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1. Introduction

In recent years, there has been significant interest in the study of stability analysis and con‐
troller synthesis for Takagi-Sugeno(T-S) fuzzy systems, which has been used to approximate
certain complex nonlinear systems [1]. Hence it is important to study their stability analysis
and controller synthesis. A rich body of literature has appeared on the stability analysis and
synthesis problems for T-S fuzzy systems [2-6]. However, these results rely on the existence
of a common quadratic Lyapunov function (CQLF) for all the local models. In fact, such a
CQLF might not exist for many fuzzy systems, especially for highly nonlinear complex sys‐
tems. Therefore, stability analysis and controller synthesis based on CQLF tend to be more
conservative. At the same time, a number of methods based on piecewise quadratic Lyapu‐
nov function (PQLF) for T-S fuzzy systems have been proposed in [7-14]. The basic idea of
these methods is to design a controller for each local model and to construct a global piece‐
wise controller from closed-loop fuzzy control system is established with a PQLF. The au‐
thors in [7,13] considered the information of membership function, a novel piecewise
continuous quadratic Lyapunov function method has been proposed for stability analysis of
T-S fuzzy systems. It is shown that the PQLF is a much richer class of Lyapunov function
candidates than CQLF, it is able to deal with a large class of fuzzy systems and obtained re‐
sults are less conservative.

On the other hand, it is well known that time delay is a main source of instability and bad
performance of the dynamic systems. Recently, a number of important analysis and synthe‐
sis results have been derived for T-S fuzzy delay systems [4-7, 11, 13]. However, it should be
pointed out that most of the time-delay results for T-S fuzzy systems are constant delay or
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time-varying delay [4-5, 7, 11, and 13]. In fact, Distributed delay occurs very often in reality
and it has been drawing increasing attention. However, almost all existing works on distrib‐
uted delays have focused on continuous-time systems that are described in the form of ei‐
ther finite or infinite integral and delay-independent. It is well known that the discrete-time
system is in a better position to model digitally transmitted signals in a dynamic way than
its continuous-time analogue. Generalized H2 control is an important branch of modern con‐
trol theories, it is useful for handling stochastic aspects such as measurement noise and ran‐
dom disturbances [10]. Therefore, it becomes desirable to study the generalized H2 control
problem for the discrete-time systems with distributed delays. The authors in [6] have de‐
rived the delay-independent robust H∞ stability criteria for discrete-time T-S fuzzy systems
with infinite-distributed delays. Recently, many robust fuzzy control strategies have been
proposed a class of nonlinear discrete-time systems with time-varying delay and disturb‐
ance [15-33]. These results rely on the existence CLKF for all local models, which lead to be
conservative. It is observed, based on the PLKF, the delay-dependent generalized H2 control
problem for discrete-time T-S fuzzy systems with infinite-distributed delays has not been
addressed yet and remains to be challenging.

Motivated by the above concerns, this paper deals with the generalized H2  control prob‐
lem for a class of discrete time T-S fuzzy systems with infinite-distributed delays. Based
on the proposed Delay-dependent PLKF(DDPLKF), the stabilization condition and control‐
ler design method are derived for discrete time T-S fuzzy systems with infinite-distribut‐
ed delays.  It  is  shown that  the  control  laws can be  obtained by solving a  set  of  LMIs.
A  simulation  example  is  presented  to  illustrate  the  effectiveness  of  the  proposed  de‐
sign procedures.

Notation: The superscript “T” stands for matrix transposition, R n denotes the n-dimension‐
al Euclidean space, R n×m is the set of all n×m real matrices, I is an identity matrix, the nota‐
tion P>0(P≥0) means that P is symmetric and positive(nonnegative) definite, diag{…} stands
for a block diagonal matrix. Z - denotes the set of negative integers. For symmetric block ma‐
trices, the notation * is used as an ellipsis for the terms that are induced by symmetry. In
addition, matrices, if not explicitly stated, are assumed to have compatible dimensions.

2. Problem Formulation

The following discrete-time T-S fuzzy dynamic systems with infinite-distributed delays [6]
can be used to represent a class of complex nonlinear time-delay systems with both local an‐
alytic linear models and fuzzy inference rules:
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where R j , j∈N:={1,2,…, r} denotes the j-th fuzzy inference rule, r the number of the infer‐
ence rules. F ji (i=1, 2,…, g) are the fuzzy sets, s(t)=[s 1(t), s 2(t),…, s g(t)]∈R s the premise varia‐
ble vector, x(t)∈R n the state vector, z(t)∈R q the controlled output vector, u(t)∈R m the
control input vector, v(t)∈l 2[0 ∞) the disturbance input, φ(t) the initial state, and (A j, A dj , B
1j, D j, C j , B 2j) represent the j-th local model of the fuzzy system (1).

