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1. Introduction

Designing a Least Mean Square (LMS) family adaptive algorithm includes solving the well-
known trade-off between the initial convergence speed and the mean-square error in steady
state according to the requirements of the application at hands. The trade-off is controlled
by the step-size parameter of the algorithm. Large step size leads to a fast initial conver‐
gence but the algorithm also exhibits a large mean-square error in the steady state and in
contrary, small step size slows down the convergence but results in a small steady state er‐
ror [9,17]. In several applications it is, however, eligible to have both and hence it would be
very desirable to be able to design algorithms that can overcome the named trade-off.

Variable step size adaptive schemes offer a potential solution allowing to achieve both fast
initial convergence and low steady state misadjustment [1, 8, 12, 15, 18]. How successful
these schemes are depends on how well the algorithm is able to estimate the distance of the
adaptive filter weights from the optimal solution. The variable step size algorithms use dif‐
ferent criteria for calculating the proper step size at any given time instance. For example the
algorithm proposed in [15] changes the time-varying convergence parameters in such a way
that the change is proportional to the negative of gradient of the squared estimation error
with respect to the convergence parameter. Squared instantaneous errors have been used in
[12] and the squared autocorrelation of errors at adjacent time instances in [1] to modify the
step size. In reference [18] the norm of projected weight error vector is used as a criterion to
determine how close the adaptive filter is to its optimum performance.

More recently there has been an interest in a combination scheme that is able to optimize the
trade-off between convergence speed and steady state error [14]. The scheme consists of two
adaptive filters that are simultaneously applied to the same inputs as depicted in Figure 1.
One of the filters has a large step size allowing fast convergence and the other one has a
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small step size for a small steady state error. The outputs of the filters are combined through
a mixing parameter λ. The performance of this scheme has been studied for some parameter
update schemes [2, 6, 19]. The reference [2] uses convex combination i.e. λ is constrained to
lie between 0 and 1. The reference [19] presents a transient analysis of a slightly modified
version of this scheme. The parameter λ is in those papers found using an LMS type adap‐
tive scheme and computing the sigmoidal function of the result. The reference [6] takes an‐
other approach computing the mixing parameter using an affine combination. This paper
uses the ratio of time averages of the instantaneous errors of the filters. The error function of
the ratio is then computed to obtain λ.

In [13] a convex combination of two adaptive filters with different adaptation schemes has
been investigated with the aim to improve the steady state characteristics. One of the adap‐
tive filters in that paper uses LMS algorithm and the other one Generalized Normalized
Gradient Decent algorithm. The combination parameter λ is computed using stochastic gra‐
dient adaptation. In [24] the convex combination of two adaptive filters is applied in a varia‐
ble filter length scheme to gain improvements in low SNR conditions. In [11] the
combination has been used to join two affine projection filters with different regularization
parameters. The work [7] uses the combination on parallel binary structured LMS algo‐
rithms. These three works use the LMS like scheme of [5] to compute λ.

It should be noted that schemes involving two filters have been proposed earlier [3, 16].
However, in those early schemes only one of the filters have been adaptive while the other
one has used fixed filter weights. Updating of the fixed filter has been accomplished by
copying of all the coefficients from the adaptive filter, when the adaptive filter has been per‐
forming better than the fixed one.

In this Chapter we compute the mixing parameter λ from output signals of the individual
filters. The way of calculating the mixing parameter is optimal in the sense that it results
from minimization of the mean-squared error of the combined filter. The scheme was inde‐
pendently proposed in [21] and [4]. In [23], the output signal based combination was used in
adaptive line enhancer and in [22] it was used in the system identification application.

We will investigate three applications of the combination: system investigation, adaptive
beamforming and adaptive line enhancer. We describe each of the applications in detail and
present a proper analysis.

We will assume throughout the Chapter that the signals are complex-valued and that the
combination scheme uses two LMS adaptive filters. The italic, bold face lower case and bold
face upper case letters will be used for scalars, column vectors and matrices respectively.
The superscript T denotes transposition and the superscript H Hermitian transposition of a
matrix. The operator E[·] denotes mathematical expectation, Re{·} is the real part of a com‐
plex variable and Tr[·] stands for the trace of a matrix.
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2. Combination of Two Adaptive Filters

Let us consider two adaptive filters, as shown in Figure 1, each of them updated using the
LMS adaptation rule

ei(n)=d (n)−wi
H (n −1)x(n), (1)

wi(n)=wi(n −1) + μiei
∗(n)x(n). (2)

In the above wi(n) is the N vector of coefficients of the i-th adaptive filter, with i = 1,2 and
x(n) is the known N input vector, common for both of the adaptive filters. The input process
is assumed to be a zero mean wide sense stationary Gaussian process. μ i is the step size of i-
th adaptive filter. We assume without loss of generality that μ 1 > μ2. The case μ 1 = μ2 is not
interesting as in this case the two filters remain equal and the combination renders to a sin‐
gle filter.

Figure 1. The combined adaptive filter.

