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1. Introduction

Chronic kidney disease (CKD) and cardiovascular disease (CVD) have major impacts upon
the health of populations worldwide, especially in Western societies. The progression of
CKD or CVD independently exerts synergistic deleterious effects on the other, for example,
patients with CKD are more likely to die of CVD than to develop renal failure. This overlap
between CKD and CVD, in part, relates to common etiologies such as diabetes mellitus and
hypertension, but important dynamic and bidirectional interactions between the cardiovas‐
cular system and kidneys may also explain the occurrence of concurrent organ dysfunction
[1]. Cardio-renal syndrome (or reno-cardiac syndrome, the prefix depending on the primary
failing organ) is becoming increasingly recognised [2]. Conventional treatment targeted at
either syndrome generally reduces the onset or progression of the other [3]. Even though
our understanding of various factors and steps involved in the pathogenesis of CKD and
CVD and their obvious links has improved, a complete picture of the mechanisms involved
is still unclear. Oxidative stress has been identified as one unifying mechanism in the patho‐
genesis of CKD and CVD [4]. This current chapter gives a brief review of recent literature on
the relationship between CKD, CVD and oxidative stress and indicates how, by applying
knowledge of the molecular controls of oxidative stress, this information may help improve
targeted therapy with antioxidants for these diseases.

2. Pathogenesis of chronic kidney and cardiovascular disease – The links

It is, in fact, very difficult to separate these chronic diseases, because one is a complication of
the other in many situations. The development and progression of CKD are closely linked
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with hypertension and dyslipidemia, both causes of renal failure. Diabetic nephropathy is
arguably the leading cause of renal failure. CKD, hypertension and diabetes mellitus all in‐
volve endothelial dysfunction, a change well known in the development of atherosclerosis
and CVD that includes coronary artery disease, heart failure, stroke and peripheral arterial
disease [5]. Vascular calcification occurs in progressive atherosclerosis and CVD, but it is al‐
so an important part of vascular injury in end-stage renal disease (ESRD), where patients
need renal replacement therapy to survive. It is paradoxical that approximately 50% of indi‐
viduals with ESRD die from a cardiovascular cause [6]. Thus, CKD and CVD patients have
closely-linked diseases with increasing morbidity and mortality. Prevention and treatment
of these diseases are major aims in health systems worldwide.

The initiating causes of CKD are highly variable, with previously-mentioned hypertension
and diabetes being two of the key ones [7]. Epidemiological studies reveal other strong risk
factors for CKD, such as a previous episode of acute kidney damage, exposure to nephrotox‐
ins, obesity, smoking, and increasing age [8, 9]. However, no matter the cause, the progres‐
sive structural changes that occur in the kidney are characteristically unifying [10]. The
characteristics of CKD are tubulointerstitial inflammation and fibrosis, tubular atrophy, glo‐
merulosclerosis, renal vasculopathy, and presence of granulation tissue. Alterations in the
glomerulus include mesangial cell expansion and contraction of the glomerular tuft, fol‐
lowed by a proliferation of connective tissue which leads to significant damage at this first
point of the filtration barrier. Structural changes that occur in the kidney produce a vicious
cycle of cause and effect, thereby enhancing kidney damage and giving CKD its progressive
nature. Whilst early pathological changes in the kidney can occur without clinical presenta‐
tions, due to the high adaptability of the kidney [10], once the adaptive threshold is reached,
the progression of CKD is rapid and the development of ESRD imminent. Vascular patholo‐
gy exacerbates development of CKD, and it is perhaps here that the links with CVD are clos‐
est. Hypertension induces intimal and medial hypertrophy of the intrarenal arteries, leading
to hypertensive nephropathy. This is followed by outer cortical glomerulosclerosis with lo‐
cal tubular atrophy and interstitial fibrosis. Compensatory hypertrophy of the inner-cortical
glomeruli results, leading to hyperfiltration injury and global glomerulosclerosis. Note,
however, that although glomerulopathy is an important characteristic of CKD, the incidence
of tubulointerstitial fibrosis has the best correlation with CKD development [11]. As such,
kidney tubular cells and renal fibroblasts may be the founding cell types in the progressive
development of CKD.

The main clinical manifestation of CKD is a loss of glomerular filtration rate (GFR), allowing
for staging of CKD with progressively decreasing (estimated) GFR. CKD staging was facili‐
tated by the National Kidney Foundation (NKF) Kidney Disease Outcomes Quality Initia‐
tive (KDOQI) and the Kidney Disease - Improving Global Outcomes (KDIGO), an outcome
that highlighted the condition and facilitated its increased diagnosis [12]. The first two
stages have normal, or slightly reduced kidney function but some indication of structural
deficit in two samples at least 90 days apart. Stages 3-5 are considered the most concerning,
with Stage 3 now being sub-classified into Stages 3a and b because of their diagnostic impor‐
tance. It is thought that stages 2 and 3 should be targeted with prophylactic therapies, such
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as lipid lowering drugs or RAS modifiers [13], to minimize the progression of CKD. Table 1
summarises GFR classification and staging for CKD.

Stage GFR* Description

1 90mL/Min Normal renal function but abnormal urine findings, or structural

abnormalities, or a genetic trait indicating kidney disease

2 60-89mL/min Mildly reduced renal function, and other findings (as for stage 1)

indicate kidney disease

3A

3B

45-59mL/min

30-44mL/min

Moderately reduced kidney function

4 15-29mL/min Severely reduced kidney function

5 <15mL/min or on dialysis Very severe, or end-stage kidney failure (sometimes called

established renal failure)

* Measured using the MDRD formula (MDRD= Modification of Diet in Renal Disease). All GFR values are normalized to
an average surface area (size) of 1.73m2

Table 1. Classification and description of the different stages of CKD

Similar to CKD, the initiating causes for CVD are complex. Although exposure to cardiovas‐
cular risk factors such as hypertension, dyslipidemia and diabetes mellitus contributes to
CVD, obesity, lack of physical exercise, smoking, genetics, and even depression, also play a
role [14]. Common themes for causality are oxidative stress and inflammation, be they local
or systemic. The prevalence of CVD also has a strong positive correlation with age, with
more than 80% of cases of coronary artery disease and 75% of cases of congestive heart fail‐
ure observed in geriatric patients [14]. Intrinsic cardiac aging, defined as the development of
structural and functional alterations during aging, may render the heart more vulnerable to
various stressors, and this ultimately favours the development of CVD. In the early stages of
CVD, left ventricular hypertrophy and myocardial fibrosis may be seen in many patients
[15]. The processes involved in their development, particularly in association with CKD, can
be attributed to hypervolaemia, systemic arterial resistance, elevated blood pressure, large
vessel compliance, and activation of pathways related to the parathyroid hormone–vitamin
D–phosphate axis. Left ventricular hypertrophy and myocardial fibrosis also predispose to
an increase in electric excitability and ventricular arrhythmias [16].

