
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 0

Analysis and Learning Frameworks

for Large-Scale Data Mining

Kohsuke Yanai and Toshihiko Yanase

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51713

1. Introduction

Recently, lots of companies and organizations try to analyze large amount of business data and

leverage extracted knowledge to improve their operations. This chapter discusses techniques

for processing large-scale data. In this chapter, we propose two computing frameworks for

large-scale data mining:

1. Tree structured data analysis framework, and

2. Parallel machine learning framework.

The first framework is for analysis phase, in which we find out how to utilize business data

through trial and error. The proposed framework stores tree-structured data using vertical

partitioning technique, and uses Hadoop MapReduce for distributed computing. These

methods enable to reduce disk I/O load, and to avoid computationally-intensive processing,

such as grouping and combining of records.

The second framework is for model learning phase, in which we create predictive models

using machine learning algorithms. The proposed framework is another implementation

of MapReduce. The framework is designed to ease parallelization of machine learning

algorithms and reduce calculation overheads for iterative procedures. The framework

minimizes frequency of thread generation and termination, and keeps feature vectors in local

memory and local disk during iteration.

We start with discussion on process of data utilization in enterprise and organization

described in Figure 1. We suppose the data utilization process consists of the following phases.

1. Pre-processing phase

2. Analysis phase

©2012 Yanai and Yanase, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 8

2 Will-be-set-by-IN-TECH

3. Model learning phase

4. Model application phase

Figure 1. Process of data utilization.

1.1. Pre-processing phase

Pre-processing phase consists of 2 steps:

Step 1-1 Cleansing

Step 1-2 Structuring

Firstly Step 1-1 removes incorrect values and secondly Step 1-2 transforms table-format data

into tree-structured data. This pre-processing phase combines raw data from multiple data

182 Advances in Data Mining Knowledge Discovery and Applications

Analysis and Learning Frameworks for Large-Scale Data Mining 3

sources and creates tree-structured data in which records from multiple data sources are

"joined".

Figure 2 illustrates an example of tree-structured server logs, in which the log data are

grouped by each site at the top level. Site information consists of site ID (e.g. "site001") and

a list of server information. Server information consists of server ID (e.g. "serv001"), average

CPU usage (e.g. "ave-cpu:84.0%") and a list of detail records. Furthermore, a detail record

consists of date (e.g. "02/05"), time (e.g. "10:20"), CPU usage (e.g. "cpu:92%") and memory

usage (e.g. "mem:532MB").

[(site001

[(serv001 ave-cpu:84.0%

[(02/05 10:10 cpu:92% mem:532MB)

(02/05 10:20 cpu:76% mem:235MB)])

(serv002 ave-cpu:12.6%

[(02/05 15:30 cpu:13% mem:121MB)

(02/05 15:40 cpu:15% mem:142MB)

(02/05 15:50 cpu:10% mem:140MB)])])

(site021

[(serv001 ave-cpu:50.0%

[(02/05;11:40 cpu:88% mem:889MB)

(02/05;11:50 cpu:12% mem:254MB)])])]

Figure 2. Example of tree-structured data.

If we store the data in table format, data grouping and data combining are repeatedly

computed in analysis phase which comes after the pre-processing phase. Data grouping

and data combining correspond "group-by" and "join" in SQL respectively. Note that

the tree structure keeps the data be grouped and joined. In general when data size

is large, the computation cost of data grouping and data combining becomes intensive.

Therefore, we store data in tree structure format so that we avoid repetition of these

computationally-intensive processing.

1.2. Analysis phase

Analysis phase finds out how to utilize the data through trial-and-error. In most situations

the purpose of data analysis is not clear at an early stage of the data utilizatoin process. This

is the reason why this early phase needs trial-and-error processes.

As described in Figure 1, the analysis phase consists of 3 independent steps:

Step 2-1 Attribute appending

Step 2-1 Aggregation

Step 2-1 Extraction

This phase iterates Step 2-1 and Step 2-2. The purpose of the iterative process is

• To obtain statistical information and trend,

• To decide what kind of predictive model should be generated, and

183Analysis and Learning Frameworks for Large-Scale Data Mining

4 Will-be-set-by-IN-TECH

• To decide which attributes should be used to calculate feature vectors of the predictive

model.