The desired signal in 1 can be expressed as

d (n)=wo
H x(n) + ζ(n)., (3)

where the vector wo is the optimal Wiener filter coefficient vector for the problem at hands and
the process ζ(n) is the irreducible error that is statistically independent of all the other signals.
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The outputs of the two adaptive filters are combined according to

y(n)=λ(n)y1(n) + 1−λ(n) y2(n), (4)

where yi(n)=wi
H (n −1)x(n) and the mixing parameter λ(n) can be any real number.

We define the a priori system error signal as difference between the output signal of the opti‐
mal Wiener filter at time n, given by yo(n)=wo

H x(n)=d (n)−ζ(n),  and the output signal of our
adaptive scheme y(n)

ea(n)= yo(n)−λ(n)y1(n)− (1−λ(n))y2(n). (5)

Let us now find λ(n) by minimizing the mean square of the a priori system error. The deriva‐
tive of E | ea(n)|2  with respect to λ(n) reads

∂E | ea(n)|2

∂λ(n) =2E Re{(yo(n)− y2(n))(y2(n)− y1(n))∗} + λ(n)| (y2(n)− y1(n))|2 . (6)

Setting the derivative to zero results in

λ(n)=
E Re{(d (n)− y2(n))(y1(n)− y2(n))∗}

E | (y1(n)− y2(n))|2 , (7)

where we have replaced the Wiener filter output signal yo(n) by its observable noisy version
d(n). Note however, that because the input signal x(n) and irreducible error ζ(n) are inde‐
pendent random processes, this can be done without introducing any error into our calcula‐
tions. The denominator of equation (7) comprises expectation of the squared difference of
the two filter output signals. This quantity can be very small or even zero, particularly in the
beginning of adaptation if the two step sizes are close to each other. Correspondingly λ com‐
puted directly from (7) may be large. To avoid this from happening we add a small regulari‐
zation constant � to the denominator of (7). The constant � should be selected small compared
to E xT (n)x(n)  but large enough to prevent division by zero in given arithmetic.

3. System Identification

In several areas it is essential to build a mathematical model of some phenomenon or sys‐
tem. In this class of applications, the adaptive filter can be used to find a best fit of a linear
model to an unknown plant. The plant and the adaptive filter are driven by the same known
input signal and the plant output provides the desired signal of the adaptive filter. The plant
can be dynamic and in this case we have a time varying model. The system identification
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configuration is depicted in Figure 2. As before x(n) is the input signal, v(n) is the measure‐
ment noise, y(n) is the adaptive filter output signal and e(n) is the error signal. The desired
signal is d (n)=wo

H x(n) + ζ(n), where wo is the vector of Wiener filter coefficients and the irre‐
ducible error ζ(n) consists of the measurement noise v(n) together with the effects of the
plant that can not be explained with a length N linear model. The result of pure system iden‐
tification problem is the vector of adaptive filter coefficients.

Figure 2. Block diagram of generelized sidelobe canceller.

The same basic configuration is also used to solve the echo and noise cancellation problems.
In echo cancellation the unknown plant is the echo path either electrical or acoustical and
the input signal x(n) is the speech signal of one of the parties of telephone conversation.
Speech of the other party is contained in the signal v(n). The objective is to cancel the compo‐
nents of the desired signal that are due to the input x(n).

In noise cancellation problems the signal v(n) is the primary microphone signal containing
noise and the signal to be cleaned. The input signal x(n) is formed by the reference micro‐
phones. The reference signals are supposed to be correlated with the noise in the primary
signal but not with the useful signal. The objective here is to suppress the noise and clean
the signal of interest i.e. v(n).

In here we are going to use the combination of two adaptive filters described in the previous
Section to solve the system identification problem.

3.2 Excess Mean Square Error

In this section we are interested in finding expressions that characterize transient perform‐
ance of the combined algorithm i.e. we intend to derive formulae that predict entire course
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of adaptation of the algorithm. Before we can proceed we need, however, to introduce some
notations.

First let us denote the weight error vector of i-th filter as

w̃i(n)=wo −wi(n). (8)

Then the equivalent weight error vector of the combined adaptive filter will be

w̃(n)=λw̃1(n) + (1−λ)w̃2(n). (9)

The mean square deviation of the combined filter MSD = E w̃H (n)w̃(n)  is given by

MSD =λ 2E w̃1
H (n)w̃1(n) + 2λ(1−λ)Re{E w̃2

H (n)w̃1(n)} + (1−λ)2E w̃2
H (n)w̃2(n) . (10)

The a priori estimation error of an individual filter is defined as

ei ,a(n)=w̃i
H (n −1)x(n). (11)

It follows from (5) that we can express the a priori error of the combination as

ea(n)=λ(n)e1,a(n) + (1−λ(n))e2,a(n) (12)

and because λ(n) is according to (7) a ratio of mathematical expectations and, hence, deter‐
ministic, we have for the excess mean square error of the combination,
EMSE (n)= E | ea(n)|2 ,

E | ea(n)|2 =λ 2E | e1,a(n)|2 + 2λ(1−λ)E Re{e1,a(n)e2,a
∗ (n)} + (1−λ)2E | e2,a(n)|2 . (13)

As ei ,a(n)=w̃i
H (n −1)x(n),  the expression of the excess mean square error becomes

E | ea(n)|2 =λ 2E w̃1
H xxH w̃1 + 2λ(1−λ)E Re{w̃1

H xxH w̃2} + (1−λ)2E w̃2
H xxH w̃2 . (14)

In what follows we often drop the explicit time index n as we have done in (14), if it is not
necessary to avoid a confusion.