Heart failure resulting from CVD may be staged in a system similar to CKD. In its 2001
guidelines, the American College of Cardiology (ACC) and the American Heart Association
working groups introduced four stages of heart failure [17]: Stage A with patients at high
risk for developing heart failure in the future but no functional or structural heart disorder;
Stage B with a structural heart disorder but no symptoms at any stage; Stage C with previ‐
ous or current symptoms of heart failure in the context of an underlying structural heart
problem, but managed with medical treatment; and Stage D with advanced disease requir‐
ing hospital-based support, a heart transplant or palliative care. The ACC staging system is
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useful in that Stage A may be considered pre-heart failure where intervention with treat‐
ment may prevent progression to overt symptoms.

The links between CKD and CVD are so close that it is often difficult to tease out individual
causes and mechanisms, given their chronic nature. However, children with CKD present as
a particular population without pre-existing symptomatic cardiac disease. This population
could also receive significant benefit from preventing and treating CKD and thereby mini‐
mising the forthcoming development of CVD which is a major cause of death in children
with advanced CKD. Left ventricular hypertrophy and dysfunction, and early markers of
atherosclerosis such as increased intimal-medial thickness and stiffness of the carotid artery,
and coronary artery calcification, may develop in children with CKD. Early CKD, before
needing dialysis, is the optimal time to identify and modify risk factors and intervene in an
effort to avert risk of premature cardiac disease and death in these children [18]. These ob‐
servations have sparked added interest in the mechanisms of the chronic diseases, and in
ways to target these mechanisms with additional therapies, such as antioxidants.

2.1. Inflammation and chronic kidney and cardiovascular disease

The circulating nature of many inflammatory mediators such as cytokines, and inflammato‐
ry or immune cells, indicates that the immune system can act as a mediator of kidney-heart
cross-talk and may be involved in the reciprocal dysfunction that is encountered commonly
in the cardio-renal syndromes. Chronic inflammation may follow acute inflammation, but in
many chronic diseases like CKD and CVD, it is likely that it begins as a low-grade response
with no initial manifestation of an acute reaction. There are many links with visceral obesity
and with increased secretion of inflammatory mediators seen in visceral fat [15]. Proinflam‐
matory cytokines are produced by adipocytes, and also cells in the adipose stroma. The
links with oxidative stress as an endogenous driver of the chronic diseases become immedi‐
ately obvious when one admits the close association between oxidative stress and inflamma‐
tion. The characteristics of dyslipidaemia (elevated serum triglycerides, elevated low-
density lipoprotein cholesterol, and/or low high-density lipoprotein cholesterol) are also
often seen in obese patients and these are all recognized as risk factors for atherosclerosis.
The links between obesity, inflammation, dyslipidaemia, CKD and CVD also occur through
yet another syndrome, metabolic syndrome. An improved understanding of the precise mo‐
lecular mechanisms by which chronic inflammation modifies disease is required before the
full implications of its presence, including links with persistent oxidative stress as a cause of
chronic disease can be realized.

3. Oxidative stress and chronic kidney and cardiovascular disease

3.1. Understanding oxidative stress

Oxidative stress has been implicated in various pathological systems that are prevalent in
both CKD and CVD, most importantly inflammation and fibrosis. Chronic inflammation is
induced by biological (eg. infections, autoimmune disease), chemical (eg. drugs, environ‐
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mental toxins), and physical factors (eg. lack of physical activity) [19]. The inflammatory
cells are then a source of free radicals in the forms of reactive oxygen and nitrogen species,
although reactive oxygen species (ROS) are considered the most common. The highly reac‐
tive ROS are capable of damaging various structures and functional pathways in cells. In
consequence, the presence of inflammatory cells is stimulated by cell damage caused by
ROS, creating a cycle of chronic damage that is difficult to break. Oxidative stress arises
from alterations in the oxidation-reduction balance of cells. Normally, ROS are countered by
endogenous natural defences known as antioxidants, and it is the imbalance between ROS
and antioxidants which favours greater relative levels of ROS, thereby giving rise to a state
of oxidative stress [20-22]. The simple oxidant “imbalance” theory has now grown to incor‐
porate the various crucial pathways and cell metabolism that are also controlled by the in‐
terplay between oxidants and antioxidants [23-27]. The rationale for antioxidant therapies
lies in restoring imbalances in the redox environment of cells.

The main ROS are superoxide (O2
•-), the hydroxyl radical (OH•) and hydrogen peroxide

(H2O2). Mitochondria are considered the major source of ROS, however other contributing
sites of ROS generation include the endoplasmic reticulum, peroxisomes and lysosomes
[28-30]. Estimated levels of ROS within mitochondria are 5-10 fold higher than cystolic and
nuclear compartments in cells [31] due to the presence of the electron transport chain (ETC)
within the mitochondrial inner membrane. 1-3% of inspired molecular oxygen (O2) is con‐
verted to the most common of the ROS, O2

•- [32, 33], a powerful precursor of H2O2. Al‐
though cellular H2O2 is stable in this form, it has the potential to interact with a variety of
substrates to cause damage, especially in the presence of the ferrous iron (Fe2+), which leads
to cleavage and formation of the most reactive and damaging of the ROS, the OH• [34]. In
healthy metabolic cells, the production of the potentially harmful H2O2 is countered by the
catalizing actions of mitochondrial or cystolic catalase (CAT) or thiol peroxidases into water
and O2. The ETC consists of 5 multi-enzyme complexes responsible for maintaining the mi‐
tochondrial membrane potential and ATP generation. Each of these complexes presents a
site of ROS generation, however complexes I and III have been identified as primary sites of
O2

•- generation [35-38]. ROS generation from mitochondrial complexes increases with age in
mice [39]. In humans, Granata and colleagues [40] have demonstrated that patients with
CKD and haemodialysis patients display impaired mitochondrial respiration.

