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1. Introduction 

Historically, the development of highly active olefin polymerization catalysts has been a 

trigger for creating new polymers which impact on our daily lives in countless beneficial 

ways [1-5]. A recent instance is the development of group 4 metallocene catalysts that 

exhibit very high ethylene polymerization activities [2,3]. Based on the highly active group 4 

metallocene catalysts, high performance linear low-density polyethylene (LLDPE), isotactic 

poly-(propylene) (iPP) and syndiotactic polystyrene (sPS) etc., have been developed [6]. 

Therefore, much effort has been directed towards the development of highly active 

catalysts, following the group 4 metallocene catalysts. In consequence, quite a few highly 

active catalysts based on both early and late transition metal complexes have been 

developed [7-14]. There are, however, only a few examples of titanium complexes 

displaying high ethylene polymerization activities [15-19], though titanium metal is the 

major player in highly active heterogeneous Ziegler-Natta catalysts. Accordingly, further 

researches have been conducted on titanium catalysts with the intention of developing the 

highly active titanium catalysts and applying them to the polymerization of ethylene. 

As a result of ligand-oriented catalyst design research, Sandaroos and coworkers [19-21] 

described the catalytic performance of new titanium complexes 1–9 containing 

aminotropone chelate ligands for ethylene polymerization (Scheme 1). The following 

subsections detail the results observed in these works. 

2. Search for acquiring the fundamentally active ligand 

Among the typical catalyst components, ligands play a predominate role in the 

polymerization process. During electron exchange between metal and monomer, ligands help 

the metal to balance its electron density with receiving electrons from the coordinated 
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ethylene through the metal and releasing electrons whenever required to facilitate the 

ethylene insertion process (Figure 1). Accordingly, to obtain a highly active catalyst, the 

existence of ligands with a notable balance between their electron donating and withdrawing, 

evidenced by calculation of energy gap between the HOMO (the highest occupied molecular 

orbital) and LUMO (the lowest unoccupied molecular orbital) of them, is a predominate 

requirement [22]. For comparison, the energy gap between the HOMO and LUMO of three 

well-known ligands, namely phenoxy-imine [15,23-29], pyrrolide-imine [15,27-29], indolide-

imine [30] and the new aminotropone chelate ligand [19] was studied using density-

functional theory (DFT). Because of the reasonable energy gap between the HOMO and 

LUMO of aminotropone (2.6 eV), it was theoretically offered as a fundamentally active ligand 

(Scheme 2). 

 

 
 

Catalyst R' R Refrence(s) 

1 phenyl H 19-21 

2 2,6-dimethylphenyl H 19 

3 cyclohexyl H 19 

4 4-(t-Buyl)cylohexyl H 19 

5 cyclooctyl H 19 

6 Ethyl H 19 

7 isoporpyl H 19 

8 phenyl methyl 19,20 

9 phenyl t-Butyl 19,20 

Scheme 1. Titanium (IV) complexes based on anilinotropone ligands 1–9. 

 

 

Figure 1. Presentation of the olefin coordination on the transition metal [19]. 
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Scheme 2. Energy gap (eV) between HOMO and LUMO of aminotropone compared to those related to 

phenoxyimine, pyrrolide-imine and indolideimine [16,19]. 

3. Substituent effects  

This section concentrates on the steric features of bis(aminotropone)Ti complexes compared 

with those of bis(phenoxyimine) Ti complexes (Ti-FI catalysts). Unlike Ti-FI catalysts, which 

require sterically demanding substituents in ortho position to the phenoxy oxygen atom in 

order to exhibit high ethylene polymerization activity [23-26], the activity of bis(pyrrolide-

imine) Ti catalysts (Ti-PI) decreases with more congestion adjacent to the anionic N of the PI 

ligand because there is not enough space for monomer insertion [16]. The steric bulk in Ti-FI 

catalysts is thought to afford effective ion separation between the cationic active species and an 

anionic co-catalyst, resulting in enhancement of the catalytic activity. Accordingly, 

bis(aminotropone) Ti complexes 1, 8 and 9 with a series of subtituents (H, methyl and t-Butyl) 

adjacent to the carbonyl were prepared and examined as ethylene polymerization catalysts 

(Figure 2; Table 1, entries 1, 37 and 40) [19]. The polymerization results provided information on 

the potential of bis(aminotropone) Ti complexes for ethylene polymerization, and additional 

information about the effect of the substituent adjacent to the carbonyl on catalytic performance. 

