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1. Introduction 

Microarray techniques allow to detect genome-wide perturbations during various 

treatments and to measure various responses by multitude of gene probes. Toxicogenomics, 

in which microarray techniques are specifically used in toxicology test, has been widely 

recognized as one of standard safety procedures for chemicals [1-3]. Gene expression 

microarrays have been used particularly for screening of genes involved in specific 

biological processes of interest, such as diseases or responses to environmental stimuli. Such 

experiments adopt the “healthy state” as a control, and identify highly expressed or 

suppressed genes. However, few studies deal with the features of gene expression and its 

variation at the “healthy state” to be influenced by species, age, sex, and individual 

variability. In measuring the state of disease and drug response, minimally invasive blood 

sampling, which allows for direct measurement of immune-responsive blood cells, excels 

other invasive biopsy techniques upon disease diagnostics and assessment of drug response, 

as well as health monitoring. Blood RNA contains an enormous amount of information on 

expression of messenger RNA and non coding functional RNA which remains without 

being translated into protein. Thus, blood RNA offers an opportunity to detect subtle 

change in physiological state. In this chapter, we discuss the potential of the RNA diagnosis 

using whole blood, showing a series of whole blood microarray experiments to evaluate 

variations of correlation among individuals and ages [4], dietary-induced hyperlipidemia, 

and other stresses using specific pathogen-free (SPF) miniature pigs. 

2. The use of whole blood RNA analysis 

Use of whole blood was intended on two accounts. First, RNA expression and degradation 

is susceptible to artificial manipulation such as cell separation and extraction. The whole 

blood manipulation avoids this risk, unlike dealing with extracted white blood cells. In 

addition, whole-blood RNA can be stabilized immediately by using RNA blood sampling 
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tube such as PAXgene. This avoids the cell separation process after sampling and minimizes 

the possibility of RNA denaturation. Usually, peripheral blood mononuclear cells (PBMCs) 

separation employs the difference of specific gravity between other blood components, 

which should be followed immediately after the blood sampling. Such manipulation 

requires a skilled operator to reduce the influence of separation procedures on gene 

expression. Second, the whole blood is a heterogeneous population of lymphocytes 

(monocytes, T-cells, and B-cells), granulocytes (neutrophils, eosinophils, and basophils), and 

platelets. One can expect that representative subpopulations in white blood cells may vary 

depending on the health condition of an individual. When a great alteration occurs in some 

subpopulations, the whole blood may also depart from the normal state of its age, because 

whole blood is a heterogeneous mixture of such subpopulations. Therefore, identification of 

gene expression characteristics and age-related variation in subpopulations in whole blood 

are essential issues. 

3. The advantage of using miniature pigs 

Pigs are a useful model animals of humans because they have similar anatomy and digestive 

physiology to human [5-6]. In particular, miniature pigs are easier to breed and handle than 

other nonprimates, making them an optimal species for preclinical test [7]. Moreover, blood 

samples can be taken repeatedly and human medical devices such as endoscopes and MRI 

and CT scanners are also applicable. These advantages increasingly allow miniature pigs for 

laboratory animals, with recent progress in upgraded supply systems. In spite of some 

large-scale microarray studies on pigs, only a limited amount of fundamental data is 

available for pigs compared to other laboratory species [8-9]. In September 2003, the Swine 

Genome Sequencing Consortium (SGSC) was formed by industry, government, and 

academia, to promote pig genome sequencing under international coordination [10]. In 

November 2009, since the announcement of completed swine genome map by members of 

the SGSC, its research environment has been enhanced [11]. 

4. Gene expression profiles change related to aging 

It is particularly important to identify gene expression characteristics and variation of 

heterogeneous population of cells with age in whole blood.  

Fractions of lymphocytes, monocytes, neutrophils, eosinophils, and basophils in white blood 

cells showed insignificant differences with age as a result of ANOVA analysis. This study 

attempted to identify characteristics of age-related gene expression by taking into account of 

change in the number of expressed genes by age and similarities of gene expression 

intensity between individuals.  

4.1. Characteristics of study subjects 

Five males and five females of 12 week old Clawn miniature pigs were housed individually 

in cages of 1.5 m2 at the SPF facility of the breeder (Japan Farm Co., Ltd, Kagoshima, Japan) 
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for 18 weeks. Mean body weights of males and females at the beginning of the experiment 

were 7.0 kg and 6.9 kg respectively. During this period, all animals were fed with 450g/day 

standard dry feed (Kodakara73, Marubeni Nisshin Feed Co., Ltd., Tokyo Japan) with free 

access to water. Fetuses were taken out from their mothers on days 77 to the 84 days of the 

pregnancy by a Caesarean section. The unborn baby's sex was determined based on the 

shape of the vulva. 