Agreement on the role of oxidative stress in the pathogenesis of chronic disease is, however,
not complete. Oxidants are involved in highly conserved basic physiological processes and
are effectors of their downstream pathways [41, 42]. The specific mechanisms for “oxidative
stress” are difficult to define because of the rapidity of oxidant signalling [31]. For example,
protein tyrosine phosphatases are major targets for oxidant signalling since they contain the
amino acid residue cysteine that is highly susceptible to oxidative modification [43]. Meng
and colleagues [25] demonstrated the oxidation of the SH2 domain of the platelet-derived
growth factor (PDGF) receptor, which contains protein tyrosine phosphatases, in response
to PDGF binding. This may indicate the induction of free radicals in response to receptor ac‐
tivation by a cognate ligand in a process that is similar to phosphorylation cascades of intra‐
cellular signalling.
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3.2. Endogenous antioxidants – Metabolism or disease modifiers

The production of ROS is usually in balance with the availability and cellular localisation of
antioxidant enzymes such as superoxide dismutase (SOD), CAT and glutathione peroxidase
(Gpx). In vivo studies have found accumulated oxidative damage occurs from decreased lev‐
els of these enzymes rather than increased ROS production [44, 45]. However, adequate lev‐
els of both are likely to be vital for normal cell function. Mitochondria possess their own
pool of antioxidants to counteract their generation of ROS. Mitochondrial manganese-SOD
(Mn-SOD) converts O2

•- to H2O2 which is then decomposed to harmless H2O and O2 by CAT
and Gpx [46]. Copper/zinc-SOD (Cu/Zn-SOD) has been implicated in stabilizing O2

•- within
other cellular compartments, especially peroxisomes, and must be considered in mainte‐
nance of the redox state of the whole cell [47, 48]. Limited antioxidant actions of Cu/Zn-SOD
may also occur within the inter-membrane space [49]. There is no evidence to indicate that
glutathione synthesis occurs within mitochondria, however the mitochondria have their
own distinct pool of glutathione required for the formation of Gpx [50].

Among the various endogenous defences against ROS, glutathione homeostasis is critical for
a cellular redox environment. Glutathione-linked enzymatic defences of this family include
Gpx, glutathione-S-transferase (GST), glutaredoxins (Grx), thioredoxins (Trx), and peroxire‐
doxins (Prx) [51]. Many of these proteins are known to interact with each other, forming re‐
dox networks that have come under investigation for their contribution to dysfunctional
oxidant pathways. Mitochondrial-specific isoforms of these proteins also exist and include
Grx2, Grx5, Trx2 and Prx3 [52-54], which may be more critical for cell survival compared to
their cystolic counterparts [50]. Mitochondrial dysfunction, resulting in depleted ATP syn‐
thesis, has the potential to reduce the redox control of glutathione since the rate of gluta‐
thione synthesis is ATP-dependent [55]. Intracellular synthesis of glutathione from amino
acid derivatives (glycine, glutamic acid and cysteine) accounts for the majority of cellular
glutathione compared with extracellular glutathione uptake [56]. Antioxidant networks in
which there is interplay, crosstalk and synergism to efficiently and specifically scavenge
ROS, may also exist. If this is the case, these antioxidant networks could be harnessed to de‐
velop poly-therapeutic antioxidant supplements to combat oxidant-related pathologies, like
CKD and CVD.

3.3. Oxidative stress and transcriptional control

The role of oxidative stress in upstream transcriptional gene regulation is becoming increas‐
ingly recognised. Not only does this provide insight into the physiological role of oxidative
stress, but presents regulatory systems that are possibly prone to deregulation. Furthermore,
these sites present targets for pharmacological intervention. Peroxisome proliferator-activat‐
ed receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-
dependant transcription factors which have been shown to alter during CKD and CVD
[57-59]. They have important roles in the transcriptional regulation of cell differentiation,
lipid metabolism, glucose homeostasis, cell cycle progression, and inflammation. There are
three PPAR isoforms – α, β/δ and γ. Peroxisome proliferator gamma coactivator (PGCα), in
association with PPARγ activation, leads to a variety of cellular protective responses includ‐
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ing mitochondrial biogenesis [57]. PPARγ regulation in chronic disease is increasingly rec‐
ognised, with oxidative stress as the unifying initiating feature. Omega-3 polyunsaturated
fatty acids (PUFA) reduce inflammation in kidney tubular epithelial cells by upregulating
PPARγ [60]. PPARγ activation by pioglitazone reduced cyclo-oxygenase 2 (COX2) expres‐
sion in smooth muscle cells from hypertensive rats, and upregulated endogenous antioxi‐
dants Mn- and Cu/Zn-SOD [61].

Recently, the protective responses of the nuclear factor E2-related factor 2/Kelch-like ECH-
associated protein 1 (Nrf2/Keap1)/antioxidant response element (ARE) were noted [62]. Nrf2
is a nuclear transcription factor that is suppressed in the cytoplasm by the physical binding
of Keap1 preventing its translocation into the nucleus. Nrf2 is activated by a loss of Keap1
binding by alterations in cellular redox status, such as increased ROS, by-products of oxida‐
tive damage, and reduced antioxidant capacity, thereby promoting its transcriptional re‐
sponse at the ARE [63]. The ARE is a vital component of the promoter regions of genes
encoding detoxifying, antioxidant, and glutathione-regulatory enzymes such as quinone-re‐
ductase, glutathione-peroxidases, glutathione-reductase, thioredoxins and thioredoxin-re‐
ductase, peroxiredoxins, gamma-glutamyl cysteine, heme-oxygenase-1 (HO-1), CAT, SOD
metallothionein and ferritin [64-67]. Important to note is that by-products of oxidative dam‐
age such a 4-hydroxynoneal and J-isoprostanes act as endogenous activators of Nrf2 [68, 69].
Thus, NRF2/Keap1 and the ARE play a crucial role in cellular defence against ROS. Recent
pharmacological protocols have allowed the modulation of this pathway to enhance the ca‐
pabilities of cells to combat oxidative stress and inflammation [70].