Step 2-1 appends new attributes to tree-structured data by combining existing attributes.

We suppose the iteration of attribute appending increases data size by 5-20 times. On the

other hand, Step 2-2 calculates statistics of attributes and generates charts that help to grasp

characteristics of the data. The calculations of Step 2-2 include mean, variance, histogram,

cross tabulation, and so on.

An instance of the iterative process consisting attribute appending and aggregation is the

following.

1. Calculate frequencies of CPU usage (Step 2-2)

2. Append a new attribute "average memory usage for each server" (Step 2-1)

3. Calculate standard deviation of a new attribute "average memory usage" (Step 2-2)

4. Append a new attribute "difference of memory usage from its average" (Step 2-1)

5. ...

We usually append more than 10 new attributes into the raw data. Attribute appending

increases value and visibility of data, and eases trial-and-error process for finding how to

utilize the data.

After the iterative process of attribute appending and aggregation, Step 2-3 extracts feature

vectors from tree-structured data, which are used in model learning phase.

1.3. Model learning phase

Model learning phase generates predictive models which are used in real-world operations of

enterprises and organizations. The model learning phase uses machine learning techniques,

such as SVM (support vector machine) [1] and K-Means clustering [2].

For instance, this phase generates a model that predicts when hardware troubles will happen

in IT system. The input of the model is history of CPU usage and memory usage. The output

is date and time.

1.4. Model application phase

Model application phase applies the predictive models obtained from the model learning

phase into actual business operations. We emphasize the input data is "real time".

As described in Figure 1, the model application phase consists of 2 steps:

Step 4-1 Extraction

Step 4-2 Classification

Step 4-1 extracts a feature vector from real time data. Usually computation of this step is

similar to that of Step 2-3. Step 4-2 attaches a predictive label to the input data by using

predictive models. For example, this label represents date and time of hardware trouble. The

label is used in business operations as an event.

184 Advances in Data Mining Knowledge Discovery and Applications

Analysis and Learning Frameworks for Large-Scale Data Mining 5

2. Architecture

We propose architecture for large-scale data mining. Figure 3 illustrates our architecture.

Figure 3. Architecture.

Phase Data Computation Approach

1 Pre-processing Table format I/O-intensive Hadoop MR

2 Analysis Tree-structured,
large number of
attributes

I/O-intensive Hadoop MR + vertical partitioning +
data store in tree-structured format

3 Model learning Vectors CPU-intensive Iterative MR + Hadoop DFS

4 Model application Steream Real time Event driven software

Table 1. Approach of each phase. MR: MapReduce, DFS: Distributed File System.

As discussed in Section 1, we suppose four phases: pre-processing, analysis, model learning

and model application. In pre-processing phase, data is in table format and the computation

is I/O-intensive. Hadoop MapReduce [3] is appropriate for the pre-processing from the view

point of data format and I/O load reduction. Hadoop MapReduce is distributed computing

platform based on MapReduce computation model [4, 5]. Hadoop MapReduce consists of

three computation phases: Map, Combine and Reduce. Hadoop MapReduce parallelizes

disk I/O by reading and writing data in parallel on Hadoop DFS (Distributed File System).

Regarding details of Hadoop, refer to the literature [4, 5].

We develop cleansing program and structuring program which run on Hadoop MapReduce.

The cleansing program and the structuring program are general-purpose, which means we

can use the same programs for all cases. The cleansing program and the structuring program

read cleansing rule and structuring rule respectively, and programs run by following the rules

written by users as XML files.

In analysis phase, data is tree-structured and the computation is I/O-intensive. In addition,

the number of attributes is large since this phase repeatedly appends new attributes.

Therefore, key approach is also reduction of I/O load. We propose a method combining

Hadoop MapReduce, vertical partitioning and data store in tree-structured format in Section

3. This phase also needs chart viewer that displays result of aggregation of Step 2-2.

On the other hand, I/O load in model learning phase is permissive. Because input of machine

learning algorithms is feature vectors whose size is much smaller than that of raw data. The

185Analysis and Learning Frameworks for Large-Scale Data Mining

6 Will-be-set-by-IN-TECH

computation in model learning phase is CPU-intensive since machine learning algorithms

include iterative calculation for optimization. Section 4 proposes another MapReduce

framework for parallel machine learning, in which iterative algorithms are easily parallelized.