 

Table 1. Subject body weight results 

doi:10.1371/journal.pone.0019761.t001 

All blood samples were collected from the superior vena cava at 12, 16, 20, 24, and 30 weeks 

of age. Blood (EDTA), plasma (EDTA) and serum samples for hematology and biochemical 

tests were collected 24 hours after fasting. Hematology and biochemical tests were 

conducted by Clinical Pathology Laboratory, Inc. (http://www.patho.co.jp/index.html) 

(Kagoshima, Japan) using standard clinical methods. 

Body weight change and hematological variation during breeding period are shown Table 1 

and Table 2, respectively. One-way ANOVA analysis for age-related variations in red blood 

cell count (RBC), hemoglobin concentration (HGB), and hematocrit value (HCT) showed 

significant differences for both males and females. However, the mean corpuscular volume 

(MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin 

concentration (MCHC) remained unchanged. Differences in platelet count (PLT) and 

fibrinogen level (Fbg) were significant only for females. Any significant differences were not 

observed for both males and females for Prothrombin time (PT), activated partial 

thromboplastin time (ATPP), and the white blood cell count (WBC). Similarly to humans, 

the ratio of lymphocytes to white blood cells increased with maturation from 16 to 30 weeks 

of age. However, its difference was statistically insignificant according to ANOVA analysis. 

From 12 to 30 weeks of age, the ratios of granulocytes (neutrophils, eosinophils, and 

basophils), lymphocytes, and monocytes to white blood cells were unchanged, and 

differences were also insignificant. 

4.2. Microarray gene expression profiles - Number of expressed genes 

To characterize the age-related gene expression in whole blood from miniature pigs, RNA 

analysis was conducted on bloods sampled from fetal stage, 12, 20, and 30 weeks subjects. 

Each RNA sample was analyzed by an Agilent #G2519F#20109 Porcine Gene Expression 

Microarray (44K) consisting of 43603 oligonucleotide probes.  

The change in the number of expressed genes to identify age-related characteristics was 

examined. Microarray gene expressions were divided into two groups; “absent” and 

j y g

Sex n 12 weeks 16 weeks 20 weeks 24 weeks 30 weeks P † 

Male 5 7.0 ± 0.6 10.7 ± 3.8 12.1 ± 2.6 15.0 ± 1.7 17.7 ± 1.7 < 0.001 

Female 5 6.9 ± 0.5 7.9 ± 3.2 10.1 ± 2.6 13.5 ± 2.1 16.0 ± 2.6 < 0.001 

Values are mean±SD.  †P values were calculated using one-way factorial ANOVA. 
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“present”, using flag indicators given by the scanner. Background level was determined 

from spot intensities outside the gene probing area. “Absent” was assigned to the spots 

whose intensities were less than the background level, while the rests were marked as 

“present.” Then each gene was judged as either “expressed” or “unexpressed” based on the 

number of “present” events. We defined a certain gene as “expressed” when “present” 

exceeds 75% out of replicated events. A threshold of 75% was chosen by considering 

experimental deviation. 

 

Table 2. Subject hematology results 

doi:10.1371/journal.pone.0019761.t002 

j gy

Hematological 

analysis 
Sex n 12 weeks 16 weeks 20 weeks 24 weeks 30 weeks P † 

RBC, 10
4
/µL Male 5 742.7 ± 72.6 858.0 ± 97.7 894.8 ± 55.8 919.0 ± 21.0 866.2 ± 24.5 < .05 