3.4. CKD and CVD are unified by oxidative stress

Chronic diseases of the kidney possess various commonalities to chronic disease of the car‐
diovascular system which can be linked through pathways controlled by oxidative stress, as
shown in Figure 1. Vascular, cellular and biochemical factors all contribute. Increased serum
uric acid levels (hyperuricaemia) can arise from increased purine metabolism, increasing
age and decreased renal excretion, and have harmful systemic effects. Hyperuricaemia is as‐
sociated with an increased risk for development and progression of CKD. Hyperuricemia is
also a risk factor associated with coronary artery disease [71], left ventricular hypertrophy
[72], atrial fibrillation [73], myocardial infarction [74] and ischemic stroke [75]. A 20.6%
prevalence of hyperuricemia was found in a cross-sectional study of 18,020 CKD patients
[76], and a positive correlation was found between serum uric acid and serum creatinine
with impaired renal function [77]. Retention of uremic toxins promotes inflammation and
oxidative stress, by priming the acute inflammatory polymorphonuclear lymphocytes, acti‐
vating interleukin (IL)-1β and IL-8 [78] and stimulating the innate immune response
through CD8+ cells [79]. Additionally, uric acid synthesis can promote oxidative stress di‐
rectly through the activity of xanthine oxidoreductase. This enzyme is synthesized as xan‐
thine dehydrogenase, which can be converted to xanthine oxidase by calcium-dependant
proteolysis [80] or modification of cysteine residues [81]. In doing so, the enzyme loses its
capacity to bind NADH by alterations in its catalytic site and, instead, transfers electrons
from O2, thereby generating O2

- [82]. However, the role of uric acid in many conditions asso‐
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ciated with oxidative stress is not clear and there are experimental and clinical data showing
that uric acid also has a role in vivo as an anti-oxidant [83].

Figure 1. Chronic kidney disease and cardiovascular disease are unified by oxidative stress. Mutual risk factors influ‐
ence the development and progression of CKD and CVD and can either be modifiable (diabetes, obesity, metabolic
syndrome, smoking) or non-modifiable (genetic predisposition, increasing age, acute injury). Oxidative stress has been
implicated in the majority of initiating factors. The progression of CKD to CVD, or vice versa, is mediated through: (1)
inflammation and the release of pro-inflammatory cytokines such as tumor necrosis factor-α (TNFα), interleukin-1β
(IL-1β) and IL-8 from activated lymphocytes; (2) endothelial dysfunction due to increased retention of uremic toxins,
and decreased L-arginine synthesis which causes alterations in nitric oxide (NO) signalling - dyslipidaemia and associ‐
ated pro-oxidative/inflammatory state lead to increased oxidised-low density lipoproteins (ox-LDL), a major compo‐
nent in the pathogenesis of atherosclerosis; (3) redox perturbations that ultimately underlie oxidative stress due to an
imbalance between the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and endogenous
antioxidants, leading to mitochondrial dysfunction and alterations in redox sensitive pathways such as Nrf2/keap1/
ARB.

The kidney is a vital source of L-arginine which is a precursor for nitric oxide (NO). A re‐
duction in renal mass can therefore reduce the production of L-arginine and NO activity.
NO is vital for regular vascular endothelial cell function, and decreased amounts have the
potential to manifest into CVD [84]. Additionally, oxidized low density lipoprotein (ox-
LDL), a by-product of oxidative damage in human blood, plays a pivotal role in the patho‐
genesis of atherosclerosis [85]. There is also a possible link between CVD and CKD that is
regulated by oxidative stress through a functional mitochondrial angiotensin system [86].
Angiotensin type II receptors were co-localised with angiotensin on the inner mitochondrial
membrane of human mononuclear cells and mouse renal tubular cells. This system was
found to modulate mitochondrial NO production and respiration.

4. Antioxidant therapies in chronic kidney and cardiovascular disease

The current state of antioxidant therapies for CKD and CVD is one of promise, but not with‐
out controversy. In vitro studies commonly identify agents that are able to detoxify harmful
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oxidants. However, these studies are criticised for their isolated, non-holistic, nature [87, 88].
It is largely the positive pre-clinical results from in vivo studies, usually in rodents, which
drive progress for applicability in chronic human disease, but even these show considerable
discrepancies in translation into patients. Despite the well-documented dysregulated endog‐
enous oxidant/antioxidant profile in chronic degenerative disorders such as CVD and CKD,
there is still evidence that certain antioxidants have no effect [89-92]. It may first be impor‐
tant to identify patients having an altered oxidative stress profile, since this population pro‐
vides an ideal “intention to treat” cohort. The following trials of antioxidants need then to be
rigorous, identifying not only any positive patient outcomes, but also the underlying mecha‐
nism, and of course any deleterious outcome. Various approaches have been taken to reduce
oxidative stress in models of CKD and accelerated CVD, ranging from reducing oxidant in‐
take in food stuffs [93, 94] to targeted polypharmaceutical compounds. The benefit of rigor‐
ous review of outcome from antioxidant therapies in either CKD or CVD is that the primary
and secondary outcomes related to both can be measured. In the following section, some an‐
tioxidants used for CKD or CVD are reviewed, as shown in Figure 2.