Noting that yi(n)=wi
H (n −1)x(n), we can rewrite the expression for λ (n) in (7) as

λ(n)=
E w̃2

H xxH w̃2 −E Re{w̃2
H xxH w̃1}

E w̃1
H xxH w̃1 −2E Re{w̃1

H xxH w̃2} + E w̃2
H xxH w̃2

. (15)
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We  thus  need  to  investigate  the  evolution  of  the  individual  terms  of  the  type
EMS Ek ,l = E w̃k

H (n −1)x(n)xH (n)w̃l(n −1)  in order to reveal the time evolution of EMSE(n)
and  λ(n).  To  do  so  we,  however,  concentrate  first  on  the  mean  square  deviation  de‐
fined in (10).

Reformulation the relation (1) as

ei(n)=d (n)−wi
H (n −1)x(n)= eo(n) + w̃i

H (n −1)x(n) (16)

and subtracting (2) from wo we have

w̃i(n)= (I−μixxH )w̃i(n −1)−μixeo
∗(n). (17)

We next approximate the outer product of input signal vectors by its correlation matrix
xxH ≈Rx. The approximation is justified by the fact that with small step size the weight error
update of the LMS algorithm (17) behaves like a low pass filter with a low cutoff frequency.
With this approximations we have

w̃i(n)≈ (I−μiRx)w̃i(n −1)−μixeo
∗(n). (18)

This means in fact that we apply the small step size theory [9] even if the assumption of
small step size is not really true for the fast adapting filter. In our simulation study we will
see, however, that the assumption works in practice rather well.

Let us now define the eigendecomposition of the correlation matrix as

QH RxQ=Ω, (19)

where Q is a unitary matrix whose columns are the orthogonal eigenvectors of Rx and Ω is a
diagonal matrix having eigenvalues associated with the corresponding eigenvectors on its
main diagonal. We also define the transformed weight error vector as

vi(n)=QH w̃i(n) (20)

and the transformed last term of equation (18) as

pi(n)=μiQ
H xeo

∗(n). (21)

Then we can rewrite the equation (18) after multiplying both sides by QH from the left as

Applications of a Combination of Two Adaptive Filters
http://dx.doi.org/10.5772/50451

67



vi(n)= (I−μiΩ)vi(n −1)−pi(n). (22)

We note that the mean of pi is zero by the orthogonality theorem and the crosscorrelation
matrix of pk and pl equals

E pkpl
H =μkμlQ

H E xeo
∗(n)eo(n)xH Q. (23)

We now invoke the Gaussian moment factoring theorem to write

E xeo
∗(n)eo(n)xH = E xeo

∗(n) E eo(n)xH + E xxH E | eo|
2 . (24)

The first term in the above is zero due to the principle of orthogonality and the second term
equals RJmin,  where Jmin = E | eo|

2  is the minimum mean square error produced by the cor‐
responding Wiener filter. Hence we are left with

E pkpl
H =μkμl JminΩ. (25)

As the matrices I and Ω in (22) are both diagonal, it follows that the m-th element of vector
vi(n) is given by

vi ,m(n)= (1−μiωm)vi ,m(n −1)− pi ,m(n)

= (1−μiωm)nvm(0) +∑
i=0

n−1
(1−μiωm)n−1−i pi ,m(i),

(26)

where ω m is the m-th eigenvalue of Rx and vi,m and pi,m are the m-th components of the vec‐
tors vi and pi respectively.

We immediately see that the mean value of vi,m(n) equals

E vi ,m(n) = (1−μiωm)nvm(0) (27)

as the vector pi has zero mean.

To proceed with our development for the combination of two LMS filters we note that we
can express the MSD and its individual components in (10) through the transformed weight
error vectors as

E w̃k
H (n)w̃l(n) = E vk

H (n)vl(n)

= ∑
m=0

N −1
E vk ,m(n)vl ,m

∗ (n)
(28)
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so we also need to find the auto- and cross correlations of v.

Let us concentrate on the m-th component in the sum above corresponding to the cross term.

The expressions for the component filters follow as special cases. Substituting (26) into the

expression of m-th component of MSD above, taking the mathematical expectation and not‐

ing that the vector p is independent of v(0) results in

E vk ,m(n)vl ,m
∗ (n) = E (1−μkωm)nvk (0)(1−μlωm)nvl

∗(0)

+E ∑
i=0

n−1
∑
j=0

n−1
(1−μkωm)n−1−i(1−μlωm)n−1− j pk ,m(i)pl ,m

∗ ( j) .
(29)

We now note that most likely the two component filters are initialized to the same value      

                                                      vk ,m(0)=vl ,m(0)=vm(0)

and that

E pk ,m(i)pl ,m
∗ ( j) = {μkμlωmJmin, i = j

0, otherwise
. (30)

We then have for the m-th component of MSD

E vk ,m(n)vl ,m
∗ (n) = (1−μkωm)n(1−μlωm)n| vm(0)|2

+μkμlωmJmin(1−μkωm)n−1(1−μlωm)n−1

⋅∑
i=0

n−1
(1−μkωm)−i(1−μlωm)−i.