In model application phase, data is stream and the computation should be performed in real

time. Therefore, we develop event-driven software that runs at the timing of input data

coming. The software includes a library of classification function. It reads a predictive model

written in PMML [6] that is XML-based language for model description.

We summarize our approaches in Table 1. The rest of this paper focuses on frameworks for

analysis phase and model learning phase. Because while new techniques are necessary for

efficient computation in the two phases, system for pre-processing and model application is

easily implemented by combining existing technologies.

3. Tree-structured data analysis framework

3.1. Mathod

This section proposes a computing framework that performs data analysis on a large amount

of tree-structured data. As discussed in Section 1, an early stage of the data utilization process

needs trial-and-error processes, in which we repeatedly append new attributes and calculate

statistics of attributes. As a result of repetition of attribute appending, the number of attributes

increases. Therefore, not only scalability to the number of records but also scalability to the

number of attributes is important.

The key approaches of the proposed framework are:

1. To partition tree-structured data in column-wise and store the partitioned data in separated

files corresponding to each attribute, and

2. To use Hadoop MapReduce framework for distributed computing.

The method (1) is referred to as "vertical partitioning." It is well known that vertical

partitioning of table format data is efficient [7]. We propose vertical partitioning of

tree-structured data. Figure 4 illustrates the vertical partitioning method. The proposed

framework partitions tree-structured data into multiple lists so that each list includes values

belonging to the same attribute. Then the framework stores the lists of each attribute in

correspoinding files. Note that the file of "Average CPU usage" in Figure 4 includes only

values belonging to "Average CPU usage" attribute, and does not include values of any other

attributes.

The framework reads only 1-3 attributes required in data analysis out of 10-30 attributes,

and restores tree-structured data that consists of only required attributes. In addition, when

appending a new attribute, the framework writes only the newly created attribute into files. If

we do not use the vertical partitioning technique, it should write all of existing attributes into

files. Thus the proposed method reduces amount of input data as well as amount of output

data.

186 Advances in Data Mining Knowledge Discovery and Applications

Analysis and Learning Frameworks for Large-Scale Data Mining 7

Figure 4. Vertical partitioning of tree-structured data.

3.2. Implementation

The data model of the proposed framework is a recursively-defined tuple.

Tuple: Combination of lists and values. e.g. ("serv002", 13, [(15, 10)]).

List: Sequence of tuples whose types are the same. e.g.

[("serv001" 4.0) ("serv002" 2.6)].

Value: Sscalar, vector, matrix or string. e.g. "532MB".

A round bracket () represents a tuple while a square bracket [] represents a list. In this

paper, elements of a tuple and a list are separated by white spaces.

Figure 5 describes pseudo code of partitioning algorithm. The algorithm partitions

tree-structured data into recursive lists by running the function "Partition" recursively. Each

list to be generated by the algorithm consists of values belonging to the same attribute.

Similarly Figure 6 describes pseudo code of restoring algorithm. The algorithm restores

tree-structured data from divided attribute data. An example of input for the algorithm

is shown in Figure 7. S is trimmed schema which excludes attributes unused in analysis

computation. D is generated by replacing attribute names in trimmed schema with recursive

lists stored in attribute files.

187Analysis and Learning Frameworks for Large-Scale Data Mining

8 Will-be-set-by-IN-TECH

Partition(S, D) {

if S is atom then return [D]

if S is list then {

L = []

foreach di in D:

append Partition(SOE(S), di) to L

return transpose of L

}

if S is tuple then {

L = []

foreach (si, di) in (S, D):

L = L + Partition(si, di)

return L

}

Figure 5. Pseudo code of partitioning algorithm. S is schema information, D is tree-structured data, The
function SOE returns schema of an element of a list.

Restore(S, D, d=0) {

if S is atom then return D

if S is list then {

L = []

foreach (di) in D:

append Restore(SOE(S), di, d+1) to L

return transpose L with depth d

}

if S is tuple then {

L = []

foreach (si, di) in (S, D):

append Restore(si, di, d) to L

return L

}

Figure 6. Pseudo code of restoring algorithm. An example of the input is shown in Figure 7. The
function SOE returns schema of an element of a list.