 

Figure 2. Investigation of substituent effects in bis(aminotropone) Ti complexes in comparison with a 

typical Ti-FI catalyst 10 [19]. 

The bis(aminotropone) Ti complex 9, which possesses the t-Butyl group, proved to be a poor 

catalyst for ethylene polymerization under the conditions employed (activity < 100 Kg PE 

mol cat-1 h-1). Instead, the bis(aminotropone)Ti complex 1 with an H atom adjacent to the 
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carbonyl formed polyethylene (PE) with Mw 98000 and a high activity of 8000 Kg PE mol  

cat-1 h-1. Additionally, catalyst 8, which possesses the methyl group, exhibited almost 

moderate activity (activity 3520 kg PE mol cat-1 h-1). These facts show that, for 

bis(aminotropone) Ti complexes 8 and 9, the methyl and t-Butyl groups in close proximity to 

the carbonyl evidently provide unfavorable steric hindrance to ethylene polymerization. 

This is in sharp contrast to Ti-FI catalysts, which require steric congestion near the 

polymerization center in order to display high activity. The activity obtained with complex 1 

(8000 Kg PE mol cat-1 h-1) is extremely high for a Ti complex with no cyclopentadienyl (Cp) 

or PI ligand(s) [16,23-26]. In fact, the activity exceeds that displayed by Ti-FI catalyst 10 

under analogous conditions (3480 Kg PE mol cat-1 h-1) (Figure 2) [22]. Since the substituent 

on the amine-N is situated near the active site, the bis(aminotropone)Ti complexes 1–7, 

containing three types of substituents, aromatic ring (catalyst 1-2), aliphatic ring (catalyst 3-5) 

and alkyl groups (catalyst 6-7) on amine-N were prepared and evaluated, with 

methylaluminoxane (MAO) activation, for the polymerization of ethylene to find a correlation 

between the N-aryl substituent and ethylene polymerization behavior. The polymerization 

results are presented in Table 1 which also includes the results for Ti-FI catalyst 10, Cp2TiCl2 

and Cp2ZrCl2 as references (compare entries 1, 7, 12, 17, 35-36 and 40-43). The basic trend 

observed is that an increase in the steric bulk of the substituent in each of the three types of 

catalyst enhances catalytic activity. A reasonable hypothesis is that the sterically more 

encumbered substituent on the amine-N part of bis(aminotropone) Ti complexes induces more 

effective ion separation between the cationic active species and an anionic cocatalyst. In 

addition, it gives better steric protection to the anionic N from Lewis acidic compounds 

present in a polymerization medium, leading to increased catalytic activity. 

Comparison of catalysts 1-2 with 3-5 revealed dramatically increased activities for 3-5, 

which is thought to be due to a good match between electronic and steric effects of them. 

Therefore, it can be concluded that the catalytic activity is influenced by both electronic and 

steric effects. In other words, a good integration between the steric and electronic properties 

of the catalyst is needed to reach the highest activities. It should be noted that catalyst 5, 

which includes a cyclooctyl group on the amine-N, gives an activity of 27200 Kg PE mol cat-1 

h-1, which compares favorably with Cp2TiCl2 or Cp2ZrCl2 combined with MAO. 

Additionally, in each of catalysts presented in Table 1, sterically more encumbered 

substituents on the amine-Ns generally afford higher-molecular-weight PEs (compare 

entries 1, 7, 12, 17 and 35-36). The steric congestion provided by the substituent, which 

probably reduces the rate of chain transfer more significantly than that of chain propagation, 

is responsible for the enhancement of the product molecular weight [30]. 

4. Effects of polymerization conditions 

Ethylene polymerization behavior using catalysts 3, 4 and 5 were studied under different 

reaction times (Table 1, entries 20-34) and temperatures (entries 5-19). The highest activity of 

catalyst 5 was obtained at 10 °C (31200 Kg PE mol cat-1 h-1). However, the highest activity of 

catalysts 4 and 3 occurred at about 35 °C (24500 and 18200 Kg PE mol cat-1 h-1, respectively). 

The reduction in catalyst activity in the polymerization performed at the lower and upper 
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temperature than the optimum value could be attributed to a low propagation rate and 

catalyst irreversible deactivation respectively. Ethylene polymerization carried out at 

different reaction times showed catalyst 5 had a shorter lifetime, but catalysts 3 and 4 

showed more stable activities during the polymerization. 

Additionally, the activity of the catalysts 1 and 8 and Mw values of resultant polymers 

increased with increasing the monomer pressure (entries 1-3 and 37-39). This behavior is 

mainly due to the high concentration of the monomer close to the catalyst active centers. 