(31)

The sum over i in the above equation can be recognized as a geometric series with n terms.

The first term is equal to 1 and the geometric ratio equals (1−μkωm)−1(1−μlωm)−1. Hence we

have

∑
i=0

n−1
(1−μkωm)−i(1−μlωm)−i =

1− (1−μkλm)−1(1−μlλm)−1 n

1− (1−μkλm)−1(1−μlλm)−1

=
(1−μkωm)(1−μlωm)

μkμlωm
2−μkωm−μlωm

−
(1−μkωm)−n+1(1−μlωm)−n+1

μkμlωm
2−μkωm−μlωm

.

(32)

After substitution of the above into (31) and simplification we are left with
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E vk ,m(n)vl ,m
∗ (n) = (1−μkωm)n(1−μlωm)n | vm(0)|2 +

Jmin

ωm
2−

ωm
μl
−

ωm
μk

−
Jmin

ωm
2−

ωm
μl
−

ωm
μk

,
(33)

which is our result for a single entry to the MSD crossterm vector. It is easy to see that for
the terms involving a single filter we get an expressions that coincide with the one available
in the literature [9].

Let us now focus on the cross term

                                               EMS Ekl = E w̃k
H (n −1)x(n)xH (n)w̃l(n −1) ,

appearing in the EMSE equation (14). Due to the independence assumption we can rewrite
this using the properties of trace operator as

EMS Ekl = E w̃k
H (n −1)Rxw̃l(n −1)

= Tr{E Rxw̃l(n −1)w̃k
H (n −1) }

= Tr{RxE w̃l(n −1)w̃k
H (n −1) }.

(34)

Let us now recall that according to (20) for any of the filters w̃i(n)=Qvi(n) so that we are

justified to write

EMS Ekl = Tr{RxE Qvl(n −1)vk
H (n −1)QH }

= Tr{E vk
H (n −1)QH RxQvl(n −1) }

= Tr{E vk
H (n −1)Ωvl(n −1) }

= ∑
i=0

N −1
ωiE vk ,i

∗(n −1)vl ,i(n −1) .

(35)

The EMSE of the combined filter can now be computed as

EMSE =∑
i=0

N −1
ωiE |λ(n)vk ,i(n −1) + (1−λ(n)vl ,i(n −1)|2 , (36)

where the components of type E vk ,i(n −1)vl ,i(n −1)  are given by (33). To compute λ(n) we

use (15) substituting (35) for its individual components.

Adaptive Filtering - Theories and Applications70



4. Adaptive Sensor Array

In this Chapter we describe how to use the combination of two adaptive filters in an adap‐
tive beamformer. The beamformer we employ here is often termed as Generalized Side‐
lobe Canceller [9].

Let ϕ denote the the angle of incidence of a planar wave impinging a linear sensor array,
measured with respect to the normal to the array. The electrical angle θ is related to the inci‐
dence angle as

θ =
2πδ

λ sin ϕ, (37)

where λ is the wavelength of the incident wave and δ is the spacing between adjacent sen‐
sors of the linear array.

Suppose that the signal impinging the array of M=N+1 sensors is given by

u(n)=A(Θ)s(n) + v(n), (38)

where s(n) is the vector of emitter signals, Θ is a collection of directions of arrivals, A(Θ) is the
array steering matrix with its columns a(θ) defined as responses toward the individual sour‐
ces s(n) and v(n) is a vector of additive circularly symmetric Gaussian noise. The M vectors

a(θ)= 1, e jθ, …, e j(M −1)θ T (39)

are called the steering vectors of the respective sources. We assume that the source of inter‐
est is located at the electrical angle θ 0.

The block diagram of the Generalized Sidelobe Canceller is shown in Figure 3. The structure
consists of two branches. The upper branch is the steering branch, that directs its beam to‐
ward the desired source. The lower branch is the blocking branch that blocks the signals im‐
pinging at the array from the direction of the desired source and includes an adaptive
algorithm that minimizes the mean square error between the output signals of the branches.

The weights in steering branch ws are selected from the condition

ws
H a(θ0)= g (40)

i.e. we require the response in the direction of the source of interest θ 0 to equal a constant g.
Common choices for g are g=M and g=1. Here we have used g=M.

The signal at the output of the upper branch is given by
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d (n)=ws
H u(n). (41)

In the lower branch we have a blocking matrix, that will block any signal coming from the

direction θ 0. The columns of the M × M-1 blocking matrix Cb are defined as being the or‐

thogonal complement of the steering vector a(θ0) in the upper branch

aH (θ0)Cb =0. (42)

The vector valued signal x(n) at the output of the blocking matrix is formed as

x(n)=Cb
H u(n). (43)

Figure 3. Block diagram of generelized sidelobe canceller.