S: [(

[("Average CPU uage"

[("Memoery Usage")])])]

D: [(

[([[ave-cpu:84.0% ave-cpu:12.6%] [ave-cpu:50.0%]])

[([[[mem:532MB mem:235MB] [mem:121MB ...]] [[mem:889MB mem:254MB]]])])]

Figure 7. Example of input of the restoring alogorithm.

We implemented the partitioning algorithm and the restoring algorithm in Gauche. Gauche

is an implementation of computer language Scheme. Users implement programs for attribute

appending and aggregation using Gauche. The proposed framework combines user programs

with partitioning and restoring programs. Then the combined program runs in parallel

on Hadoop Streaming of Hadoop MapReduce 0.20.0. Table 2 summarizes key Hadoop

components for implementation of the framework.

188 Advances in Data Mining Knowledge Discovery and Applications

Analysis and Learning Frameworks for Large-Scale Data Mining 9

Item Description

Hadoop aggregation package Used for Combine and Reduce calculation.
CompositeInputFormat class Used for multiple file input and "Map-side join" [3].
MultipleTextOutputFormat class Used for multiple file output.

Table 2. Hadoop configuration.

Figure 8 shows an example of user program. The program appends a new attribute "Average

memory usage". The variable "new-schema" represents a location of the newly appended

attribute in tree structure. The function mapper generates a new tree-structured data

including only the attribute to be appended. The framework provides accessors to attributes

and tuples, such as "ref-Server-tuples" and "ref-Memory-usage".

(define new-schema

’(

[("Average memory usage")])

)

(define (mapper site)

(tuple

[foreach (ref-Server-tuples site) (lambda (server)

(tuple

(mean (map ref-Memory-usage (ref-Record-tuples server)))

)])))

Figure 8. Example of user program.

3.3. Evaluation

We evaluated the proposed framework on 6 benchmark tasks.

Task A Calculates average CPU usage for each server and append it as a new attribute

into the corresponding tuple of server information. The SQL for the calculation includes

"group-by" and "update" if relational database is used instead of the proposed framework.

Task B Calculates difference between CPU usage and average CPU usage for each server. The

SQL of the calculation includes "join".

Task C Calculates frequency distribution of CPU usage with interval of 10. The SQL of the

calculation includes "group-by".

Task D Calculates difference between CPU usages of two successive detail records and

append it as a new attribute into the corresponding tuple of a detail record. It is impossible

to express the calculation with SQL.

Task E Searches detail records in which both of CPU usage and memory usage is 100%.

Figure 9 shows the result of evaluation on 90 GB data. We used 19 servers as slave machines

for Hadoop: 9 servers with 2-core 1.86 GHz CPU and 3 GB memory, and 10 servers with two

of 4-core 2.66 GHz CPU and 8 GB memory. Thus the Hadoop cluster has 98 CPU cores in total.

The vertical axis of Figure 9 represents average execution time over 5 runs. The result indicates

189Analysis and Learning Frameworks for Large-Scale Data Mining

10 Will-be-set-by-IN-TECH

that the vertical partitioning accelerates the calculations by 17.5 times on the task A and by

12.7 times on the task D. The task A and D require the processing of attribute appending, in

which a large amount of tree-structured data is not only read from files, but also written into

files. That is the reason why the acceleration on the task A and D is more than that on the

other tasks.

Figure 9. Evalution of the tree-structured data analysis framework.

Table 3 compares the proposed method with MySQL. Both of the proposed framework

and MySQL run on a single server, and the size of benchmark data is 891 MB. Note that

parallelization is not used in this experiment so that we investigate the effect of vertical

partitioning and data store in tree-structured format without the disturbing factor due to

parallel computation. We created indexes on columns of primary id, CPU usage and memory

usage in MySQL tables. Table 3 shows average and standard deviation of execution times over

5 runs. The performance of the proposed method is comparative or superior to that of MySQL

on the task A, B, C and D despite the proposed method is mainly implemented in Gauche.

On the other hand, the performance of the proposed method on the task E is inferior to that

of MySQL. This is because MySQL finds records that match the condition by using indexes

while the proposed framework scans whole data linearly to find out the records. However,

the actual execution time of the proposed framework on the task E is permissible since it is

not long compared to that on the other tasks.