As could be predicted, as molar ratio of [Al]/[Ti] increased, activity of catalysts increased, 

but Mw values of resultant polymers decreased [19-21].    

The large amount of hydrogen concentration could slightly increase the activity of the 

catalyst 1, 8 and 9 (Figure 3) [20]. A reasonable explanation for this effect might be increase 

of homogeneity of polymerization system and return of catalytically less reactive species, 

such as those resulting from 2,1-insertions, to the catalytic cycle through their fast 

hydrogenation [20]. 

Moreover, as it can be seen in Figure 4 [20], polydispersity and Mn of the polymer obtained 

using the catalyst 1 increases with time. 

5. DFT studies of catalyst 

Since a bis(aminotropone) Ti catalyst contains a pair of non-symmetric bidentate ligands, it 

potentially displays five isomers (A–E) arising from the coordination modes of the two 

ligands in an octahedral geometry (Scheme 3) [19]. DFT studies suggested that 

bis(aminotropone)Ti catalyst 1 assumed isomer A, with a trans-carbonyl-Os, cis-amine-Ns 

and cis-Cls disposition. Additionally, DFT calculations were performed on a methyl cationic 

complex (an initial active species generated from bis(aminotropone) Ti catalyst 1 with MAO) 

in the presence of ethylene, to obtain information about the structure of the catalytically 

active species (Figure 5) [19] .The calculations revealed that an ethylene-coordinated cationic 

species assumed an octahedral geometry with a trans-carbonyl-Os, cis-amine-Ns and cis-

Me/coordinated ethylene disposition, which fulfills the pivotal requirement for a high 

efficient catalyst, i.e., a growing polymer chain and a coordinated-ethylene group in the cis-

position. An inspection of the calculated structure indicated that the phenyl group on the 

amine-N was located in close proximity to the active site, suggesting the substituent on the 

amine-N is the strategic substituent vis-a`-vis catalyst design. 

As discussed, unlike catalyst 1, catalysts 8 and 9, with the methyl and t-Butyl groups 

adjacent to the carbonyl-Os, display very low productivity in the polymerization of 

ethylene. The calculated structure of methyl cationic complexes originating from 1 and 9 is 

displayed in Figure 6 [19]. The t-Butyl group of complex 9 seems to provide steric 

congestion near the polymerization center, which diminishes the rate of chain propagation. 

This is probably because it obstructs ethylene from gaining access to the active site and 

subsequent insertion into the Ti-carbon bond. On the other hand, DFT studies show that the 

active species derived from bis(aminotropone) Ti catalyst 1 possesses higher electrophilicity  
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Entry Cat. 
Cat. 

(µ mol)
MAO

(mmol)
Time (min) T (°C) P (bar)

TOF a
Mv 

(×103) b 
Refs. 

1 1 1 1.25 15 25 1 8000 260 19-21 
2 1 1 1.25 15 25 3 9100 450 20 
3 1 1 1.25 15 25 5 9800 630 20 
4 2 1 1.25 15 25 1 9650 530 19 
5 3 1 1.25 15 0 1 10450 2600 19 
6 3 1 1.25 15 10 1 11800 2580 19 
7 3 1 1.25 15 25 1 15200 2300 19 
8 3 1 1.25 15 35 1 18200 1860 19 
9 3 1 1.25 15 45 1 18000 1740 19 

10 4 1 1.25 15 0 1 14650 3500 19 
11 4 1 1.25 15 10 1 18000 3120 19 
12 4 1 1.25 15 25 1 22600 2950 19 
13 4 1 1.25 15 35 1 24500 2560 19 
14 4 1 1.25 15 45 1 14650 2240 19 
15 5 1 1.25 15 0 1 26400 5620 19 
16 5 1 1.25 15 10 1 31260 4950 19 
17 5 1 1.25 15 25 1 27200 3540 19 
18 5 1 1.25 15 35 1 21100 3140 19 
19 5 1 1.25 15 45 1 14560 2800 19 
20 3 1 1.25 5 25 1 5800 - 19 
21 3 1 1.25 10 25 1 10400 - 19 
22 3 1 1.25 15 25 1 15200 2300 19 
23 3 1 1.25 25 25 1 22500 - 19 
24 3 1 1.25 40 25 1 19500 - 19 
25 4 1 1.25 5 25 1 7200 - 19 
26 4 1 1.25 10 25 1 13600 - 19 
27 4 1 1.25 15 25 1 22600 2950 19 
28 4 1 1.25 25 25 1 26500 - 19 
29 4 1 1.25 40 25 1 17300 - 19 
30 5 1 1.25 5 25 1 8200 - 19 
31 5 1 1.25 10 25 1 15240 - 19 
32 5 1 1.25 15 25 1 27200 3540 19 
33 5 1 1.25 25 25 1 21550 - 19 
34 5 1 1.25 40 25 1 10500 - 19 
35 6 1 1.25 15 25 1 410 285 19 
36 7 1 1.25 15 25 1 680 340 19 
37 8 1 1.25 15 25 1 3520 271 19,20 
38 8 1 1.25 15 25 3 3750 320 20 
39 8 1 1.25 15 25 5 4500 390 20 
40 9 1 1.25 15 25 1 <100 352 19,20 
41 10 1 1.25 15 25 1 3480 368 18 
42 Cp2TiCl2 1 1.25 15 25 1 16700 1253 18 
43 Cp2ZrCl2 1 1.25 15 25 1 20000 1000 18 