The output of the algorithm is

e(n)=d (n)−wb
H (n)x(n). (44)

The signals x(n) and d(n) can be used as the input and desired signals respectively in an

adaptive algorithm to select the blocking weights wb. In this Chapter we use the combina‐

tion of two adaptive filters that gives us fast initial convergence and low steady state misad‐

justment at the same time.
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4.1 Signal to Interference and Noise Ratio

The EMSE of the adaptive algorithm can be analysed as it is done in Section 3.1. In this ap‐
plication we are also interested in signal to interference and noise ratio (SINR) at the array
output. To evaluate this we first note that the power that signal of interest generates at the
array output is according to (40)

Ps =ws
H a(θ0)σs0

2aH (θ0)ws =| g|2 σs0

2, (45)

where σ s0
2 is the variance of the useful signal arriving from the angle θ 0.

To find the interference and noise power we first define the reduced signal vector s̆ and a
reduced DOA collection Θ̆ where we have left out the signal of interest and the steering vec‐
tor corresponding to the useful signal but kept all the interferers and the interference steer‐
ing vectors. The corresponding array steering matrix is Ă(Θ̆).

The correlation matrix of interference and noise in the signal x(n), which is the input signal
to our adaptive scheme, is then given by

R̆x =Cb
H Ă(Θ̆)E s̆s̆H ĂH (Θ̆)Cb + Cs

H Cbσv
2, (46)

where sigmav
2 is the noise variance, the first component in the summation is due to the inter‐

fering sources and the second component is due to the noise.

It follows from the standard Wiener filtering theory that the minimum interference and
noise power at the array output is given by

J̆ min =σint ,v
2 − p̆H R̆−1p̆, (47)

where the desired signal variance excluding the signal from the source of interest is

σint ,v
2 =ws

H ĂR̆ĂH ws + σv
2ws

H ws (48)

and the crosscorrelation vector between the adaptive filter input signal and desired signal
excluding the signal from source of interest is

p̆=Cb
H Ă(Θ̆)E s̆s̆H ĂH (Θ̆)ws + σv

2Cb
H Ă(Θ̆)ws. (49)

We can now find the eigendecomposition of R̆x and use the resulting eigenvalues in (35) and
(36) to find the excess mean square error due to interference and noise only EMSEint,v. The
error power can be computed as minimum interference and noise power at the array output
plus excess mean square error due to interference and noise only
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Pv ,int = J̆ min + EMSE int ,v(n) (50)

and the signal to noise ratio is thus given by

SNR(n)=
Ps

Pv ,int(n) . (51)

5. Adaptive Line Enhancer

Adaptive line enhancer is a device that is able to separate the input into two components.
One of them consists mostly of the narrow-band signals that are present at the input and the
other one consists mostly of the broadband noise. In the context of this paper the signal is
considered to be of narrow band if its bandwidth is small as compared to the sampling fre‐
quency of the system.

Figure 4. The adaptive line enhancer.

We assume that the broadband noise is zero mean, white and Gaussian and that the narrow
band component is centred. One is usually interested in the narrow band components and
the device is often used to clean narrow band signals from noise before any further process‐
ing. The line enhancer is shown in Figure 4. Note that the input signal to the adaptive filter
of the line enhancer is delayed by Δ sample times and the input vector is thus x(n-Δ). The
desired signal is d(n) = x(n). The line enhancer is in fact a Δ step predictor. The device is able
to predict the narrow band components that have long correlation times but it cannot pre‐
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dict the white noise and hence, only a prediction of narrow band components appears in the
filter output signal y(n). The signal y(n) is also the output of the system.

Let us now find the autocorrelation function of the enhancer output signal y(n). We make
the standard assumption from independence theory which states that the filter weights and
the input signal are independent [9].

The l-th autocorrelation lag of the filter output process r(l)= E y(n)y ∗(n + l) ,  equals

r(l)= E wH (n −1)x(n −Δ)xH (n −Δ + l)w(n −1 + l) . (52)

The input signal x(n) consists of two uncorrelated components s(n), the sum of narrow band
signals, and v(n), the additive noise

x(n)= s(n) + v(n). (53)

We can decompose the impulse response of the adaptive filter into two components. One of
them is the optimal Wiener filter for the problem

wo = E x(n −Δ)xH (n −Δ) −1E x(n −Δ)x(n) (54)

and the other one, w̃(n),  represents the estimation errors.

w̃(n)=wo −w(n). (55)

The output signal can hence be expressed as

y(n)= yo(n)− ỹ(n). (56)

Substituting (53) and (55) into (52) and noticing that the cross-correlation between the Wie‐
ner filter output and that of the filter defined by weight errors is

E yo(n) ỹ∗(l) = E wo
H x(n −Δ)xH (l −Δ)w̃(n −1) =0 (57)

because of the adopted independence assumption and because
E w̃(n −1) = E wo−w(n −1) =0,  we have

r(l)= E wo
H {s(n −Δ) + v(n −Δ)}{sH (n −Δ + l) + vH (n −Δ + l)}wo

+E w̃H (n −1){s(n −Δ) + v(n −Δ)}
⋅ {sH (n −Δ + l) + vH (n −Δ + l)}w̃(n −1 + l) .