Task Proposed method [sec] MySQL [sec]

A 10.67 ± 0.08 402.72 ± 5.55

B 76.67 ± 0.36 445.48 ± 3.42

C 13.21 ± 0.18 12.89 ± 0.05

D 36.36 ± 0.20 -

E 16.87 ± 0.14 1.34 ± 2.66

Table 3. Comparison of the tree-structured data analysis framework and MySQL using a single server.

190 Advances in Data Mining Knowledge Discovery and Applications

Analysis and Learning Frameworks for Large-Scale Data Mining 11

As a result of the experiments, we conclude that the proposed framework is efficient for data
analysis of a large amount of tree-structured data. The performance can be improved by
implementing it using Java, instead of Gauche.

4. Parallel machine learning framework

4.1. Mathod

This section proposes a computing framework for parallel machine learning. The proposed
framework is designed to ease parallelization of machine learning algorithms and reduce
calculation overheads of iterative procedures.

We start with discussion on a model of machine learning algorithms. Let D = (xn, yn) be
training data, where xn is a feature vector with d dimension, yn is a label. Machine learning
algorithm estimates a model M describing D well. In this paper we discuss machine learning
algorithms that are describable as an iteration of the following steps:

zn = f (xn, yn, M) (1)

M = r(g([z0, z1, ..., zN−1])), (2)

where M represents a model to be trained, g is a function which satisfies the following
constraint.

∀i < j < ... < k < N, g([z0, ..., zN−1]) = g([g[(z0, ..., zi−1)], g[(zi, ..., zj−1)], ..., g[(zk, ..., zN−1)]])

(3)

For instance, a function that summates elements in an array satisfies the constraints mentioned
above. By using the characteristic of g, we re-formulate the steps of machine learning
algorithms as follows.

Mi..j = g([f (xi, yi, M), f (xi+1, yi+1, M), ..., f (xj−1, yj−1, M)]) (4)

M = r(g([M0..i, Mi..j, ..., Mk..N])) (5)

Note that parallelization of the calculation of Mi..j is possible since the calculation is
independent of other (xn, yn).

Consider we use MapReduce for parallelization; Map phase calculates Mi..j and Reduce
phase calculates M. Although MapReduce fits parallelization of machine learning algorithms
described with the above formula, use of Hadoop Mapreduce, that is, the most popular
implementation of MapReduce, is unreasonable. Because the implementation of Hadoop
MapReduce is optimized so that it performs non-iterative algorithms efficiently. The problems
with repeatedly using Hadoop MapReduce are following.

• Hadoop MapReduce does not keep feature vectors in memory devices during iterations.

• Hadoop MapReduce restarts threads of Map and Reduce at every iteration. Initialization
overheads of these threads are large compared to computation time of machine learning
algorithms.

Consequently, the proposed framework provides another MapReduce implementation for
iterative algorithms of machine learning. The key approaches of the framework are follows.

191Analysis and Learning Frameworks for Large-Scale Data Mining

12 Will-be-set-by-IN-TECH

1. It keeps feature vectors in memory devices during iterations. In case data size of feature
vectors is larger than memory size, it uses local disk as a cache.

2. It does not terminate threads of Map and Reduce and uses the same threads repeatedly.

3. It controls iterations, read/write and data communication.

4. Users implement only 4 functions: initialization of M, calculation of Mi..j, update of M and
termination condition.

5. It utilizes Hadoop DFS as its file system.

A few MapReduce frameworks for iterative computation have been proposed. Haloop [8]
adds the functions of loop control, caching and indexing into Hadoop. However, it restarts
threads of Map and Reduce at every iteration like Hadoop. Therefore, the initialization
overheads still remain. Twister [10, 11] and Spark [9] reduce the initialization overheads
and keep feature vectors in memory devices during iterations. These frameworks perform
similarly to the proposed framework if input data size is smaller than total memory size of
a computing cluster. However, in case the data size is larger than total memory size, the
performance of the proposed framework is superior to that of Twister and Spark since the
proposed framework uses local disk as a cache.

4.2. Implementation

We implemented the proposed framework using Java. The framework reads feature vectors
and configuration parameters from Hadoop DFS with version of 0.20.2. Figure 10 illustrates
the sequence diagram of the proposed framework. The framework consists of a master thread,
a Reduce thread and multiple Map threads. The master thread controls the Reduce thread
and the Map threads. The Reduce thread controls iterations. The Map threads parallelize
calculations of Mi..j.