 

kg PE mol cat-1 h-1, b) Calculated from intrinsic viscosity 

Table 1. Ethylene polymerization results with catalysts 1–9, Ti-FI catalyst 10, Cp2TiCl2 and Cp2ZrCl2 
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Figure 3. Influence of H2 concentrations on the catalyst activity. Polymerization conditions:                 

[Al]/[Ti] = 1250, polymerization time = 15 min, temperature = 25 °C, monomer pressure = 1 bar,       [Ti] = 

1 mmol, toluene = 250 mL [20]. 

 

 

Figure 4. PDI and Mn versus time for the polymer obtained by catalyst 1. Polymerization conditions: 

[Al]/[Ti] = 1250, temperature = 25 °C, monomer pressure = 1 bar, [Ti] = 1 µmol, toluene =250 mL. Mn and 

PDI were obtained from GPC [20]. 
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at the Ti center compared with that of Ti-FI catalyst 10 (Mulliken charge of the Ti in atomic 

unit, catalyst 1=2.212 [19], catalyst 10=2.005 [16]). Considering that the active species derived 

from a typical metallocene (Cp2TiCl2) has a Mulliken charge (Ti) of 1.308 [16], 

bis(aminotropone) Ti catalyst 1 exhibits particularly high electrophilicity. Therefore, a 

bis(aminotropone) Ti catalyst generates a catalytically active species that has higher 

electrophilicity than a Ti-FI catalyst. 

 

Scheme 3. The relative formation energies of the isomers [19]. 

 

Figure 5. Calculated structure of ethylene-coordinated cationic species derived from bis(aminotropone) 

Ti catalyst 1. The hydrogen atoms are omitted for clarity [19]. 
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Figure 6. Calculated structures of cationic active species generated from catalyst 1 (A) and catalyst 9 

(B). Some of the hydrogen atoms are omitted for clarity [19]. 

6. Nickel (II) catalysts based on anilinotropone ligands 

6.1. Introduction 

Olefin polymerization catalysts based on early-metal metallocene complexes were 

introduced nearly two decades ago and are seeing increasing commercial utilization [31-33]. 

Their single-site nature makes them attractive for ligand tailoring, and as a result these 

catalysts have been modified in innumerable ways to enhance polymerization activity, 

improve catalyst lifetime, increase the α-olefin/ethylene reactivity ratio in 

copolymerizations, and control microstructures of polypropylene and other poly-α-olefins 

[31-33]. A drawback of metallocene and classical Ziegler catalysts is the extreme oxophilicity 

of the early-metal center. This oxophilicity renders metallocenes inactive toward most 

functionalized monomers and highly sensitive to polar solvents and impurities. The 

sensitivity of metallocenes to polar substituents is largely responsible for an increase in 

interest in late-transition-metal complexes as olefin polymerization catalysts over the past 

several years [34-37]. Late-metal catalysts complement early-metal catalysts in several ways. 

(1) Polymers exhibiting quite different microstructures are frequently obtained [36,38-41]. 

This arises from the ability of the metal to walk along the growing polymer chain via a series 

of β-elimination and reinsertion reactions which can occur at rates competitive with or faster 

than olefin insertion. This process results information of branched polymers from ethylene 

and “chain-straightened” polymers from α-olefins [36,38]. (2) Certain monomers such as 

trans-2-butene, which cannot be polymerized by early-metal systems, can be successfully 

polymerized with late-metal systems [42]. (3) Many late-metal catalysts are compatible with 

protic solvents and nucleophilic impurities. Water compatibility has led to successful 

emulsion polymerization of ethylene [43-46]. (4) Expanded functional group tolerance has 

permitted the copolymerization of alkyl acrylates (polar monomers) with ethylene and α-

olefins (non polar monomers) [47-50]. 