(58)
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Developing and grouping terms in the above equation results in

r(l)= E wo
H s(n −Δ)sH (n −Δ + l)wo

+E wo
H v(n −Δ)vH (n −Δ + l) wo

+E w̃H (n −1)s(n −Δ)sH (n −Δ + l)w̃(n −1 + l)
+E w̃H (n −1)v(n −Δ) vH (n −Δ + l)w̃(n −1 + l) .

(59)

Using the fact that wo is deterministic and the properties of the trace operator we further obtain

r(l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+wo
H E v(n −Δ)vH (n −Δ + l) wo

+E Tr{w̃(n −1 + l)w̃H (n −1)s(n −Δ)sH (n −Δ + l)}
+E Tr{w̃(n −1 + l)w̃H (n −1)v(n −Δ)vH (n −Δ + l)} .

(60)

We now invoke the independence assumption saying that the weight vector w̃H (n −1) is in‐
dependent from the signals s(n −Δ) and v(n −Δ). This leads us to

r(l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+wo
H E v(n −Δ)vH (n −Δ + l) wo

+Tr{E w̃(n −1 + l)w̃H (n −1) E s(n −Δ)sH (n −Δ + l) }
+Tr{E w̃(n −1 + l)w̃H (n −1) E v(n −Δ)vH (n −Δ + l) }.

(61)

To proceed we need to find the matrix K(l)= E w̃(n −1 + l)w̃H (n −1) .

5.1 Weight error correlation matrix

In this Section we investigate the combination of two adaptive filters and derive the expres‐
sions for the crosscorrelation matrix between the output signals of the individual filters yi(n)
and yk(n). The autocorrelation matrices of the individual filter output signals follow directly
using only one signal in the formulae.

For the problem at hands we can rewrite the equation (18) noting that we have introduced a
Δ samples delay in the signal path as

w̃i(n)≈ (I−μiRx)w̃i(n −1)−μix(n −Δ)eo
∗(n). (62)

For the weight error correlation matrix we then have
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Ki ,k ,l(n)= E w̃i(n + l)w̃k
H (n) = E (I−μiRx)w̃i(n + l −1)w̃k (n −1)H (I−μkRx)

−E (I−μiRx)w̃i(n + l −1)μkxH (n −Δ)eo(n)

−E μix(n −Δ)eo
∗(n)(I−μkRx)w̃k

H (n −1)

+E μiμkx(n −Δ)eo
∗(n)eo(n)xH (n −Δ) .

The second and third terms of the above equal zero because we have made the usual inde‐
pendence theory assumptions which state, that the weight errors w̃i(n) are independent of

the input signal x(n-Δ). To evaluate the last term we assume that the adaptive filters are long
enough to remove all the correlation between eo(n) and x(n-Δ). In this case we can rewrite
the above as

Ki ,k ,l(n)= (I−μiRx)Ki ,k ,l(n −1)(I−μkRx) + μiμk JminRx, (63)

where Jmin = E | eo|
2  is the minimum mean square error produced by the corresponding

Wiener filter.

We now assume that the signal to noise ratio is low so that the input signal is dominated by
the white noise process v(n). In this case we can approximate the correlation matrix of the
input process by unit matrix as

Rx ≈σv
2I, (64)

where σ v
2 is the noise variance. Later in the simulation study we will see that the theory

developed this way actually works well with quite moderate signal to noise ratios. Then
substituting (64) into (63) yields

Ki ,k ,l(n)= (I−μiσv
2I)Ki ,k ,l(n −1)(I−μkσv

2I) + μiμk Jminσv
2I. (65)

In steady state, when n →∞ we have

Ki ,k ,l(∞)= (1−μiσv
2)Ki ,k ,l(∞)(1−μkσv

2) + μiμk Jminσv
2I. (66)

Solving the above for Ki ,k ,l(∞) we have

Ki ,k ,l(∞)=
μiμk Jmin

μiσx
2 + μkσx

2−μiμkσv
2 I. (67)
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5.2. Second order statistics of line enhancer output signal

As we see from the previous discussion, the correlation matrix of the weight error vector is
diagonal. We therefore have that the matrix Ki ,k (l)= E w̃i(n −1 + l)w̃k

H (n −1)  has in steady
state, when n →∞,  elements different form zero only alongside the main diagonal and the

elements at this diagonal equal to 
μiμk J min

μiσx
2 + μk σx

2 −μiμk σv
2 . Substituting Ki ,k (l) into (61) we now have

that the l-th correlation lag of the output signal is equal to

ri ,k (l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+wo
H E v(n −Δ)vH (n −Δ + l) wo

+rs(l)N
μiμk Jmin

μiσx
2 + μkσx

2−μiμkσv
2

+Tr{Ki ,k (l)E v(n −Δ)vH (n −Δ + l) },

(68)

where rs(l) is the l-th autocorrelation lag of the input signal s(n).