Firstly the master thread starts multiple Map threads, which read feature vectors from Hadoop
DFS and keep the data in memory and HDD in a local machine during an iteration. Secondly
the master thread starts a Rreduce thread. The Map threads and the Reduce thread are not
terminated until the iteration ends. Next the Reduce thread initializes M, and then the Map
threads calculate Mi..j in parallel. The Reduce thread updates M by collecting the calculation
results from the Map threads and continue the iteration.

Figure 11 and Figure 12 shows implementation of parallel K-Means algorithms using the
proposed framework. We omit initialization of M and termination condition since these
implementations are obvious. As shown in Figure 11 and Figure 12, parallelization of the
algorithm is easily implemented, and the source code is short. The rest procedures are
implemented inside the framework, and users do not have to write codes of data transfer
and data read. Thus users are able to focus on core logics of machine learning algorithms.

4.3. Evaluation

We compared the proposed framework with Hadoop. We used Mahout library as
implementations of machine learning algorithms on Hadoop [16]. We used 6 servers as slave
machines for both of the proposed framework and Hadoop: 4 servers with 4-core 2.8 GHz
CPU and 4 GB memory, and 2 servers with two of 4-core 2.53 GHz CPU and 2 GB memory. In

192 Advances in Data Mining Knowledge Discovery and Applications

Analysis and Learning Frameworks for Large-Scale Data Mining 13

Figure 10. Sequence diagram of parallel machine learning framework

class KMeansMapper extends Mapper<KMeansModel> {

public KMeansModel map(KMeansModel M) {

KMeansModel Mij = new KMeansModel();

for (D : x) {

int cid = argmin_distance(x, M);

Mij.s[cid].add(x);

Mij.l[cid] += 1;

}

return Mij;

}

}

Figure 11. Implementation of computing Mi..j in parallel K-Means algorithm.

the Map phase, 40 Map threads run in parallel. On the other hand, one Reduce thread runs in
the Reduce phase. The data size of feature vectors is 1.4 GB. Table 4 shows execution times of
one iteration on three machine learning algorithms: K-Means [2], Dirichlet process clustering
[12] and IPM perceptron [13, 14]. The values are mean and standard deviation over 10 runs.
The result indicates that the proposed framework is 33.8-274.1 times as fast as Mahout.

Figure 13 illustrates scalability of the proposed framework on three machine learning
algorithms: K-Means, variational Bayes clustering [15] and linear SVM [1]. The horizontal
axes represent the number of Map threads that run in parallel. The vertical axes represent 1 /
(execution time), i.e., speed. Figure 13 indicates that the more Map threads in parallel are, the
faster the parallelized algorithms run.

193Analysis and Learning Frameworks for Large-Scale Data Mining

14 Will-be-set-by-IN-TECH

class KMeansReducer extends Reducer<KMeansModel> {

public KMeansModel reduce(KMeansModel[] Mijs) {

KMeansModel M = new KMeansModel();

for (int cid=0; cid<M.num_of_cluster; cid++) {

for (Mijs : Mij) {

M.s[cid].add(Mij.s[cid]);

M.l[cid] += Mij.l[cid];

}

M.centroid[cid] = M.s[cid] / M.l[cid];

}

return M;

}

}

Figure 12. Implementation of updating M in parallel K-Means algorithm.

Algorithm Proposed method [sec] Mahout [sec]

K-Means 0.93 ± 0.052 31.8 ± 1.49
Dirichlet process clustering 1.14 ± 0.057 67.4 ± 3.87

IPM perceptron 0.11 ± 0.026 30.7 ± 2.00

Table 4. Comparison of the parallel machine learning framework and Mahout on K-Means [2], Dirichlet
process clustering [12] and IPM perceptron [13, 14].

Figure 13. Scalability evaluation of the parallel machine learning framework.

We also applied the framework in order to parallelize a learning algorithm of an acoustic

model for speech recognition. The learning algorithm reads voice data and corresponding

194 Advances in Data Mining Knowledge Discovery and Applications

Analysis and Learning Frameworks for Large-Scale Data Mining 15

text data, and generates a Hidden Markov model by using Forward Backward algorithm.