Much of efforts has focused on cationic systems of α-diimine ligands (Figure 7) as well as 

catalysts incorporating closely related neutral ligands [38,40-42,48,49,51-53]. The α-diimine 
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Ni complexes are very reactive toward ethylene and α-olefins and, as noted above, produce 

polymers with unique microstructures. The cationic Ni catalysts are electrophilic and 

sensitive to protic solvents. Functional group compatibility is diminished relative to Pd 

analogues; however, it should be noted that copolymerization of ethylene and alkyl 

acrylates has been achieved at high ethylene pressures (> 500 psig) and temperatures above 

80 °C [47,54]. 

 
Catalyst 11; M = Ni and Pd 

Figure 7. The α-diimine complexes [38,40-42,48,49,51-53]. 

In view of the high sensitivity of the cationic Ni and Pd catalysts, there has been substantial 

interest in developing neutral Ni catalysts to overcome these limitations. Several examples 

of neutral Ni catalysts based on SHOP-type (Shell Higher Olefin Process) ligands have been 

reported, although productivities and molecular weights are often low [45,50,55,56]. Neutral 

Ni catalysts modeled after α-diimine complexes, containing bulky ortho-disubstituted 

arylimine functionality, have been reported. Catalysts based on salicylaldimines (Figure 8), 

have been described by both the DuPont [57] and the Grubbs groups [58,59]. The most 

active systems contain either electron-withdrawing nitro substituents in the aromatic ring 

[57] or bulky substituents at C-3, with a 9-anthracenyl group being most effective [58,59]. In 

the latter case, activities of 1.3 ×105 kg PE mol Ni-1 h-1 and lifetimes in excess of 6 h have been 

observed at 45-50 °C [58].  

 

Figure 8. The salicylaldimines catalysts [57-59]. 

Brookhart [60,61] designed a ligand which incorporated the key elements of the six-

membered chelate salicylaldimine ligand but which would lead instead to a five-member 

chelate. He chose for this purpose the 2-anilinotropone moiety because it contained the 

desired anionic N,O chelate, a hindered N-aryl group, and complete conjugation between 
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the N and O. Several variations can be introduced by using hindered or electron-poor N-

aryl group and modified tropone skeleton. This family of ligands were synthesized using 

the palladium catalyzed cross-coupling of aniline with 2-triflatotropone [60-62]. The 

corresponding highly neutral nickel catalyst is almost high active in ethylene 

polymerization and it does not require an activator (Figure 9).  

 

Figure 9. Anilinotropone ligands (a) and Ni (II) catalysts based on Anilinotropone (b) [60,61]. 

To determine the effects of varying the ortho-aryl substituents on ethylene polymerization, 

in an effort a series of anilinotropone ligands and corresponding nickel complexes was 

synthesized (Scheme 4). Among these catalysts, they incorporating alkyl substituents at the 

2- and 6-positions of the N-aryl ring generated high-molecular weight polyethylenes with 

monomodal molecular weight distributions of ca. 2 (or less at low temperatures). 

Under optimized conditions (Table 2), catalyst 14 bearing isopropyl substituents at the 2- 

and 6-positions of the N-aryl ring can produce PE, without the addition of a cocatalyst, with 

a TOF of 8.8 ×103 kg of PE mol Ni-1 h-1 in a 10 min run. Additionally, 14 produced PE with a 

substantially higher Mn when compared with the salicylaldimino type bearing the anthryl 

substituent in the ortho position (89.6 vs. 54 kg mol-1). Nevertheless 14 showed a short 

lifetime when compared to 2-salicylaldimino type bearing the anthryl substituent [62].  

As can be seen in Table 3, with the exception of the run at 40 °C, the Mn value of the 

resultant polymers decreases with increasing temperature. The degree of branching steadily 

increases from 40 to 100 °C (8-67 branches per 1000 carbon atoms). This implies that the 

lower molecular weights obtained at higher temperatures are the result of an increase in the 

ratio of the chain transfer rate relative to the chain propagation rate, a normal feature of 

such polymerizations. The catalyst TOF is at a maximum at 80 °C. Ethylene pressure has 

also been shown to have dramatic effects on the resultant PE. Increasing the pressure from 

1.01 to 41.34 bar at 80 °C caused a decrease in the branching number from 113 to 41 branches 

per 1,000 C [62]. 