Female 5 727.0 ± 20.2 886.6 ± 62.2 921.2 ± 64.5 901.4 ± 46.1 838.4 ± 44.2 < .001 

HGB, g/dL Male 5 14.9 ± 1.6 16.4 ± 1.2 17.3 ± 0.6 18.3 ± 0.4 17.7 ± 0.3 < .001 

Female 5 14.9 ± 0.4 17.5 ± 0.8 18.0 ± 0.9 18.4 ± 1.1 17.5 ± 0.6 < .001 

HCT, % Male 5 50.9 ± 5.1 53.6 ± 2.7 54.7 ± 2.1 58.4 ± 2.8 55.3 ± 1.2 < .05 

Female 5 49.0 ± 1.8 56.1 ± 2.2 57.8 ± 4.2 57.9 ± 3.0 54.8 ± 2.8 < .01 

MCV, fL Male 5 65.8 ± 1.0 66.3 ± 2.5 67.3 ± 2.9 65.1 ± 1.4 65.8 ± 2.2 NS 

MCH, Pg Male 5 19.8 ± 0.5 20.0 ± 1.1 20.1 ± 0.9 20.5 ± 0.6 20.6 ± 0.8 NS 

CHC, % Male 5 30.1 ± 0.4 30.2 ± 1.0 29.9 ± 0.9 31.5 ± 0.9 31.2 ± 0.8 NS 

PLT, 104/µl Male 5 21.3 ± 0.4 31.6 ± 10.8 18.1 ± 4.4 25.0 ± 8.6 24.9 ± 5.1 NS 

Female 5 34.5 ± 2.0 24.8 ± 5.5 19.0 ± 5.0 24.8 ± 8.9 19.7 ± 5.7 < .05 

PT, sec Male 5 13.8 ± 3.2 15.5 ± 0.3 16.5 ± 0.9 15.9 ± 0.7 16.1 ± 0.6 NS 

Female 5 - 15.8 ± 1.1 16.1 ± 0.5 16.4 ± 0.5 16.0 ± 0.7 NS 

APTT, sec Male 5 < 20 < 20 < 20 < 20 < 20 

Female 5 < 20 < 20 < 20 < 20 < 20 

Fbg, mg/dl Male 5 171.3 ±36.9 185.8 ± 93.8 169.4 ± 39.4 158.6 ± 9.0 147.8 ± 34.2 NS 

Female 5 - 160.2 ± 19.4 145.2 ± 16.3 176.5 ± 20.1 123.3 ± 27.5 < .05 

WBC, 10
2
/µL Male 5 62.0 ± 18.7 86.6 ±12.7 78.8 ± 24.7 79.6± 24.0 71.8 ± 13.2 NS 

Female 5 66.0 ± 23.4 74.0 ± 13.7 78.0 ± 18.7 72.4 ± 10.4 61.8 ± 11.3 NS 

Lymphocyte, % Male 5 34.8 ± 12.1 45.2 ± 7.4 44.6 ± 9.3 36.8 ± 6.9 33.6 ± 7.6 NS 

Neutrophil, % Male 5 55.0 ± 10.9 43.1 ± 10.3 44.8 ± 7.4 52.2 ± 7.0 56.2 ± 9.2 NS 

Eosinophil, % Male 5 3.8 ± 2.2 3.1 ± 1.4 3.0 ± 1.9 5.0 ± 2.7 4.6 ± 1.7 NS 

Basophil, % Male 5 0.3 ± 0.5 0.3 ± 0.4 0.2 ± 0.4 0.0 ± 0.0 0.2 ± 0.4 NS 

Monocyte, % Male 5 6.3 ± 1.0 8.0 ± 3.2 7.4 ± 1.5  6.0 ± 2.1 5.4 ± 1.3 NS 

Biochemical variables for miniature pigs during the experiment are shown. Values are mean±SD. RBC, red 

blood cell count; HGB, hemoglobin concentration; HCT, hematocrit value; MCV, mean corpuscular volume; 

MCH, mean corpuscular hemoglobin ; MCHC, mean corpuscular hemoglobin concentration; PLT, blood 

platelet count; PT, prothrombin time; ATPP, activated partial thromboplastin time; Fbg, fibrinogen level; WBC, 

white blood cell count; and NS: not significant. †P values were calculated using one-way factorial ANOVA. 
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The number of expressed genes was less in fetal stage and infancy period but increased with 

age, reaching a steady state of gene expression after 20 weeks of age (Figure 1). Expressed 

genes for male and female were analyzed by one-way factorial ANOVA. Then Tukey-

Kramer’s method was applied only to significant groups. Differences between age groups 

(fetal stage, 12, 20, and 30 weeks of age) were significant for male, female, and mixed 

subjects of male and female. A Tukey-Kramer’s multiple comparisons test revealed that 

differences between fetal stage and other age groups were statistically significant (p<0.001) 

for both male and female. Also, differences were significant (P<0.05) between 12 and 30 

weeks females. 

 

Figure 1. Number of genes expressed in whole blood of miniature pigs at different ages. In the graph,  

represents male and represents female. Values are means±SD. 

doi:10.1371/journal.pone.0019761.g001 

4.3. Microarray gene expression profiles – Correlation of gene expression 

Variations in correlation coefficients among individuals of the same age and different age 

groups were evaluated. Pearson correlation coefficient was used for correlation analysis. 