We compared performance of the parallelized algorithm with that of single thread

implementation using C language. We used 1.0 GB of feature vectors as a input of these

programs. The parallelized algrorithm on the proposed framework with 32 parallel Map

threads run 7.15 times faster than the single thread implementation. Considering the

difference of speed between Java and C language, the proposed framework performs the

parallelization well. Consequently, we conclude that the proposed framework is efficient for

parallel machine learning.

5. Conclusion

This chapter discussed techniques for processing large-scale data. Firstly we explained that

process of data utilization in enterprises and organizations includes (1) pre-processing phase,

(2) analysis phase, (3) model learning phase and (4) model application phase. Secondly we

described architecture for the data utilization process. Then We proposed two computing

frameworks: tree-structured data analysis framework for analysis phase, and parallel machine

learning framework for model learning phase. The experimental results demonstrated that

our approaches work well.

Future works are follows:

• To implement tree-structured data analysis framework using Java.

• To design original machine learning algorithms which run on the parallel machine learning

framework.

• To formulate a framework for model application phase.

Author details

Kohsuke Yanai

Research & Development Centre, Hitachi India Pvt. Ltd.

Central Research Laboratory, Hitachi Ltd.

Toshihiko Yanase

Central Research Laboratory, Hitachi Ltd.

6. References

[1] Chapelle, O. (2007) Training a Support Vector Machine in the Primal. Neural

Computation, Vol. 19, No. 5, pp. 1155-1178.

[2] MacQueen, J. B. (1967) Some Methods for Classification and Analysis of MultiVariate

Observations. Proc. of the fifth Berkeley Symposium on Mathematical Statistics and

Probability, Vol. 1, pp. 281-297.

[3] White, T. (2009) Hadoop: The Definitive Guide. Oreilly & Associates Inc.

[4] Dean, J. and Ghemawat, S. (2004) MapReduce: Simplified Data Processing on

Large Clusters. Proceedings of Sixth Symposium on Operating System Design and

Implementation (OSD2004), pp. 137-150.

195Analysis and Learning Frameworks for Large-Scale Data Mining

16 Will-be-set-by-IN-TECH

[5] Dean, J. and Ghemawat, S. (2008) MapReduce: simplified data processing on large

clusters. Communications of the ACM, Vol. 51, No. 1, pp. 107-113.

[6] Data Mining Group. PMML standard, http://www.dmg.org/v4-1/GeneralStructure.html

[7] Manegold, S., Boncz, P. A., and Kersten, M. L. (2000) Optimizing database architecture

for the new bottleneck: memory access. The VLDB Journal, Vol. 9, No. 3, pp. 231-246.

[8] Bu, Y., Howe, B., Balazinska, M., and Ernst, M. D. (2010) HaLoop: Efficient Iterative Data

Processing on Large Clusters. Proceedings of the VLDB Endowment, Vol. 3, p. 1.

[9] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010) Spark:

Cluster Computing withWorking Sets. HotCloud 2010.

[10] Ekanayake, J. and Pallickara, S.: (2008) MapReduce for Data Intensive Scientific

Analysis. Forth IEEE International Conference on eScience, pp. 277-284.

[11] Ekanayake, J., Balkir, A. S., Gunarathne, T., Fox, G., Poulain, C., Araujo, N., and Barga,

R. (2009) DryadLINQ for Scientific Analyses. Proceedings of Fifth IEEE International

Conference on e-Science (eScience2009).

[12] McCullagh, P. and Yang, J. (2008) How Many Clusters. Bayesian Analysis, Vol. 3, No. 1,

pp. 101-120.

[13] McDonald, R., Hall, K., and Mann, G. (2010) Distributed Training Strategies for

the Structured Perceptron. Proceedings of Human Language Technologies: The 2010

Annual Conference of the North American Chapter of the ACL, pp. 456-464.

[14] Hall, K. B., Gilpin, S., and Mann, G. (2010) MapReduce/Bigtable for Distributed

Optimization. Neural Information Processing Systems Workshop on Leaning on Cores,

Clusters, and Clouds.

[15] Corduneanu, A. and Bishop, C. M. (2001) Variational Bayesian Model Selection for

Mixture Distributions. Artificial Intelligence and Statistics 2001, pp27-34.

[16] Apache Mahout: Scalable machine learning and data mining. http://mahout.

apache.org/

196 Advances in Data Mining Knowledge Discovery and Applications