4.1. N-acetylcysteine – An antioxidant with promise

N-acetyl cysteine (NAC) acts as an essential precursor to many endogenous antioxidants in‐
volved in the decomposition of peroxides [95]. NAC attenuates oxidative stress from vari‐
ous underlying causes by replenishing intracellular glutathione stores. Glutathione is
synthesized in the body by three amino acids by the catalysing of intracellular enzymes
gamma-glutamylcysteine synthetase and glutathione synthetase. L-glutamic acid and gly‐
cine are two precursors of glutathione that are biologically and readily available. However,
the limiting precursor to glutathione biosynthesis and the third amino acid, L-cysteine, is
not readily available in a human diet. Although the primary basis for NAC supplementation
is to replenish cellular cysteine levels to maintain intracellular glutathione and thus redox
control, the sulfhydral-thiol group of L-cysteine is also able to exert direct antioxidant effects
by scavenging free radicals, and NAC may also exert its protective effects against 2,3,5-
tris(glutathion-S-yl)-hydroquinone toxicity. This was demonstrated in isolated renal tubular
epithelial cells, in part by the activation of extracellular signal regulated protein kinase
(ERK) 1/2 [96].

The results of NAC supplementation in kidney disease have been variable and largely de‐
pendent on the type and cause of kidney injury and also the timing of treatment. In cultured
human proximal tubular epithelial cells, NAC reduced lipid peroxidation and maintained
the mitochondrial membrane potential, thereby preventing apoptosis following H2O2 ad‐
ministration [97]. Although NAC had no significant effect on markers of oxidative stress
and inflammation in rats following unilateral ureteral obstruction [98], it reduced kidney
malondialdehyde (MDA) levels in a diabetic mouse model [99]. The treatment of CKD pa‐
tients with NAC with the aim of improving renal function and preventing ESKD has been
largely disappointing, with no evidence of reduction in proteinuria [100, 101]. However,
NAC seems to exert the greatest antioxidant and anti-inflammatory properties when used
against the greatest injury, such as in ESKD patients receiving either haemodialysis or peri‐
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toneal dialysis. In those cases, NAC reduced serum 8-isoprostane and the inflammatory cy‐
tokine IL-6 [102, 103]. A recent systemic review on antioxidant therapy in hemodialysis
patients highlighted NAC as the most efficacious agent in decreasing oxidative stress [104].

The effect of NAC on cardiovascular pathologies is less well investigated than CKD. Crespo
et al., (2011) demonstrated in vivo that, although long-term NAC supplementation improved
cardiac function, it did not delay progression to cardiomyopathy [105]. Endothelial dysfunc‐
tion caused by uremic toxins such as indoxyl sulphate induced ROS-dependent expression
of the pro-inflammatory and pro-oxidant nuclear factor-κB (NF-κB), which was ameliorated
by NAC pre-treatment [106].

Figure 2. Cellular sites for antioxidant therapy targets in CKD and CVD. Inflammation, lipid peroxidation and reactive
oxygen species (ROS) from mitochondrial, cytoplasmic and extracellular sources contribute to oxidative stress. Vitamin
E incorporates into the phospholipid bilayer halting lipid peroxidation chain reactions. Omega (ω)-3 fatty acids dis‐
place arachadonic acid in the cell membrane and thus reduce arachadonic acid-derived ROS, but also significantly re‐
duce inflammation and subsequent fibrosis. The cysteine residue of N-acetyl-cysteine (NAC) is a precursor for
glutathione (GSH) synthesis, and the thiol group is able to scavenge ROS directly. Bardoxolone exerts transcriptional
control by promoting nuclear translocation of Nrf2, facilitating antioxidant response element (ARE) binding that upre‐
gulates endogenous antioxidant enzyme activity. Allopurinol inhibits xanthine oxidase-derived ROS and the damag‐
ing effects of hyperuricemia. Coenzyme Q10 (CoQ10) enhances the efficacy of electron transport in the mitochondria,
thereby reducing mitochondrial-derived ROS – it is also able to directly scavenge ROS. L-carnitine enhances mitochon‐
drial fatty acid synthesis and subsequent ATP production and thereby maintains cell health. L-arginine is a precursor
for nitric oxide which restores endothelial function.

4.2. Vitamin E – An established antioxidant with controversial outcomes

Vitamin E, or α-tocopherol, is a lipid-soluble antioxidant that incorporates into the plasma
membrane of cells, thereby scavenging free radicals, mainly the peroxyl radical, and halting
lipid peroxidation chain reactions [107]. A benefit of α-tocopherol is its ability to restore its
antioxidant capacity from its oxidized form following free radical scavenging, and incorpo‐
rate back into the plasma membrane. Vitamin C (ascorbic acid) is able to directly reduce α-
tocopherol [108-110], and intracellular glutathione and lipoic acid can restore α-tocopherol
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indirectly by restoring vitamin C [111]. This is a prime example of a cellular antioxidant net‐
work prone to dysregulation. Administration of α-tocopherol to kidney proximal tubular
cells in culture decreased cisplatin-induced ROS and increased cell viability [112]. The bene‐
ficial effects of α-tocopherol are not limited to its antioxidant properties, and recently atten‐
tion has focused on its blood oxygenising and endogenous cell signalling functions [113].
Vitamin E foodstuffs primarily consist of α-tocotreinol, an isoform of α-tocopherol which
has higher antioxidant efficacy in biological membranes. Despite this, the uptake and distri‐
bution of α-tocotreinol is far less than α-tocopherol. Therefore, the basis of vitamin E supple‐
mentation is to enhance α-tocopherol levels in cell plasma membranes to prevent lipid
peroxidation and resultant oxidative stress. One drawback of α-tocopherol is that it takes
several days of pre-treatment to exhibit antioxidant effects [114].