Correlation coefficients for a total of 31 microarrays were obtained in normalized signals 

log-scale after excluding “absent” spots. A color-coded pairwise correlation matrix is shown 

in Figure 2. The color scale at the bottom indicates correlation strength.  

The average correlation coefficient within the same age group is shown in Figure 3. 

Variations in gene expression were greater for younger subjects, but it diminished with age 

while generating resembling expression patterns. Correlation coefficient within 30 weeks 

age group was slightly smaller than that within 20 weeks age group. However, this 

difference is smaller than other distant age groups. Significant differences were observed 

between any age groups according to an ANOVA analysis using Fisher’s Z-transform. The 

average correlation coefficient between different age groups is shown in Figure 4. Significant 
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differences were observed except between “fatal stage vs. 20 weeks” and “fatal stage vs. 30 

weeks”, and between “12 weeks vs. 20 weeks” and “12 weeks vs. 30 weeks” according to an 

ANOVA analysis using Fisher’s Z-transform (P < 0.05). These results suggest that the 

variation in gene expression intensity within the same age was great in fetal stage and 

infancy period, but converged with age. 

 

Figure 2. Correlation matrix of age-related gene expression. This color-coded correlation matrix 

illustrates pairwise correlations between the levels of gene expression in individuals. Probe sets with 

normalized signals (log-transformed and scaled) were used to calculate correlations between 31 arrays 

using Pearson correlation coefficient; signals flagged as “absent” were excluded. 

doi:10.1371/journal.pone.0019761.g002 

4.4. Classification of genes depending on the status of age-related expression 

All spots on the microarray were divided into 16 categories as shown Table 3 after assigning 

“1” for expressed genes and “0” for unexpressed genes. Here, definitions of “expressed” 

and “unexpressed” are described in “Materials and methods.” Category 1 consists of a total 

of 6,763 genes expressed in the fetal stage, 12, 20, and 30 weeks of age. Category 2 consists of 

a total of 7,564 genes expressed at 12, 20, and 30 weeks of age. Category 4 consists of a total  
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Figure 3. Age-related correlation coefficients within the same age groups. Correlation coefficients 

were calculated between individuals within the same age groups. The bottom and top of the boxes 

represent the 25th and 75th percentiles respectively. The lower and upper whiskers denote the 

minimum and maximum values of the data. Comparisons of the groups were made with the ANOVA 

test. * p < 0.05, ** p < 0.01. 

 
 

 

Figure 4. Age-related correlation coefficients between the different age groups. Correlation 

coefficients were calculated between the different age groups. The bottom and top of the boxes 

represent the 25th and 75th percentiles respectively. The lower and upper whiskers denote the 

minimum and maximum values of the data. Comparisons of the groups were made with the ANOVA 

test. * p < 0.01. 
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of 3,547 genes expressed after 20 weeks of age. Category 8 consists of a total of 827 genes 

expressed after 30 weeks of age. Sum of the genes expressed at certain age and those 

unexpressed (Categories 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 15) was 1,051. Its fraction was 

5.6% of 18,701 genes (Categories 1, 2, 4, and 8) expressing constantly once they appeared. 

Category 16 consists of genes unexpressed throughout the breeding period. Figure 5 shows 

the ratio of the genes belonging to each category. 

 

Table 3. Genes classified into 16 categories according to the status of age-related expression 

doi:10.1371/journal.pone.0019761.t005 

To characterize gene expression in each category, TC Annotator List (Porcine version 14.0 3-

11-10) was downloaded from the TIGR gene Indices. TC Annotator List includes the gene 

number and the GO terms. Out of 43,603 probes in the Agilent porcine microarray 

(#G2519F#20109), 6,019 genes bear GO annotation. Microarray cDNA probes were classified 

by GO terms of “biological processes”. Out of all genes, fraction in Categories 1, 2, 4, 8, and 

16 were 31%, 20%, 8%, 2%, and 38% respectively.  

Then the difference in gene expression between all spots and those in 4 categories 

(Categories 1, 2, 4, and 8) was examined. GO groups dominantly expressed in Category 1 

relates to mitosis (GO:0000070, GO:0000022, GO:0007052, and GO:0007100) and to immune 

Category 
Fetal 

stage 
12 weeks 20 weeks 30 weeks

Number 

of genes 
Definition 

1 1 1 1 1 6763 
genes expressed from fetal 

stage to 30 weeks 

2 0 1 1 1 7564 
genes expressed from 12 to 30 

weeks 

3 1 0 1 1 49 

4 0 0 1 1 3547 
genes expressed from 20 to 30 

weeks 

5 1 1 0 1 14 

6 0 1 0 1 80 

7 1 0 0 1 7 

8 0 0 0 1 827 genes expressed at 30 weeks 

9 1 1 1 0 73 

10 0 1 1 0 124 

11 1 0 1 0 29 

12 0 0 1 0 428 genes expressed at 20 weeks 

13 1 1 0 0 16 

14 0 1 0 0 147 genes expressed at 12 weeks 

15 1 0 0 0 84 genes expressed in fetal stage 

16 0 0 0 0 23851 
genes not expressed from fetal 

stage to 30 weeks 

Depending on the status of expression, all spots on the microarray can be divided into 16 categories. 