The constants μ d ≥0 (d =1,2, …) satisfy the following convergence conditions:
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: d dd d
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Remark 1. The delay term ∑d =1
+∞ μd x(t −d ) in the fuzzy system (1), is the so-called infinitely

distributed delay in the discrete-time setting. The description of the discrete-time-distribut‐
ed delays has been firstly proposed in the [6], and we aim to study the generalized H2 con‐
trol problem for discrete-time fuzzy systems with such kind of distributed delays in this
paper, which is different from one in [6].

Remark 2. In this paper, similar to the convergence restriction on the delay kernels of infin‐
ite-distributed delays for continuous-time systems, the constants μ d (d =1,2, …)are assumed
to satisfy the convergence condition (2), which can guarantee the convergence of the terms
of infinite delays as well as the DDPLKF defined later.

By using a standard fuzzy inference method, that is using a center-average defuzzifiers
product fuzzy inference, and singleton fuzzifier, the dynamic fuzzy model (1) can be ex‐
pressed by the following global model:
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where h j(s(t))=
ωj(s(t))

∑ j=1
r ωj(s(t))

, ωj(s(t))=∏i=1
g F ji(s(t)), with F ji(s(t)) being the grade of mem‐

bership of si(t)inF ij,ωj(s(t))≥0 has the following basic property:
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In order to facilitate the design of less conservative H2 controller, we partition the premise

variable space Ω⊆R sinto m polyhedral regions Ωi by the boundaries [7]

0 | | 1
{ ( ) | ( ( )) 1,0 ( ( )) 1, }v

i i is t h s t h s t i N
d

d
< <

¶W = = £ + < Î (6)

where v is the set of the face indexes of the polyhedral hull with satisfying

∂Ωi =∪v (∂Ωi
v)

Based on the boundaries (6), m independent polyhedral regionsΩl , l∈ L = {1,2⋯m} can be

obtained satisfying
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where L denotes the set of polyhedral region indexes.

In each region Ωl, we define the set
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Considering (5) and (8), in each region Ωl, we have
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and then, the fuzzy infinite-distributed delays system (1) can be expressed as follows:

1
( ) 1

2
( )

( 1) ( ( ))[ ( ) ( ) ( ) ( )]

( ) ( ( ))[ ( ) ( )]                      ( )

i i di d i i
i M l d

i i i l
i M l

x t h s t A x t A x t d B u t D v t

z t h s t C x t B u t s t

m
¥

Î =

Î

+ = + - + +

= + ÎW

å å

å
(10)

Advances in Discrete Time Systems56



Remark 3. According to the definition of (8), the polyhedral regions can be divided into two
folds: operating and interpolation regions. For an operating region, the set M(l) contains on‐
ly one element, and then, the system dynamic is governed by the s-th local model of the fuz‐
zy system. For an interpolation region, the system dynamic is governed by a convex
combination of several local models.

In this paper, we consider the generalized H2 controller design problem for the fuzzy system
(1) or equivalently (10), give the following assumptions.

Assumption 1. When the state of the system transits from the region Ωl to Ωj at the time t,
the dynamics of the system is governed by the dynamics of the region model of Ωl at that
time t.

For future use, we define a setΘthat represents all possible transitions from one region to
itself or another regions, that is

{( , ) | ( ) , ( 1) , }l jl j s t s t l j LQ = ÎW + ÎW " Î (11)

Here l = j, when the system stays in the same region Ωl, and l ≠ j, when the system transits
from the region Ωl to another one Ωj.

Considering the fuzzy system (10), choose the following non-fragile piecewise state feed‐
back controller

( ) ( ) ( ) ( )l l lu t K K x t s t l L= - + D ÎW Î (12)

here ΔK l are unknown real matrix functions representing time varying parametric uncer‐
tainties, which are assumed to be of the form
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where E l , H l are known constant matrices, and U l(t)∈R l1×l2 are unknown real time varying

matrix satisfyingΔU l
T (t)ΔU l ≤ I .

Then, the closed-loop T-S system is governed by
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for s(t)∈Ωl , l∈ L  where
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h iDi, C̄ cl = ∑
i∈M (l)

h iCil

Ail = Ai −B1i K̄ l , Cil =Ci −B2i K̄ l

Before formulation the problem to be investigated, we first introduce the following concept

for the system (14).

