplotypes are associated with protection against 

recurrent major depression in both males and females [193]. A more recent study has found 

the association between V1b gene variants, AVP single nucleotide polymorphisms (SNP’s), 

and vulnerability to childhood onset depression in females [206, 207]. In a study of male and 

female depression patients, plasma AVP was highly correlated with depression in non-

treated patients, but this correlation was not found in patients taking anti-depressants [191]. 

These studies suggest that the central AVP system is a valid target for treatments for 

depression and anxiety. 

10. Translation from animals to humans 

10.1. Stress 

There is a great deal of translational overlap in the research areas where focus on AVP and 

OXT is most relevant, and this is especially true with the studies on the effects of stress. 

Exposure to acute and/or chronic stress is often a predictor of depression/anxiety, addiction 

relapse, and relationship difficulties. It is suggested that the most valuable paradigms for 
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investigating the roles of AVP and OXT in depression, anxiety, or addiction involve 

exposure to chronic stress. The use of ethologically relevant stressors in animal models, such 

as social stress, is most likely to produce translationally consistent results (effects in animals 

which parallel clinical data). Many commonly used chronic stress protocols used in studies 

of AVP/OXT and depression and anxiety, such as chronic mild stress, do not use stressors 

associated with human disorders. 

While the role of AVP in the endocrine stress response has been studied in detail at the 

animal level, the effects of stress on OXT are not as well known. Integrative investigations 

which include both AVP and OXT may indentify novel interactions between these 

behaviorally potent peptides. The most promising translational area may be PTSD. There is 

already evidence that male PTSD patients have high plasma AVP, aggression, depression 

and anxiety levels and similar behavioral effects have been associated with elevated AVP in 

animals. While it is difficult to separate the changes in depression and anxiety from 

impairments in social behavior, an increased focus on OXT in PTSD studies may provide 

insight on the social deficits in PTSD patients. Social bonds are often negatively impacted by 

exposure to chronic stress, and these bonds can have a positive buffering effect on the 

negative effects of chronic stress.  

An indication of the potential value of social support can be seen in the cultural comparison 

of postpartum depression prevalence. Societies that have high levels of social support for 

mothers have low rates of depression, and cultures with low levels of support have much 

higher rates [208]. There is evidence that social support has protective effects in stress 

related mood disorders, and understanding the role of AVP and OXT in the positive effects 

of social support may help maximize the value of social support focused interventions. 

10.2. Depression and anxiety 

Increases the prevalence of stress related mood disorders [209] combined with metanalyses 

reporting that current treatments for depression may not be effective for mild to moderate 

depression [210] make a compelling argument that a new approach is needed in depression 

and anxiety research. Both the animal and human studies suggest that AVP is involved in 

the development of depression and anxiety disorders, and several reports indicate that AVP 

has gender specific roles. Continuing development of AVP targeted treatments should 

consider these gender specific actions. It is possible that while V1a antagonists may work for 

alleviating depression and/or anxiety symptoms in males, AVP or AVP agonists may be 

more effective in females. As noted by Manning et al. there has been little success with the 

development of non-peptide agonists and antagonists for AVP despite substantial 

investments by pharmaceutical companies. In contrast, some progress has been made with 

OXT peptide based treatments [194, 195]. The recent studies on AVP and maternal behavior 

in animals suggest that increased focus on AVP in human studies is warranted, especially 

on stress, maternal behavior, and postpartum depression. One valuable use for non-peptide 

ligands that have not been successful in clinical trials is as research tools, including the 

development of specific AVP and OXT ligands for imaging studies [194]. 
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The animal and human data on OXT support the hypothesis that this peptide hormone is 

also a valid target for novel maternal mood disorder treatments. An interesting implication 

in this area is that synthetic OXT is already commonly used to induce labor, yet little is 

known about how this treatment may affect maternal behavior and/or offspring. OXT or 

OXT antagonists may also be effective in treating melancholic depression and seasonal 

affective disorder. There are also interesting non-pharmaceutical interventions which can 

manipulate OXT levels, such as physical touch and modified birthing practices and 

procedures (cesarean sections and induced labor vs. natural childbirth). Greater 

collaboration between animal and clinical researchers will accelerate the development of 

safe and effective AVP and OXT targeted treatments for depression and anxiety disorders, 

including postpartum depression, seasonal affective disorder, and PTSD. Projects that 

involve consistent interactions between animal and clinical researchers throughout the 

developmental process will be most effective. Another potential therapeutic application of 

AVP and OXT is in relationship counseling. Both of these hormones are likely to be involved 

in the mechanisms of establishing and maintaining the social bond necessary for a strong 

and stable relationship. AVP and OXT targeted treatments may be effective in treating the 

adverse effects of chronic social conflict, or the effects of other chronic stressors, especially in 

combination with behavioral cognitive therapy.  