As the noise v has assumed to be white, the matrix E v(n −Δ)vH (n −Δ + l)  has nonzero ele‐
ments σ 2

v only along the l-th diagonal and the rest of the matrix is filled with zeroes. Then

ri ,k (l)= wo
H E s(n −Δ)sH (n −Δ + l) wo

+σv
2 ∑

i=0

N −l−1
wo
∗(i)wo(i + l)

+rs(l)N
μiμk Jmin

μiσx
2 + μkσx

2−μiμkσv
2 + r0,

(69)

where r0 = N σv
2 μiμk J min

μiσx
2 + μk σx

2 −μiμk σv
2 ,  if l = 0 and zero otherwise.

From (4) we see that the autocorrelation lags of the combination output signal y(n) can be
composed from its components ri,k(l) as follows

                

r(l)= λ(n)2E y1(n)y1
∗(n + l) + 2λ(n)(1−λ(n))E Re{y1(n)y2

∗(n + l)}

+(1−λ(n))2E y2(n)y2
∗(n + l)

= λ(n)2r1,1(l) + 2λ(n)(1−λ(n))Re{r1,2(l)} + (1−λ(n))2r2,2(l).

The autocorrelation matrix of y is a Toeplitz matrix R having the autocorrleation lags r(l)
along its first row.

Thus far we have evaluated the terms E yi(n)yk
∗(n + l) ,  what remains is to find an expres‐

sion for the steady state combination parameter λ(∞). For this purpose we can use (15), not‐
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ing that yi(n)=wi
H (n −1)x(n −Δ). All the terms in the expression (15) are similar and we need

to evaluate

γik = E w̃i
H (n −1)x(n −Δ)xH (n −Δ)w̃k (n −1) . (70)

Due to the independence assumption we can rewrite (70) using the properties of trace oper‐
ator as

γik = Tr{E x(n −Δ)xH (n −Δ)w̃k (n −1)w̃i
H (n −1) }

= Tr{RxE w̃k (n −1)w̃i
H (n −1) }=Tr{RxKi ,k ,0(n −1)}.

(71)

We are now ready to find λ(∞) by substituting (71) and (67) into (15).

The power spectrum of the output process y(n) is given by

P( f )= lim
K →∞

1
K E| YK ( f )|2 =∑

l=−∞

∞
r(l)e − j2πlf , (72)

where YK(f) is the length K discrete Fourier transform of the signal y(n) and f is the frequen‐
cy. There is a number of methods to compute an estimate of the power spectrum from the
correlation matrix of a signal. In this paper we have used the Capon method [20].

P
ˆ

( f )=
K

aH ( f )R−1a( f )
, (73)

where a( f )= 1 e − j2πf … e − j2π(M −1) f T  and R is the K × K Toeplitz correlation matrix of the
signal of interest. The Capon method was chosen because the signals we are interested in are
sine waves in noise and the Capon method gives a more distinct spectrum estimate than the
Fourier transform based methods in this situation.

6. Simulation Results

In this Section we present the results of our simulation study.

In order to obtain a practical algorithm, the expectation operators in both numerator and de‐
nominator of (7) have been replaced by exponential averaging of the type

Pav(n)= (1−γ)Pav(n −1) + γp(n), (74)

where p(n) is the quantity to be averaged, Pav(n) is the averaged quantity and γ is the
smoothing parameter. The averaged quantities were then used in (7) to obtain λ. The curves
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shown in the Figures to follow are averages over 100 independent trials. We often show the
simulation results and the theoretical curves in the same Figures. In several cases the curves
overlap and are therefore indistinguishable.

Figure 5. The true impulse response.

6.1 System Identification

We have selected the sample echo path model number one shown in Figure 5 from [10], to
be the unknown system to identify and combined two 64 tap long adaptive filters.

In the Figures below the noisy blue line represents the simulation result and the smooth red
line is the theoretical result. The curves are averaged over 100 independent trials.

In the system identification example we use Gaussian white noise with unity variance as the
input signal. The measurement noise is another white Gaussian noise with variance
συ

2 =10−3. The step sizes are μ1 =0.005 for the fast adapting filter and μ2 =0.005 for the slowly
adapting filter. Figure 6 depicts the evolution of EMSE in time. One can see that the system
converges fast in the beginning. The fast convergence is followed by a stabilization period
between sample times 1000-7000 followed by another convergence to a lower EMSE level
between the sample times 8000-12000. The second convergence occurs when the mean
squared error of the filter with small step size surpasses the performance of the filter with
large step size. One can observe that the there is a good accordance between the theoretical
and the simulated curves so that the theoretical and the simulation curves are difficult to
distinguish from each other.

The combination parameter λ is shown in Figure 7. At the beginning, when the fast converg‐
ing filter gives smaller EMSE than the slowly converging one, λ is clise to unity. When the
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slow filter catches up the fast one λ starts to decrease and obtains a small negative value at
the end of the simulation example. The theoretical and simulated curves fit well.

In the Figure 8 we show the time evolution of mean square deviation of the combination in
the same test case. Again one can see that the theoretical and simulation curves fit well.

Figure 6. Time-evolutions of EMSE with μ 1 = 0.005 and μ 2 = 0.0005 and σ v
2 = 10-3.

Figure 7. Time-evolutions of λ with μ 1 = 0.005 and μ 2 = 0.0005 and σ v
2 = 10-3.