Here, “1” represents an expressed gene and “0” represents an unexpressed gene. 
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(GO:0043161, GO:0045059, GO:0019886), while those highly expressed in Category 2 related 

to cellular defense and regulation. 

 

Figure 5. Ratios of categories for groups of the same age. The ratios of the genes in each category were 

calculated for groups in the fetal stage and at 12, 20, and 30 weeks of age. Categories are defined in 

Table 3. 

doi:10.1371/journal.pone.0019761.g003 

4.5. Age-related changes in gene expression levels for the immune system 

Expression intensity of immunity gene was examined. Antigen processing and presentation 

(GO:0019882) and T cell selection (GO0045058) include the major histocompatibility complex 

(MHC) genes. By presenting antigens, MHC is involved in elimination of bacterial or viral 

pathogen, rejection of cancer cells, and rejective response on organ transplantation. Also 

MHC is indispensable in the immune system. Swine leukocyte antigens (SLA) are important 

immunogens for humoral responses and important mediators of the cellular immune 

responses through both direct and indirect presentation of peptides to T-cells [12]. SLA 

includes 6 of classical class I genes (SLA-1, SLA-2, SLA-3, SLA-6, SLA-7, and SLA-8) and 8 of 

classical class II genes (SLA-DMA, SLA-DMB, SLA-DOA, SLA-DOB1, SLA-DQA, SLA-

DQB1, SLA-DRA, and SLA-DRB1) [13-14]. SLA class II lacks DPA1, DPB1, DRB3, DRB4, and 

DRB 5 in humans. On the Agilent porcine microarray, all of SLA genes except DOA are 

mounted on 28 spots. Among these, 11 SLA genes fell under Category 1, 1 fell under 

Category 2, and 1 fell under Category 8. Expression of SLA classical class I and class II genes 

are shown in Figure 6A and 6B, respectively. Both genes expressed in fatal stage, 12, 20, and 

30 weeks in an increased manner by age. 

The Agilent porcine microarray had 7 probes with 7 types of interferon and 7 probes for 4 

types of interferon receptors. All of 7 interferon genes fell under Category 16. Normally 

these genes remain unexpressed but expressed upon necessity. In contrast, 1 type of 

interferon receptor gene fell under Category 1, 3 fell under Category 2, and were expressed 
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until 12 weeks of age. Their signal intensities stayed at constant levels after 12 weeks 

(Figure 6C).  

Toll-like receptors (TLRs) are the principal pattern recognition receptors. With this innate 

immunity, the first immune response is mediated into reserved foreign patterns on 

recognition. TLRs recognize reserved molecular patterns, start rapid response to protect the 

host upon infection, and produce signals, such as cytokines and co-stimulatory molecules to 

activate the adaptive immune system [15-16]. Regulation of the TLR signaling cascade is 

important for inflammatory responses, innate host defense, and adaptive immune responses 

[17-18]. Most mammalian species are estimated to have between 10 and 15 types of TLRs. 

The Agilent porcine microarray has 10 types of TLRs probes. Among these TLRs, 5 of TLR 

genes fell under Category 2 (expressed until 12 weeks of age), 1 under Category 8, and 4 

under Category 16. Their signal intensities remained constant after 12 weeks of age (Figure 

6D). 

 

Figure 6. Signal intensity of major histocompatibility complex (MHC) genes. (A) Swine leukocyte 

antigens (SLA) classical class I genes. (B) Swine leukocyte antigens (SLA) classical class II genes.  

(C) Interferon receptor genes. (D) Toll-like receptor (TLR) genes. Signal intensities were normalized 

using quantile normalization and log-transformed after excluded signals flagged as “absent.” The 

category numbers are shown in graph legends. Genes in Categories 1, 2, and 4 are shown in the graph. 

doi:10.1371/journal.pone.0019761.g005 
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5. Gene expression profiles change related to hyperlipidemia 

To examine the usage of whole blood RNA analysis for the early diagnosis of the disease, 

we showed transitions in dietary induced hyperlipidemia gene expression profiles of whole 

blood RNA in miniature pigs. 