Vitamin E therapy has been extensively researched for renal and cardiovascular benefits in
human disease populations. Nevertheless, confounding reports mean there is a lack of con‐
sensus as to whether vitamin E therapy induces an overall benefit. It is known that patients
with CKD stage 4 display the largest decrease in serum α-tocopherol levels following a pro‐
gressive decline from stage 1 indicating an increased need for α-tocopherol in the CKD pop‐
ulation [115]. Interestingly, within the same cohort of patients, a positive correlation of
serum α-tocopherol levels and GFR was found [115]. A large scale trial concluded that vita‐
min E supplementation to cardiovascular high-risk patients over 4.5 years induced no bene‐
fit to cardiovascular outcome [92]. The results from the Selenium and Vitamin E Cancer
Prevention Trial (SELECT) are of greater concern. They suggest that vitamin E supplementa‐
tion significantly increases the risk of prostate cancer for young healthy men [116]. Most
studies finding beneficial outcomes of α-tocopherol supplementation have largely focused
on the ESKD dialysis populations compared to healthy controls and found a reduced risk of
CVD, decreased oxidative stress and increased erythrocyte antioxidants SOD, Gpx and CAT
[117-119]. The use of α-tocopherol in CKD patients is not without controversy. Miller and
colleagues (2005) concluded that high-dose (≥400 IU/day) vitamin E supplementation may
increase all cause mortality which may be due to α-tocopherol displacing gamma-(γ)-toco‐
pherol and delta-(δ)-tocopherol in the body [120]. However, this study was highly criticized
owing to a bias in data analysis and numerous methodological flaws [121-130]. The appa‐
rent lack of clarity surrounding vitamin E supplementation and associated renal and cardio‐
vascular outcomes appears to stem largely from differences in trial design and failure to
specify the form of tocopherol used.

4.3. Coenzyme Q10 - Maintaining mitochondrial health

The heart and kidneys contain the highest endogenous levels of co-enzymes (Co)Q9 and
CoQ10 compared to all other organs [131, 132]. This is likely due to the respective reliance on
aerobic metabolism and high density of mitochondria in the intrinsic functioning cells from
these organs. It is imperative that endogenous CoQ10 levels are maintained to ensure mito‐
chondrial health, and this forms the rationale for CoQ10 therapy. CoQ10 is a fundamental lip‐
id-soluble component of all cell membranes including those enclosing subcellular
compartments. The physiological roles of CoQ10 act mostly within the mitochondria where it
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has three well-characterised functions: (1) the transfer of electrons from complexes I and II
to complex III along the ETC of the inner mitochondrial membrane and subsequent mem‐
brane polarisation and ATP generation [133, 134]; (2) the pro-oxidant generation of O2

•- and
H2O2 [135, 136]; and (3) the anti-oxidant quenching of free radicals [137]. The continual oxi‐
dation-reduction cycle, and existence of CoQ10 in three different redox states, explains its ac‐
tions as an important cellular redox modulator through its pro-oxidant and antioxidant
actions. The fully oxidised form of CoQ10, or ubiquinone, is able to accept electrons, primari‐
ly from NADH, to become fully reduced (ubiquinol - CoQ10-H2). The reduced form of CoQ10

is able to give up electrons, thereby scavenging free radicals. The intermediate of ubiqui‐
none and ubiquinol is the univalently-reduced ubisemiquinone (CoQ10-H+) which acts as a
pro-oxidant to form O2

•- and, subsequently, H2O2.

The major antioxidant role of CoQ10 is in preventing lipid peroxidation directly, and by in‐
teractions with α-tocopherol [138]. Ubiquinol is able to donate a hydrogen atom and thus
quench peroxyl radicals, preventing lipid peroxidation chain reactions. CoQ10 and α-toco‐
pherol co-operate as antioxidants through the actions of CoQ10-H2 restoring α-tocopheroxyl
back to α-tocopherol [109, 139]. However, the reactivity of α-tocopherol with peroxy radi‐
cals far exceeds that of ubiquinol with peroxyl radicals, suggesting that, in vivo, ubiquinols
do not act as antioxidants but regenerate the antioxidant properties of α-tocopherols [140].
This is in accordance with in vivo studies investigating the effects of CoQ10 supplementation
which have primarily found a limited antioxidant capacity. CoQ10, acting as a pro-oxidant in
all biological membranes including the Golgi, endosome/lysosome systems, as well as mito‐
chondria, has led to much criticism regarding the claimed antioxidant power of CoQ10 sup‐
plementation in humans [141]. Nonetheless, many in vitro studies demonstrate antioxidant
properties of CoQ10 in single cells, and benefits of CoQ10 supplementation in humans are at‐
tributed to its ability to maintain efficient mitochondrial energy metabolism and thus pre‐
vent mitochondrial dysfunction, rather than act as a direct cellular antioxidant. CoQ10

supplementation in vivo reduced protein oxidation in skeletal muscle of rats but had no ef‐
fect on mitochondrial H2O2 production in the kidney [142]. However, Ishikawa and collea‐
gues (2011) demonstrated a decrease in kidney O2

•- levels in hemi-nephrectomised rats on a
CoQ10 supplemented diet, and increased renal function compared with rats on a control diet
[143]. Recently, CoQ10 supplementation improved left ventricular diastolic dysfunction and
remodelling and reduced oxidative stress in a mouse model of type 2 diabetes [144]. CoQ10

supplementation in CVD patients also receiving statin therapy is becoming increasingly
popular due to the CoQ10-inhibitory actions of statins. CoQ10 levels decrease with age, but
there are no studies measuring endogenous CoQ10 levels in CKD or CVD patients and this
could prove vital in the identification of population where CoQ10 therapy may have benefi‐
cial outcomes.