10.3. Addiction 

Both affiliative behavior and addiction are mediated through similar central reward 

pathways. Central OXT pathways are also altered by addiction. Endogenous OXT activity is 

suppressed by chronic drug use, and elevated brain OXT levels may attenuate the negative 

effects of withdrawal  [211]. There is preliminary evidence that exogenous OXT is capable of 

inhibiting stimulant and alcohol self administration and it may prevent stress and priming 

induced relapse [212]. As with autism, OXT centered treatments may be a useful adjunct to 

behavioral cognitive techniques. For example, intranasal OXT may augment the positive 

effects of extinction training for addiction [213] and/or reduce rates of relapse. 

Levels of AVP mRNA increase in the amygdala during early withdrawal from cocaine [214], 

and the blockade of V1b receptors can block reinstatement in rodents [215]. In a rodent 

model of ethanol dependence, a V1b antagonist decreases excessive levels of ethanol self 

administration [216]. There is further evidence that AVP secretion is attenuated in response 

to social stress in the sons of alcohol dependent fathers, but it is unclear how these results 

relate to the risk of developing an addiction [217]. While data from humans is lacking, the 

involvement of AVP in the etiology of stress related depression and anxiety suggests that 

this hormone may be implicated in the long term effects of addiction and the mechanisms 

mediating relapse. V1b antagonism may be a productive translational target for not only 

drug dependence, but addiction associated depression and anxiety as well.  

10.4. Autism 

While current translational efforts with OXT and autism acknowledge that the effectiveness 

of intranasal OXT treatments may only be relevant to social behavior deficits, the animal 
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studies of AVP/OXT on learning suggest that there may be additional benefits to focusing 

translational studies in this area. One animal research topic that may be of particular interest 

is the developmental role of AVP and OXT. Treatments which only affect social behavior in 

older children or adults may be effective with other impairments when administered at a 

younger age. Changes in the brains of autistic children have been observed in children as 

young as 6 months [218]. Another issue with the current clinical trials of intranasal oxytocin 

is the level of dosing. There is debate as to how much OXT crosses the blood brain barrier 

and has central effects. One hypothesis is that developmental AVP manipulation may be 

able to address the cognitive impairments of autism. While most of the clinical efforts in 

AVP/OXT and autism are centered on the development of pharmaceutical treatments, 

environmental changes may also be effective. It is possible that insults during gestation, 

such as chronic social stress, are affecting the normal development of AVP/OXT mediated 

cognitive and social pathways. Another potential benefit of an OXT focused therapy may be 

as an adjunct to behavioral therapies aimed at improving social skills. One of the limitations 

of the current OXT manipulations is the available administration methods. The prairie vole 

partner preference model is a valuable tool for the screening of novel OXT treatments and 

administration methods [219]. 

11. Conclusions 

In summary, increased translation between the animal research and clinical studies in males 

and females on the social behavior roles of AVP and OXT has the potential to stimulate 

rapid progress in the development of effective treatments for stress related disorders, 

including PTSD, depression and anxiety, and addiction, as well as disorders which involve 

deficits in affiliation, such as autism. These treatments may involve pharmalogical 

interventions, modifications to current practices, social interventions, or a combination of 

approaches. Stress paradigms which are ethologically relevant to both animals and humans, 

such as social stress for studies of depression and addiction, may generate the most useful 

data. PTSD and postpartum depression are two disorders that may benefit greatly from 

AVP and OXT focused studies. Given the available literature on the substantial gender 

differences in the roles of AVP and OXT, continued research on these peptide hormones 

needs to include studies of both males and females. 
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