Definition 1. [10] Let a constant γ >0 be given. The closed-loop fuzzy system (14) is said to be

stable with generalized H2 performance if both of the following conditions are satisfied:

• The disturbance-free fuzzy system is globally asymptotically stable.

• Subject to assumption of zero initial conditions, the controlled output satisfies

2|| || || ||z vg¥< (15)

for all non-zero v ∈ I2.

Now, we introduce the following lemmas that will be used in the development of our main

result.

Lemma 1.[6] Let M ∈R n×n be a positive semi-definite matrix, xi(t)∈R nand constant

ai >0(i =1, 2, ⋯ ), if the series concerned is convergent, then we have
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Lemma 2. [14] For the real matrices P1,  P2,  P3,  P4,  A,  Ad ,  B,  X j( j =1,⋯ ,5) and

Di(i =1,⋯ ,10) with compatible dimensions, the inequalities show in (17) and (18) at the fol‐

lowing are equivalent, where U  is an extra slack nonsingular matrix.
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where He{∗ } stands for∗ +∗T .

3. Main Results

Based on the proposed partition method, the following DDPLKF is proposed to develop the
stability condition for the closed-loop system of (14).
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whereP̄ l = F −T Pl F , Q̄ = F −T QF , Z̄ = F −T ZF , andPl , Q, Z >0,F  is nonsingular matrix, and
η(t)= x(t + 1)− x(t).

Then, we are ready to present the generalized H2 stability condition of (14) in terms of LMIs
as follows

Theorem 1. Given a constantγ >0, the closed-loop fuzzy system (14) with infinite distributed
delays is stable with generalized H2 performanceγ, if there exists a set of positive definite
matricesPl , Q, Z >0, the nonsingular matrix F and matrices X li, Y li, l∈ L ,  i =1,⋯ ,4 satisfy‐
ing the following LMIs:

2 0 ( ),T
il il lC C P i M l l Lg- < Î Î (20)

0 ( ),ill i M l l LP < Î Î (21)

0 ( ),( , )ilj i M l l jP < Î ÎQ (22)

where
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Proof. Taking the forward difference of (19) along the solution of the system (14), we have
ΔV (t)=V (t + 1)−V (t)=ΔV1 + ΔV2 + ΔV3

Assuming thats(t)∈Ωl , s(t + 1)∈Ωj. The difference of V i(t), i =1,2,3can be calculated, re‐
spectively, showing at the following
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From Lemma1, we have
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Substituting (25) into (24), we have
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Observing of the definition of η(t)and system (14), we can get the following equations:
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where X̄ li = F −T X liF
−1(i =1, 2, 3)

Since ±2a T b≤a T Ma + b T M −1bholds for compatible vectorsaandb, and any compatible matrix

M >0, we have
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withξ(t)= x T (t), ∑
d=1

∞
μd x T (t −d ), η T (t), v T (t)

T

Then, from (23-30) and considering (14), we have
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whereΣ̄ li = F −T ΣliF
−1(i =1, 2, 3, 5, 6, 8, 10)

Let U = F −1, G =diag(F , F , F , F , I , F ), pre- and post multiplying (35) by G T , G

respectively, then Ξilj is equivalent toΠilj.

Thus, if (21) and (22) holds, (32) is satisfied, which implies that
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It is noted that if the disturbance termv(t)=0, it follows from (31) that
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By Schur’s complement, LMI (32) impliesΩilj <0, thenΔV (t)<0. Therefore, the closed-loop
system (14) with v(t) = 0 is globally asymptotically stable.

Now, to establish the generalized H2 performance for the closed-loop system (14), under
zero-initial condition, and v(t)≠0, taking summation for the both sides of (36) leads to
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with
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From (39) and (40), we have
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The proof is completed.

The following theorem shows that the desired controller parameters and considered control‐
ler uncertain can be determined based on the results of Theorem 1.This can be easily proved
along the lines of Theorem 1, and we, therefore, only keep necessary details in order to
avoid unnecessary duplication.