Unlike salicylaldimine catalysts whose activates dramatically increase [58,63], no significant 

changes take placed in TOF, Mn, PDI, or branching numbers for catalyst 14 in the presence 

of added PPh3. The observation that scavengers do not increase turnover numbers suggests 

that under the reaction conditions PPh3 is essentially fully dissociated from the active nickel 

(a)  (b)
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catalyst. Additionally, addition of polar solvent to the polymerization media decreased 

catalytic activity, but didn’t change branching numbers [62]. 

 

 
 

Catalyst R1-R5

13 R1 = R4 = R5 = H; R2 = R3 = Me 

14 R1 = R4 = R5 = H; R2 = R3 = iPr 

15 R1 = R4 = R5 = H; R2 = R3 = tBu 

16 R1 = R4 = R5 = H; R2 = Me; R3 = tBu 

17 R1 = R4 = R5 = H; R2 = R3 = Ph 

18 R1 = R4 = R5 = H; R2 = R3 = Cl 

19 R1 = R4 = R5 = H; R2 = R3 = Br 

20 R1 = H; R2 = R3 = R4 = R5 = F 

21 R1 = R2 = R3 = R5 = H; R4 = CF3 

22 R1 = R3 = R4 = R5 = H; R2 = Me 

23 R1 = R4 = R5 = H; R2 = Me; R3 = CF3 

24 R1 = R4 = R5 = H; R2 = R3 = F 

25 R1 = Ph; R2 = R3 = iPr; R4 = R5 = H 

26 R1 =  1-naph; R2 = R3 = iPr; R4 = R5 = H 

Scheme 4. Ni (II) catalysts based on anilinotropone [62]. 

Replacement of the standard 2,6-diisopropyl substituents on the aryl group with 2,6-

dimethyl (13), 2,6-dichloro (18), 2,6-dibromo (19), and 2-methyl-6-trifluoromethyl(23) 

substituents had little effect on productivity. A slight increase in TOF was observed for the 

2,6-diphenyl-substituted catalyst (17). Significant reduction in TOF was observed for the 2-

methyl-6-t-Butyl (16), 2-methyl-(22), 2-t-Butyl-(15), and 2,3,4,5,6-pentafluoro-substituted (20) 

catalysts. Molecular weights generally increase with increasing steric bulk of the ortho 

substituents (Table 2) [62]. 

Substitution of the 2-(2,6-diisopropylanilino)tropone ligand with either phenyl (25)  

or naphthyl (26) groups resulted in a small increase in productivities and lifetimes at  

80 °C and 13.78 bar. However, at 40 °C these catalysts exhibited much longer lifetimes  
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(t1/2›1 h) and higher total turnover numbers could be achieved relative to 80 °C 

polymerizations [62].  

 

Catalyst P (bar) T (°C) TOF b Mw Mw/Mn Br/1000 C 

13 13.78 80 5424 73.1 1.7 61 

14 13.78 80 8800 165.6 1.8 61 

16 13.78 80 1014 230.0 2.0 73 

17 13.78 80 10038 171.0 1.8 53 

18 13.78 80 3924 20.0 2.0 53 

19 13.78 80 4152 41.8 1.9 56 

20 13.78 80 1152 4.8 3.0 49 

21 13.78 80 936 112.8 2.4 57 

23 13.78 80 6924 167.2 1.9 59 

25 13.78 80 2338 184.8 2.1 63 

26 13.78 80 2461 151.2 2.7 62 

a  Polymerization time = 10 min , Catalyst = 5.2 µmol; b  Kg PE mol cat-1 h-1 

Table 2. Selected ethylene polymerization data of the Ni (II) catalysts based on anilinotropone a [62] 

Molecular weights of the polyethylenes increased with pressure, which suggests that chain 

transfer at least in part occurs through classical β-H elimination rather than chain transfer to 

monomer. The catalyst decay product is the Ni (II) bis-ligand complex, whose formation 

must be initiated by reductive elimination of the ligand from a Ni (II) species [62]. 

Similar to other natural nickel ethylene polymerization catalysts which have already  

been reported for oligomerization of α-olefins [64,65], oligomerization of 1-hexene at 40  

and 60 °C by catalyst 14 led to low yields of oligomers with degrees of polymerization of 21 

and 16, respectively [62]. Branching numbers are 147 and 152 branches per 1000 carbon 

atoms, indicating a very minor amount of chain straightening via a 2,1-insertion and  

chain walking [39]. 