4.4. Omega-3 poly-unsaturated fatty acids – Inflammation and oxidative stress

Inflammation and fibrosis are causes, as well as consequences, of oxidative stress [145, 146].
Direct targeting of inflammatory and fibrotic pathways with more specific modifying com‐
pounds presents a way to indirectly decrease oxidative stress in chronic pathologies. Long
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chain omega-3 PUFA, including docosahexanoic acid (DHA) and eicosapentanoic acid
(EPA), have been investigated in a large range of in vitro and in vivo models and found to
possess anti-inflammatory properties. Recently, omega-3 fatty acid treatment of peripheral
blood mononuclear cells from pre-dialysis CKD patients reduced the inflammatory markers
IL-6, IL-1β, tumor necrosis factor (TNF)-α and C-reactive protein to levels observed in
healthy subjects [147]. Although the beneficial effects of EPA/DHA are attributed to their an‐
ti-inflammatory properties, they are also known to enhance endogenous antioxidant defence
systems such as γ-glutamyl-cysteinyl ligase and glutathione reductase [148]. DHA and EPA
incorporate into the phospholipid bilayer of cells where they displace arachidonic acid.
Arachidonic acid can generate ROS through the COX2 and xanthine oxidase inflammatory
pathways. DHA/EPA administration to renal epithelial cells and macrophages suppresses
this pro-oxidant pathway [149]. Furthermore, chemoattractants derived from EPA are less
potent that those derived from arachidonic acid [150, 151]. Recently, in vitro studies deter‐
mined that EPA and DHA attenuated TNF-α-stimulated monocyte chemoattractant protein
(MCP)-1 gene expression by interacting with ERK and NF-κB in rat mesangial cells [152].
Earlier evidence had shown that EPA and DHA inhibit NF-κB expression by stimulating
PPARs in human kidney-2 cells in vitro [60]. In vivo studies have now confirmed an im‐
provement in kidney function and structure using EPA/DHA supplementation, with re‐
duced oxidative stress, inflammation and tubulointerstitial fibrosis through the reversal of
inflammatory and oxidant pathways [153, 154]. Recently, a highly beneficial outcome of fish
oil supplementation was found with heart failure patients with co-morbid diabetes [155].
Clinical studies have found fish oil treatment modulates lipid levels [156, 157], and has anti-
thrombotic [158, 159] and anti-hypertensive effects due to its vascular and endothelial ac‐
tions [160].

4.5. Allopurinol – A xanthine oxidase inhibitor

Allopurinol treatment aims is to inhibit xanthine oxidase to decrease serum uric acid and its
associated toxic effects. Allopurinol and its metabolite, oxypurinol, act as competitive sub‐
strates for xanthine oxidase. They enhance urinary urate excretion and block uric acid reab‐
sorption by urate transporters in the proximal tubule, thereby facilitating enhanced uric acid
excretion [161-163]. Allopurinol treatment of diabetic mice attenuated hyperuricaemia, albu‐
minuria, and tubulointerstitial injury [164]. Allopurinol may also have antioxidant activities
in addition to its enzyme inhibitory activities, by scavenging OH• as well as chlorine dioxide
and HOCl [165, 166]. Although later in vivo studies revealed that rat serum obtained after
oral administration of allopurinol did not contain allopurinol levels sufficient to scavenge
free radicals [167], inhibition of xanthine oxidase-dependent production of NO• and ROS
provides allopurinol an indirect mechanism for decreasing oxidative stress in hyperuricae‐
mic CKD patients. Interventional studies of use of allopurinol in renal disease have shown
improved uric acid levels, GFR, cardiovascular outcomes and delayed CKD progression. A
prospective randomised trial of 113 patients with GFR <60 ml/min/1.73m3 given allopurinol
100mg/d for 2 years found an increase in GFR of 1.31 ml/min/1.73m3 compared to the con‐
trols which decreased, and a 71% decreased risk of CVD [168]. Interestingly, Kanbay and
colleagues (2007) found that allopurinol at 300mg/d over 3 months improved GFR, uric acid
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and C-reactive protein levels but made no change to proteinuria [169]. Allopurinol given to
ESKD patients on hemodialysis reduced the risk of CVD by decreasing serum low density
lipoproteins, triglycerides and uric acid [170]. Large, long-term interventional studies inves‐
tigating kidney function in the CKD, and CVD, populations are needed to fully determine if
allopurinol is cardio- and reno-protective via anti-oxidant mechanisms.

4.6. Bardoxolone methyl - Targeting the Nrf/Keap1/ARE pathway

A different approach has been investigated by modulating pathways that respond to oxida‐
tive stress, rather than targeting ROS by directly increasing endogenous antioxidants. The
Nrf2/keap1/ARE pathway presents an exciting target to enhance the oxidant detoxifying ca‐
pabilities of cells. Bardoxolone methyl [2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid
(CDDO-Me)] is a potent activator of the Nrf2/keap1/ARE pathway and currently shows
promise for halting the progressive decline of GFR in type 2 diabetic CKD patients [171,
172]. Bardoxolone methyl is a triterperoid derived from natural plant products that has un‐
dergone oleanolic acid-based modification [173]. Its mechanism of action is largely un‐
known, however, it induces an overall antioxidative protective effect with anti-
inflammatory and cytoprotective characteristics [174, 175]. Bardoxolone methyl
administered to mice ameliorated ischemia-reperfusion induced acute kidney injury by
Nrf2-dependant expression of HO-1 and PPARγ [176]. Its mechanism may also reside in
regulating mitochondrial biogenesis given the involvement of PPARγ. A large international
study evaluating the full scale of bardoxolone methyl’s effects on CKD progression is in
progress, the results of which could determine if bardoxolone methyl should become a
standard treatment in renal disease patients. Concurrent benefits to CVD will undoubtedly
also be measured.

4.7. L-Carnitine – Improving cardiovascular health in dialysis

Carnitine is an essential cofactor required for the transformation of free fatty acids into acyl‐
carnitine and its subsequent transport into the mitochondria for β-oxidation [177]. This un‐
derlies its importance in the production of ATP for cellular energy. Acylcarnitine is also
essential for the removal of toxic fat metabolism by-products. Carnitine is obtained primari‐
ly from food stuffs, however it can be synthesised endogenously from the amino acid L-ly‐
sine and methionine [177]. L-carnitine supplementation primarily benefits ESRD patients on
hemodialysis and their associated cardiovascular complications, especially anemia. This is
primarily due to the well-described decrease in serum free carnitine in maintenance hemo‐
dialysis patients compared to non-dialysis CKD and healthy patients [178]. L-carnitine sup‐
plementation offsets renal anemia, lipid abnormalities and cardiac dysfunction in
hemodialysis patients [179]. Left ventricular hypertrophy regressed in hemodialysis patients
receiving 10mg/kg of L-carnitine immediately following hemodialysis for a 12 month peri‐
od. [180]. Other measures of cardiac morbidity such as reduced left ventricular ejection frac‐
tion and increased left ventricular mass also significantly improved following low dose L-
carnitine supplementation [181]. Benefits to the peripheral vasculature have also been
demonstrated by L-carnitine through a mechanism thought to involve an associated de‐
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crease in homocysteine levels [182]. Interestingly, oxidative stress is a major characteristic of
hemodialysis patients [183].