Theorem 2. Consider the uncertain terms (12). Given a constantγ >0, the closed-loop fuzzy
system (14) with infinite-distributed delays is stable with generalized H2 performanceγ, if
there exists a set of positive definite matricesPl , Q, Z >0, the nonsingular matrix F  and ma‐
trices X li, Y li, M l , l∈ L , i =1,2,3,4satisfying the following LMIs:

2 2
2* 0 0 ( ),

* *

l i i l i l
T

l l l

l

P C F B M B H F
I E E i M l l L

I
g e

e

- - -é ù
ê ú- + < Î Îê ú
ê ú-ë û

(42)

0 ( ),ill i M l l L¡ < Î Î (43)

0 ( ),( , )ilj i M l l j¡ < Î ÎQ (44)

where

           �ilj=

−He{F } Τilj Y l 2
+ AdiF Pj + Y l 3

Y l 4
+ Di 0 0

* Σl1 Σl2 Σl3 Σl4 X l1 −B1iH l F

* * Σl5 Σl6 Σl7 X l2 0
* * * Σl8 Σl9 X l3 0
* * * * Σl10 X l4 0
* * * * * Γl 0
* * * * * * −εl I

with
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          Τilj = Pj + Y l1 + AiF −B1iM l , Γl =(−∑
d=1

∞
dμd )

−1
Z + εl El

T El .

Furthermore, the control law is given by

1
l lK M F -= (45)

Proof. In (20) and (21), replace K l̄  withK l + ΔK l , and then by S-procedure, we can easily ob‐

tain the results of this theorem, and the details are thus omitted.

Remark 4. If the global state space replace the transitionsΘand allPls in Theorem 2 become a

commonP , Theorem 2 is regressed to Corollary 1, shown in the following.

Corollary 1. Consider the uncertain terms (12). Given a constantγ >0, the closed-loop fuzzy

system (14) with infinite-distributed delays is stable with generalized H2 performanceγ, if

there exists a set of positive definite matricesPl , Q, Z >0, the nonsingular matrix F  and ma‐

trices X li, Y li, M l , l∈ L , i =1,2,3,4satisfying the following LMIs:

2 2
2* 0 0 ( ),

* *

i i l i l
T

l l l

l

P C F B M B H F
I E E i M l l L

I
g e

e

- - -é ù
ê ú- + < Î Îê ú
ê ú-ë û

(46)

0 ( ),il i M l l L¡ < Î Î (47)

where

                   �il=

−He{F } Τil Y l 2
+ AdiF Pj + Y l 3

Y l 4
+ Di 0 0

* Σl1 Σl2 Σl3 Σl4 X l1 −B1iH l F

* * Σl5 Σl6 Σl7 X l2 0
* * * Σl8 Σl9 X l3 0
* * * * Σl10 X l4 0
* * * * * Γl 0
* * * * * * −εl I

with
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4. Numerical Examples

In this section, we will present two simulation examples to illustrate the controller design
method developed in this paper.

Example 1. Consider the following modified Henon system with infinite distributed delays
and external disturbance

2
1 1 1 2 2

1 1

2 2 1

1 1

2 2

( 1) { ( ) (1 ) ( )} 0.1 ( ) 0.5 ( ) ( ) 0.1 ( )

( 1) ( ) 0.5 ( )
( ) (1 ) ( ) ( )
( ) 0.2 ( )

d d
d d

x t cx t c x t d x t x t d u t v t

x t x t x t
z t c x t u t
z t x t

m m
+¥ +¥

= =

+ = - + - - + - - + +

+ = -
= - +
=

å å

       
       

(48)

where the constant c∈ 0,1  is the retarded coefficient.

Lets(t)= cx1(t) + (1−c)∑
d=1

+∞
μd x1(t −d ). Assume thats(t)∈ −1,1 . The nonlinear term s 2(t) can be

exactly represented as

s 2(t)=h 1(s(t))(−1)s(t) + h 2(s(t))(1)s(t)

where theh 1(s(t)), h 2(s(t))∈ 0,1 , andh 1(s(t)) + h 2(s(t))=1. By solving the equations, the

membership functions h 1(s(t))and h 2(s(t))are obtained as

h 1(s(t))=
1
2 (1− s(t)), h 2(s(t))=

1
2 (1 + s(t))

It can be seen from the aforementioned expressions that h 1(s(t))=1 and h 2(s(t))=0 when

s(t)= −1, and that h 1(s(t))=0 and h 2(s(t))=1 whens(t)=1. Then the nonlinear system in (48)

can be approximately represented by the following T-S fuzzy model:
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R 1 : if s(t) is  −1,  then

x(t + 1)= A1x(t) + Ad 1∑
d=1

∞
μd x(t −d ) + B11u(t) + D1V (t)

z(t)=C1x(t) + B21u(t)

R 2 : if s(t) is  1,  then

x(t + 1)= A2x(t) + Ad 2∑
d=1

∞
μd x(t −d ) + B12u(t) + D2v(t)

z(t)=C2x(t) + B22u(t)

where

                      

A1 =
0.9 0.1
−0.5 1 , A1d =

0.1 −0.5
0 0 , B11 = B12 =

1
0 ,

A2 =
−0.9 0.1
−0.5 1 , A2d =

−0.1 −0.5
0 0 , D1 = D2 =

0.1
0 ,

C1 =C2 =
−0.1 0

0 −0.2 ,  B21 = B22 =
1
0 ,  E1 = E2 = 0.05 0 ,

 H1 = H2 = 0.1 0 ,  
e1 =10, e2 =11,
V (t)=0.1cos(t)×exp( - 0.05t).