Salicylaldimine-based neutral Ni (II) catalyst bearing electron-withdrawing NO2 group 

displayed high activity for polymerization of ethylene and resulted in high MW polymer 

with fewer branches than the unnitrated catalysts [63]. Accordingly, Brookhart [66] 

prepared anilinotropone-based neutral Ni (II) catalysts 27-29 (Scheme 5) to examine the 

effect on catalyst activity and stability of adding strong electron-withdrawing NO2 groups to 

the tropone and N-aryl ring. 

As can be seen in Table 4, in comparison with unnitrated catalyst  13, the addition of two 

NO2 groups dramatically enhances catalytic activity of 27 at 80 °C (entries 6 vs 4) from a 

TOF of 5423 to 27428 while the MW of PE were comparable. 
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entry 
Cat. 

(µmol) 
P (psig) T (°C) TOF b 

Mn 

(×103) 
Mw/Mn Br/1000 C 

1 14.8 400 60 5554 57 2.8 64 

2 7.6 400 40 947 204 2.8 8 

3 7.6 400 60 5368 292 2.0 27 

4 7.6 400 80 9000 119 1.8 49 

5 7.6 400 100 3157 61 1.9 67 

6 5.2 1 atm 80 173 6.7 2.0 113 

7 5.2 50 80 4615 50 1.7 90 

8 5.2 100 80 7629 63 1.9 76 

9 5.2 200 80 10615 90 1.8 61 

10 5.2 200 80 8769 92 1.8 61 

11 5.2 400 80 8192 104 2.0 45 

12 5.2 600 80 3000 120 2.0 41 

13 5.2 200 80 8653 78 1.9 66 

14 5.2 400 80 12576 108 1.9 48 

15 5.2 600 80 10153 111 2.0 43 

a Polymerization time = 10 min, b Kg PE mol cat-1 h-1 

Table 3. Ethylene polymerization with 14 a [62] 

 
 

Catalyst G, G´ and R R

27 R = Me, G = 5,7-NO2, G´ = Me H 

28 R = iPr, G = 5,7-NO2, G´ = H H 

29 R = iPr, G = 5,7-NO2, G´ = NO2 H 

Scheme 5. Nitrated catalysts based on anilinotropone 27-29 [66] 

Moreover, catalyst 27 exhibited higher thermal stability than salicylaldimine-based Ni (II) 

catalysts [58] as well as higher lifetime than catalyst 13 (entries 3, 4 vs. 5, 6). As the 

polymerization temperature was increased from 60 °C to 80 °C, the polymer MW decreased 

while catalytic activity and branching increased for catalyst 27. 

Similar to 27, the addition of two or three NO2 groups led to dramatically enhanced catalytic 

activities of diisopropyl analog 28 and 29, with a TOF of 80666 for 28 (entry 9) and 39600 for 

29 (entry 10) compared with unnitrated parent catalysts 13 and 14. 
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entry Cat. Cat. (µmol) t (min) T (°C) ToF b MW Mw/Mn Br/1000 C 

1 27 5.5 60 60 800 289000 2.9 10 

2 27 6.9 10 60 2260 230000 2.7 8 

3 27 2.0 60 80 9650 128000 2.4 18 

4 27 2.1 10 80 27428 65000 - 16 

5 13 7.6 30 80 1657 - 1.7 - 

6 13 5.2 10 80 5423 73000 - 61 

7 28 0.9 10 60 4000 - - - 

8 28 0.45 60 80 6666 - - - 

9 28 0.9 10 80 80666 - - 2 

10 29 0.5 10 80 39600 - - 7 

11 14 5.2 60 80 1769 162000 1.8 61 

12 14 5.2 10 80 8769 165000 1.8 61 

a Ethylene pressure  = 13.78 bar. b Kg PE mol cat-1 h-1 

Table 4. Ethylene polymerizations with 27-29 a [66] 

All PEs produced by nitro-substituted catalysts 27-29 had monomodal GPC traces (PDIs 

between 2 and 4) and lower branching densities than those of parent catalysts 13 and 14 

(entry 4 vs 6 and entries 9,10 vs. 12).  

Catalyst 27 was able to incorporate vinyltrimethoxysilane or 1-hexene into polyethylene, but 

at a reduced rate compared to ethylene homopolymerization [66]. 1-Hexene or 1-octene 

oligomerization was also studied with catalysts 27 or 28 [66]. The oligomers were produced 

with low activities and lower amount of branching than expected (for 1-hexene, the 

expected number of branches after 2,1-insertion without chain walking is 166 

branches/1000C and for 1-octene is 125 branches/1000C), indicating minor chain walking of 

catalysts during oligomerization. 