As well as the physiological role of L-carnitine in mitochondrial fatty acid synthesis, oxidant
reducing capabilities have also been demonstrated and may underlie the health benefits of
L-carnitine therapy in CKD and CVD. L-carnitine infusions significantly improved blood
urea nitrogen (BUN) and creatinine levels in a 5/6 nephrectomy model of CKD with a con‐
comitant increase in plasma SOD, Gpx, CAT and GSH, and decrease in the oxidative stress
marker malondialdehyde [184]. Ye et al., (2010) suggest that L-carnitine attenuates renal tub‐
ular cell oxidant injury and subsequent apoptosis by reducing mitochondrial-derived ROS
[97]. They suggest that this anti-apoptotic mechanism may also explain the demonstrated re‐
duction in morbidity from cardiomyopathies in L-carnitine supplemented hemodialysis pa‐
tients.

4.8. L-Arginine - Maintaining endothelial function

The premise of L-arginine supplementation is to maintain NO signalling and thereby main‐
tain vascular endothelial cell function. L-arginine is a physiological precursor to NO and its
availability and transport determine the rate of NO biosynthesis. CKD patients most often
present with atherosclerosis, thromboembolitic complications, and endothelial dysfunction,
primarily due to altered endothelium-dependant relaxation factors [185]. It is believed that
the impaired NO synthesis, common in CKD individuals, contributes significantly to their
disease pathogenesis [186]. L-arginine synthesis occurs in the liver and kidney, with the kid‐
ney functioning to maintain homeostatic plasma levels since the liver processes NO from the
diet [187]. The addition of L-aspartic acid or L-glutamic acid with L-citrulline and arginiro‐
succinic acid synthase as the rate determining enzyme forms L-arginine [188]. The proximal
tubular cells account for the majority of kidney NO synthesis [189, 190], thus kidney damage
and atrophy, a primary corollary of CKD, results in decreased synthesis of L-arginine. The
majority of research demonstrates decreased levels of NO production in CKD and CVD pa‐
tients [191-193]. However, some research suggests NO activity increases [194, 195]. These
disparate findings highlight the need to measure L-arginine levels in patients before com‐
mencing L-arginine supplementation. Rajapaske et al. (2012) demonstrated impaired kidney
L-arginine transport and a contributing factor to hypertension in rats, irrespective of an un‐
derlying renal disease [196]. During a state of oxidative stress, L-arginine supplementation
was shown to decrease MDA, myeloperoxidase and xanthine oxidase and increase gluta‐
thionine in both heart and kidney tissue from rats [197]. As such, L-arginine supplementa‐
tion represents an approach to restoring a dysregulation of NO signalling and subsequent
endothelial dysfunction in both chronic kidney and heart diseases.

4.9. Combination antioxidants

Compounds commonly used to alleviate oxidative stress exhibit different antioxidant ac‐
tions, and so there exists the potential for different antioxidants to work together to improve
whole cell and organ function through a targeted polypharmaceutical approach to decrease
oxidative stress. However, most clinical studies investigating the effects of combination anti‐
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oxidants have demonstrated confounding results. Mosca et al., (2002) demonstrated that dai‐
ly intake of NAC 100mg, L-carntine 100mg, selenomethionine 0.05mg, α-tocopherol 10mg,
CoQ10 100mg and α-lipoic acid 100mg successfully increased plasma CAT, Gpx and total an‐
tioxidant capacity whilst decreasing lipid peroxides and ROS generation by lymphocyte mi‐
tochondria [198]. However, this trial only included healthy participants and cannot be
extrapolated to the CKD and CVD populations.

In a murine model of diabetic nephropathy, a major cause of CKD with associated CVD, the
beneficial effects of NAC, L-ascorbic acid (vitamin C) and α-tocopherol were demonstrated
[199]. Daily supplementation for 8 weeks decreased lipid peroxidation, BUN, serum creati‐
nine and blood glucose, mainly due to a reduction in the inflammatory response induced by
hyperglycemia. In comparison, a prospective trial investigating oral supplementation of
mixed tocopherols and α-lipoic acid in stage 3 and 4 CKD patients has revealed disappoint‐
ing results. Over 2 months, supplementation did not reduce biomarkers of oxidative stress
(F2-isoprostanes and protein thiol concentration) or inflammation (CRP and IL-6). The short
period of time (2 months) of the intervention may explain this result and longer trials need
to be carried out. The inclusion of vitamin E in these interventions has polarized discussion
on the outcomes, because of its negligible benefits when cardiovascular outcomes were
measured [91, 92, 200] and also because of contraindications, discussed previously. Despite
this, long-term treatment in with the antioxidants vitamin C, vitamin E, CoQ10 and selenium
has been shown to reduce multiple cardiovascular risk factors [201]. Recently, multiple anti‐
oxidants in combination with L-arginine have shown promise in animal models of CKD and
associated CVD. Korish (2010) has demonstrated in a 5/6 nephrectomy CKD model that L-
arginine improved the effects of L-carnitine, catechin and vitamins E and C on blood pres‐
sure, dyslipidemia, inflammation and kidney function [84].

5. Conclusion

CKD is a progressive disease with increasing incidence, having very little success in current
conventional therapies once CKD reaches stage 4. Stages 2 and 3 are best to target to slow or
stop further development of the disease. There is an almost inseparable connection between
CKD and CVD, with many patients with CKD dying of the cardiovascular complications be‐
fore renal failure reaches its fullest extent. Oxidative stress and inflammation are closely in‐
terrelated with development of CKD and CVD, and involve a spiralling cycle that leads to
progressive patient deterioration. Given the complex nature of oxidative stress and its mo‐
lecular pathways, antioxidants may need to be given as a polypharmacotherapy to target
each aberrant pathway, with the aim of reducing the burden of these chronic diseases. It is
vital for the progression of antioxidant therapy research in CKD and CVD that measures of
oxidative stress are compared with pathophysiological outcome in the diseases, especially in
connection with antioxidant therapies that may be delivered with or without more conven‐
tional CKD therapies.
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