Applications of a Combination of Two Adaptive Filters
http://dx.doi.org/10.5772/50451

81



6.2 Adaptive beamforming

In the beamforming example we have used a 8 element linear array with half wave-length
spacing. The noise power is 10-4 in this simulation example. The useful signal which is 10 dB
stronger than the noise arrives form the broadside of the array. There are three strong inter‐
ferers at -35°, 10° and 15° with SNR1 = 33 dB and SNR2 = SNR3 = 30 dB respectively. The step
sizes of the adaptive combination are μ1 = 0.05 and μ 2= 0.006.

Figure 8. Time-evolutions of MSD with μ1 = 0.005 and mu;2 = 0.0005 and σv 2 = 10-3.

Figure 9. The antenna pattern.
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The steady state antenna pattern is shown in Figure 6. One can see that the algorithm has
formed deep nulls in the directions of the interferers while the response in the direction of
the useful signal is equal to the number of antennas i.e. 8.

The evolution of EMSE in this simulation example is depicted in Figure 10. One can see a
rapid convergence at the beginning of the simulation example. Then the EMSE value stabil‐
izes at a certain level and after a while a second convergence occurs. The dashed red line is
the theoretical result and the solid blue line is the simulation result. One can see that the two
overlap and are indistinguishable in black and white print.

Figure 10. Time evolution of EMSE.

The time evolution of λ for this simulation example is shown in Figure 11. At the beginning
λ is close to one forcing the output signal of the fast adapting filter to the output of the com‐
bination. Eventually the slow filter catches up with the fast one and λ starts to decrease ob‐
taining at the end of the simulation example a small negative value so that the output signal
is dominated by the output signal of the slowly converging filter. One can see that the simu‐
lation and theoretical curves for λ evolution are close to each other.

The signal to interference and noise ratio evolution is show in Figure 12. One can see a fast
improvement of SINR at the beginning of the simulation example followed by a stabilization
region. After a while a new region of SINR improvement occurs and finally the SINR stabil‐
izes at an improved level. Again the theoretical result matches the simulation curve well
making the curves indistinguishable in black and white print.
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6.3. Adaptive Line Enhancer

In order to illustrate the adaptive line enhancer application we have used length K = 32 cor‐
relation sequences to form K × K correlation matrices for the Capon method. The narrow
band signals were just sine waves in our simulations.

Figure 11. Time evolution of λ.

Figure 12. Time evolution of SINR.
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The input signal consist of three sine waves and additive noise with unity variance. The sine
waves with frequencies 0.1 and 0.4 have amplitudes equal to one and the third sine wave
with normalized frequency 0.25 has amplitude equal to 0.5. The spectra of the input signal
x(n) and the output signal y(n) are shown in Figure 13. The step sizes used were μ 1 = 0.5 and
μ 2 = 0.05, the filter is N=16 taps long and the delay Δ = 10.

Figure 13. Line enhancer output signal spectrum.

Figure 14. Line enhancer output signal autocorrelation.
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In Figure 14 we show the correlation functions of input and output signals in the second

simulation example. We can see that the theoretical correlation matches the correlation com‐

puted from simulations well.

Figure 15. Evolution of EMSE of the two component filters and the combination in time.

Figure 16. Line enhancer output signal spectrum.
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The evolution of the excess mean square error of the combination together with that of the
individual filters is shown in Figure 15. We see the fast initial convergence, which is due to
the fast adapting filter. After the initial convergence there is a period of stabilization fol‐
lowed by a second convergence between the sample times 500 and 1500, when the error
power of the slowly adapting filter bypasses that of the fast one.

In our final simulation example (Figure 16) we use three unity amplitude sinusoids with fre‐
quencies 0.1, 0.2 and 0.4. We have increased the noise variance to 10 so that the noise power
is 20 times the power of each of the individual sinusoids. The adaptive filter is N=16 taps
long and the delay Δ = 10. The step sizes of the individual filters in the combined structure
are μ 1 = 0.5 and μ 2 = 0.005. One can see that even in such noisy conditions there is still a
reasonably good match between the theoretical and simulation results.

7. Conclusions

In order to make the LMS type adaptive algorithm work properly one has to select a suitable

step size . The step size has to be smaller than 2
ωmax

, where ωmax is the largest eigenvalue of

the input signal autocorrelation matrix, in order to guarantee stability of the algorithm. Giv‐
en that the stability condition is fulfilled a large step size allows the algorithm to initially
converge fast but the mean square error in steady state remains large too. On the other hand
if one selects a small step size it is possible to achieve a small steady state error but the initial
convergence speed of the algorithm is reduced in this case. In this Chapter we have investi‐
gated the combination of two adaptive filters, which is a new and interesting way of achiev‐
ing fast initial convergence and low steady state error of an adaptive filter at the same time,
solving thus the trade-off one has in step size selection . We were looking at three applica‐
tions of the technique - system identification, adaptive beamforming and adaptive line en‐
hancing. In all three applications we saw that the combination worked as expected allowing
the algorithm to converge fast to a certain level and then after a while providing a second
convergence to a lower mean square error value.
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