The subspaces can be described by

Ω1 = {s(t)| −1≤ s(t)≤0},  Ω2 = {s(t)|0≤ s(t)≤1}

Choosing the constants c =0.9, μd =2−3−d , d =10 � we easily find that

μ̄=∑
d=1

∞
μd =2−3 <∑

d=1

∞
dμd =2< + ∞, which satisfies the convergence condition (2).

with the H2 performance index γmin =0.11, we solve (42)-(44) and obtain

                    

P1 =
0.1944 0.0248
0.0248 0.3342 , P2 =

0.1951 0.0252
0.0252 0.3358 , Q =

0.2876 0.0746
0.0746 0.1636 ,

Z =
0.0048 0.0019
0.0019 0.1275 , F =

0.3939 0.1516
0.0476 0.6285 , K1 = −0.0223 0.1702 ,

K2 =  −0.0171 0.1685 .

   

Simulation results with the above solutions for the H2 controller designs are shown Fig.1

and Fig.2
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Figure 1. The state evolution x1(t) of controlled system.

Figure 2. The state evolution x2(t) of controlled systems.

                   

Example 2. Consider a fuzzy discrete time system with the same form as in Example, but
with different system matrices given by
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A1 =
−0.986 0.1
−0.5 1 , A1d =

−0.1 −0.5
0 0 , B11 =

0
0.5 , B12 =

1
0 ,

A2 =
0.5 −0.6
0.6 0.5 , A2d =

−0.05 −0.6
0 0 , D1= D2 =

0.1
0 ,

C1 =
−0.02 0

0 −0.1 ,  C2 =
−0.1 0

0 −0.3 , B21 = B22 =
1
0 ,

E1 = E2 = 0.05 0 , H1 = H2 = 0.1 0 ,e1 =10,e2 =11, e3 =12,
v(t)=0.1cos(t)×exp( - 0.05t).

                       

               

We expanded the state space from [-1,1] to [− 3,3], the membership functions are given as

                  
h 1(s(t))= { 1 s(t)∈ −3, −1 ,

−0.5s(t) + 0.5 s(t)∈ −1, 1 .

h 2(s(t))= {0.5s(t) + 0.5 s(t)∈ −1, 1 ,
1 s(t)∈ 1, 3 .

                                                                         

The subspaces are given as shown in Fig.3

Figure 3. Membership functions and partition of subspaces.

Using the Theorem 2 and Corollary 1, respectively, the achievable minimum performance
index for the H2 controller can be obtained and is summarized in Table 1.

Approach Performance
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Common Lyapunov function based generalized H2 performance

(Theorem 2)

γmin=0,4586

Piecewise Lyapunov function based generalized H2 performance

( Corollary1)

γmin=0,3975

Table 1. Comparison for generalized H2 performance.

        

By using the LMI toolbox, we have

                     

P1 =
1.5359 0.5771
0.5771 1.4293 , P2 =

1.5254 0.6540
0.6540 1.5478 , P3 =

1.2754 0.5634
0.5634 1.4983 ,

Q =
1.8101 0.1568
0.1568 0.5915 , Z =

0.0399 0.0285
0.0285 0.4640 , F =

3.1076 0.7119
0.8671 2.5352 ,

K1 = 0.0003 −0.2297 , K2 = 0.1311 −0.0371 , K3 = −0.1125 −0.0005 .

        

The simulation results with the initial conditions are shown Fig.4 and Fig.5

Figure 4. Trajectories from two initial conditions
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Figure 5. Trajectories from two initial conditions

5. Conclusions

This paper presents delay-dependent analysis and synthesis method for discrete-time T-S
fuzzy systems with infinite-distributed delays. Based on a novel DDPLKF, the proposed sta‐
bility and stabilization results are less conservative than the existing results based on the
CLKF and delay independent method. The non-fragile stated feedback controller law has
been developed so that the closed-loop fuzzy system is generalized H2 stable. It is also
shown that the controller gains can be determined by solving a set of LMIs. A simulation
example was presented to demonstrate the advantages of the proposed approach.
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