Hyperlipidemia is well recognized as a risk factor for cardiovascular disease (CVD). As diet 

represents the most important determinant of hyperlipidemia, dietary animal models can be 

useful for the study of CVD progression [19]. High-fat, high-cholesterol, and high-sugar 

diets have been shown to induce hyperlipidemia, obesity, and insulin resistance in humans 

and rodents [20-22]. Dietary-induced hyperlipidemia pig models have also been established 

[23-29]. 

A high-fat and high-cholesterol diet (HFCD) as a typical dietary treatment were used for 

dietary-induced hyperlipidemia miniature pig models, by using specific pathogen-free (SPF) 

Clawn miniature pigs.  

Eight 12-week-old, male Clawn miniature pigs were housed individually in cages of 1.5 m2 

at the breeder’s specific pathogen-free (SPF) facility (Japan Farm Co., Ltd, Kagoshima, 

Japan) for 27 weeks. Body weights at the beginning of the experiment were 5.1 (2.6) kg 

(mean (standard deviation; SD)). During this period, 5 pigs were fed with 450 g/day 

standard dry feed (Kodakara73, Marubeni Nisshin Feed Co., Ltd., Tokyo Japan), and had 

unlimited access to water (control group). Five pigs were fed a high-fat, high-cholesterol 

diet containing 15% lard and 2% cholesterol (HFCD group).  

Almost no changes were observed in fasting plasma triglyceride levels. Fasting plasma total 

cholesterol concentrations had increased in the HFCD group by week 5 of the feeding 

period (P<0.001) and were maintained between 350 and 1150 mg/dL from weeks 10–27. 

Fasting plasma high-density lipoprotein cholesterol (HDL-C) concentrations increased and 

showed significant differences (P < 0.001) from weeks 10–27. Fasting plasma low-density 

lipoprotein cholesterol (LDL-C) concentrations also increased and showed significant 

differences from weeks 5–27. Fasting plasma glucose concentrations remained unchanged. 

5.1. Gene expression profiles of dietary-induced hyperlipidemia for whole blood 

RNA  

RNA analyses were conducted on blood samples obtained at weeks 10, 19, and 27 of the 

feeding periods to characterize the dietary effects on gene expression profiles in whole 

blood and white blood cells of miniature pigs. Each RNA sample was analyzed by aporcine 

gene expression microarray consisting of 43603 oligonucleotide probes.  

Variation in correlation coefficients among individuals on the same diet and between different 

diet groups was evaluated. Pearson correlation coefficients were used for the correlation 

analysis. Correlation coefficients for 23 microarrays in total were obtained for a normalized 

signals log-scale after excluding “absent” spots, definition of “absent” were described in 

Materials and Methods. A color-coded pairwise correlation matrix is displayed in Figure 7. 
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The correlation coefficients of whole blood expression profiles within the same diet groups 

were 0.97 (0.01) (mean (standard deviation; SD)), and 0.94 (0.05) for the control, HFCD 

whole blood at 10 weeks, 0.94 (0.03), and 0.93 (0.06) at 19 weeks, and 0.95 (0.02), and 0.95 

(0.03) at 27 weeks, respectively. Using Fisher’s Z-transformation to normalize the correlation 

distributions, no significant differences in correlation coefficients among dietary groups 

were observed at any period during the treatments. This indicates uniformity of dietary-

induced hyperlipidemia for our protocols. 

The whole blood correlation coefficients among the different diet groups were 0.95 (0.04) for 

control vs. HFCD at 10 weeks, 0.93 (0.03) at 19 weeks, and 0.95 (0.03) at 27 weeks, 

respectively.  

5.2. Assigning known functions to gene expression - Gene ontology annotation 

Up- and down-regulated genes were identified and classified these according to function 

using information from the Gene Ontology (GO) Database to understand the observed 

differences in whole blood gene expression profiles for the different dietary groups. Top-

ranked genes with fold changes in expression greater than 2.0 (p < 0.05) and less than 0.5 (p 

< 0.05) were selected at 10, 19, and 27 weeks. As a result, the GO categories of many genes 

up-regulated at the end of the 19-week dietary period were related to nucleotide binding 

(GO: 0000166, GO: GO: 0005524, 0005525, GO: 0017076, GO: 0019001, GO: 00032553, GO: 

00032555, GO: 0032561), and catabolic processes (GO: 0009057, GO: 0019941, GO: 0030163, 

GO: 0043632, GO: 0044257, GO: 0044265,). Many genes down-regulated after 27 weeks were 

in the GO categories related to biological adhesion (GO: 0007155, GO: 0022610).  