7. The mechanistic investigation of the polymerization of ethylene 

Combined DFT/stochastic studies were undertaken on the mechanism of ethylene 

polymerization catalyzed by the neutral Ni-anilinotropone catalysts [67]. Chain propagation 

and isomerization as well as influence of reaction conditions on the branching formation 

were investigated. Similarly to the case of nickel-salicylaldiminato catalysts the activation 

barriers for the insertion of ethylene in complexes with the trans alkyl group to the oxygen 

donor were found higher than those encountered in cis/trans isomerization. Interestingly, 

stochastic simulation allowed for establishing temperature and pressure dependence of the 

polymer microstructure. In agreement with experimental evidences the model predicts a 

decrease with the number of branches with the increase of pressure. Temperature 

dependence behaves oppositely as a result of an increase in secondary insertions with the 

temperature. 

To get a full mechanistic picture of a typical neutral catalyst system, an elegant and in-depth 

NMR study of ethylene polymerizations catalyzed by the anilinotropone complexes was 
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also performed [67]. Detailed information concerning the chain propagation process, the 

barrier to ethylene insertion, the nature, and dynamics of the intermediate Ni alkyl 

complexes, and the chain transfer and catalyst decay processes were obtained. The rate of 

insertion of ethylene into the Ni-phenyl bonds of both unsubstituted and aryl-substituted of 

anilinotropone nickel (II) complexes (14 and 25) was monitored by low temperature NMR 

spectroscopy. The ethylene insertion, initially, forms the corresponding 

[Ni(L)(PPh3)(CH2CH2Ph)] complexes determined by monitoring the change in 

concentrations of starting complexes. First-order rate constants were measured as a function 

of temperature and ethylene concentration.  

Even at high ethylene concentrations, only PPh3 complexes were observed (no ethylene 

complexes were detected). As expected, rates accelerate with temperature, increasing about 

an order of magnitude between -10 and 10 °C. Insertion is dramatically inhibited by 

phosphine concentration. Thus, it was concluded that for these systems, the catalyst resting 

state(s) are an equilibrium mixture of phosphine and ethylene complexes (Figure 10). 

Nevertheless, at high ethylene pressures, the equilibrium is shifted nearly completely to the 

side of the ethylene complex and TOF becomes independent of ethylene pressure 

(saturation conditions). 

 

Figure 10. Ethylene polymerization catalyzed by Ni-anilinotropone catalysts [66]. 

The barriers to migratory insertion in (N–O)Ni(R)-(C2H4) complexes, from measurements of 

TOFs under saturation conditions, were determined to lie in the range of 16–17 kcal mol-1, 

that is only about 2–3 kcal mol-1 greater than those observed for cationic diimine complexes. 

The intermediate alkyl complexes have α-agostic interactions with dynamic behavior similar 

to the cationic alkyl diimine complexes. The barrier to β-H elimination and reinsertion is 

estimated in ca. 17 kcal mol-1. Free energy barrier to nickel–carbon bond rotation in these 

complexes occurs with a barrier of 11.1 kcal mol-1. These isomerization processes account for 

branched polyethylenes generated from these catalysts and resemble those previously 

observed with diimine catalysts. 

Thermolysis of (N,O)Ni(hexyl)(PPh3) generates the nickel hydride complex and 1-hexene via 

β-H elimination, through two pathways, one (dominant) independent of phosphine 
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concentration and one involving reversible loss of phosphine, and thus inhibited by PPh3. 

This process is a model for chain transfer and clearly explains why polymer molecular 

weights decrease with increasing phosphine concentration. The rate of propagation is 

retarded by increasing [PPh3], while the rate of chain transfer is unchanged, resulting in an 

increase in Rct/Rprop. Since chain transfer to monomer would exhibit a rate inhibition equal to 

that for Rprop with added PPh3 it was concluded that the major chain transfer route is a 

simple β-elimination process, and not chain transfer to monomer. 

At much slower rates, reductive elimination of the free ligand occurred from the hydride 

complex, and is inhibited by added phosphine. Catalyst decay under polymerization 

conditions was shown to occur by a similar process to generate free ligand and a bis-ligand 

complex formed by reaction of free ligand with an active catalyst species (Figure11). 

 

Figure 11. Deactivation of the anilinotropone nickel catalysts [67] 
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