5.3. Effect of white blood cells on whole blood gene expression profiles in 

dietary-induced hyperlipidemia 

Microarray analyses were conducted from white blood cells at the end of the dietary period 

to evaluate the effect of white blood cells on whole blood gene expression profiles (Figure 8). 

The correlation coefficients of white blood cells expression profiles within the same dietary 

groups were 0.94 (0.05) and 0.95 (0.03) for the control and HFCD groups at 27 weeks. The 

white blood cells correlation coefficients was 0.94 (0.04) between control and HFCD. The 

average correlation coefficients between whole blood and white blood cells were 0.83 (0.04) 

and 0.79 (0.05) for control and HFCD. Using Fisher’s Z-transformation to normalize the 

correlation distributions, no significant differences in correlation coefficients of white blood 

cells were observed between control and HFCD groups. 

Up- and down-regulated genes were identified and classified these according to function 

using information from the Gene Ontology (GO) Database to understand the observed 

differences in white blood cells gene expression profiles for the different dietary groups, as 

the same as whole blood gene expression profiles. Top-ranked genes with fold changes in 

expression greater than 2.0 (p < 0.05) and less than 0.5 (p < 0.05) were selected at 27 weeks. 

As a result, many genes down-regulated related oxidation-reduction process (GO:0055114) 

and keg pathways of steroid biosynthesis. 
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Figure 7. Correlation matrix of dietary-related gene expression profiles of whole blood. This color-

coded correlation matrix illustrates pairwise correlations between the levels of gene expression in 

individuals. Probe sets with normalized signals (log-transformed and scaled) were used to calculate 

correlations between 23 arrays using Pearson correlation coefficient; signals flagged as “absent” were 

excluded. The color scale at the bottom indicates the strengths of the correlations. 

 

Figure 8. Correlation matrix of dietary-related gene expression profiles of whole blood and white 

blood cells. This color-coded correlation matrix illustrates pairwise correlations between the levels of 

gene expression in individual at feeding period at week 27. Probe sets with normalized signals (log-

transformed and scaled) were used to calculate correlations between 15 arrays using Pearson correlation 

coefficient; signals flagged as “absent” were excluded. The color scale at the bottom indicates the 

strengths of the correlations. 
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6. Gene expression profiles change with other stresses 

Furthermore, a possibility was shown that whole blood RNA analysis is applicable to 

evaluation of physiological state.  

The degree of stress can be comparable according to the numbers of up-regulated and 

down-regulated genes, even if the stress is different in quality from the others.  

Sodium azide was given orally to the miniature pigs over 20 weeks. There were no 

significant changes of hematological and biochemical properties for administrated dose of 

300µg/kg, one hundredth of LD50. On the other hand, gene expression profiles were 

obviously changed. Anesthesia group showed a slight degree, but the one week fasting 

group showed a significant difference. This can be clearly noticed when the contents of 

stress is classified by the function of up-regulated and down-regulated genes. Consequently, 

grade of the stress can be estimated according to the expression state of genes.  

 

Stresses 

P<0.05, Fold change>2 

total up regulation 
down 

regulation 

sodium azide 300µg/kg ; LD50 1/100 893 339 554 

blood removal（150ml）after 6 hours 1747 227 1520 

Fasting a week 3136 1840 1296 

anesthesia after 6 hours 160 87 73 

non treatment (blood removal 20ml) 73 14 59 

Table 4. Summery of gene expression condition of several types of stress  

Number of genes 

7. Effects of white blood cells on whole blood gene expression profiles 

Whole blood contains a variety of cell types as red blood cells, granulocytes, lymphocytes, 

and platelets. Most of the nucleated cells in blood are white blood cells such as neutrophils, 

T-cells, B-cells, and monocytes. The number of white blood cells in humans is known to 

decrease steadily from infancy to adulthood, and its composition (i.e. lymphocytes, 

granulocytes) also changes with age [30]. In study of the gene expression profiles change 

related to aging, hematological data of the fetal stage was unavailable because the amount of 

collected blood was insufficient for the analysis. From 12 to 30 weeks of age, ANOVA 

analysis indicated no significant differences in the fractions of lymphocytes, neutrophils, 

eosinophils, basophils, and monocytes. In addition, these compositions were almost equal to 

those in human adults. The above result suggests that the gene expression profile change of 

age-related whole blood RNA is not due to the composition of white blood cell 

subpopulations. 

The intraclass correlation between Staphylococcus enterotoxin B-stimulated and 

unstimulated blood from healthy subjects was significantly higher in leukocyte-derived 

samples the in whole blood, suggesting that the method of RNA isolation from whole blood 
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can be a critical step in blood RNA assay [31]. Although PBMCs do not contain neutrophils, 

eosinophils, basophils, nor platelets, Min et al. reported highly correlated results (r2 = 0.85) 

for 8,273 genes expressed between the whole blood RNA, by using the PAX gene Blood 

RNA system, and peripheral blood mononuclear cell (PBMC) RNA samples isolated from 

healthy volunteers by using a Ficoll-Paque gradient and TRI Reagent (SIGMA) [32]. Other 

workers conducted a large scale genome-wide expression analysis of white blood cells 

subpopulations. This study indicates that correlation coefficients for T-cells and monocytes 

among different healthy subjects were 0.98±0.01 and 0.97±0.01, respectively. However, for 

the same subjects (n=5), correlation coefficients between T-cells and monocytes was 

0.88±0.01, indicating varied correlation between white blood cells subpopulations. In 

addition, gene expression analysis were showed a varying dependence on the isolation 

method such as PAXgene, Buffy coat, and lysis. The correlation coefficients between 

isolation methods were 0.89±0.04, 0.91±0.04, 0.96±0.06, for PAXgene vs. lysis, PAXgene vs. 

Buffy coat, and Buffy coat vs. lysis, respectively [33]. In order to ensure the reliability for to 

clinical use of whole blood RNA diagnosis, the development of standard method and 

measurement standards needs to be sought. 

The Gene Ontology (GO) Database was used to categorize gene expression profiles 

functionally to conduct the effects of white blood cells on whole blood gene expression profiles 

in our study of hyperlipidemia. As a result, the GO term, related to white blood cell function 

(GO: 0006954, 0007166), had a high correlation coefficient. In contrast, GO terms related to the 

repair of damaged organs, including translation (GO: 0006412), positive regulation of growth 

rate (GO: 0040010), and growth (GO: 004007), showed low correlation coefficients. We, 

therefore, conclude that the difference in the gene expression profiles between the whole blood 

and white blood cells are not only caused by differences in experimental protocols, but also by 

differences in RNA origin [34].  

8. Conclusion 

Whole blood RNA is easy to handle compared to isolated white blood cell RNA and can be 

used for health and disease monitoring and animal control. In addition, whole blood is a 

heterogeneous mixture of subpopulation cells. Once a great change occurs in composition 

and expressing condition of subpopulations, their associated change will be reflected on 

whole blood RNA. 

Whole blood microarray analyses were conducted to evaluate variations of correlation 

among individuals and ages using specific pathogen-free (SPF) Clawn miniature pigs. The 

characteristics of age-related gene expression by taking into account of change in the 

number of expressed genes by age and similarities of gene expression intensity between 

individuals were identified. As a result, the number of expressed genes was less in fetal 

stage and infancy period but increased with age, reaching a steady state of gene expression 

after 20 weeks of age. Variation in gene expression intensity within the same age was great 

in fetal stage and infancy period, but converged with age. The variation between 20 and 30 



 
Blood Cell – An Overview of Studies in Hematology 116 

weeks of age was comparable to that among 30 weeks individuals. These results indicate 

that uniformity of laboratory animals is expected for miniature pigs after 20 weeks of age.  

In dietary-induced hyperlipidemia study, feeding treatments commenced when the pigs were 

12 weeks old, RNA analysis was conducted on whole blood sampled after 10, 19, and 27 weeks 

of the feeding period. Variation in whole blood gene expression intensity among individuals 

within the HFCD group was in the same range as that of the controls at any period, indicating 

uniformity of dietary-induced hyperlipidemia expression profiles in miniature pigs. Dietary-

induced transitions of gene expression profiles for genes bearing GO terms were examined. 

Major changes included an induction of proteins involved in catabolic processes and protein 

metabolism after a 19-week dietary period, and a reduced expression of proteins involved in 

steroid metabolism and lipid biosynthesis after a 27-week dietary period.  

In several kinds of stress study, the degree (extent) of stress can be comparable according to 

the gene number of up-regulate, or down-regulate, even if the stress is different in kind 

from the others.  

A possibility was shown that whole blood RNA analysis is applicable to evaluation of 

physiological state. By considering variation in gene expression profiles of miniature pigs, 

whole blood RNA analyses can be used in practical applications. The blood RNA 

diagnostics under development may eventually be useful for monitoring human health. 
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