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1. Introduction 

RNA mediated silencing technology has now become the tool of choice for induction of 

virus resistance in plants. A significant feature of this technology is the presence of double-

stranded RNA (dsRNA), which is not only the product of RNA silencing but also the potent 

triggers of RNA interference (RNAi). Upon RNAi induction, these dsRNAs are diced into 

short RNA fragments termed as small interfering RNAs (siRNAs), which are hallmarks of 

RNAi. Considerable resistance in transgenic plants against viruses can be created by 

exploiting the phenomenon of RNAi. In the current chapter, generation of potato virus Y 

(PVY) resistant potato and sugarcane mosaic virus (SCMV) resistant sugarcane by CEMB has 

been quoted as an example. 

We are in the dawn of a new age in functional genomics driven by RNAi methods. RNA 

interference (RNAi) refers to a post-transcriptional process triggered by the introduction of 

double-stranded RNA (dsRNA) which leads to gene silencing in a sequence-specific 

manner. It is one of the most exciting discoveries of the past decade in functional genomics 

and is rapidly becoming an important method for analyzing gene functions in eukaryotes 

and holds promise for the development of therapeutic gene silencing and which is therefore 

currently the most widely used gene-silencing technique in functional genomics. 

2. Need for resistance 

Agriculture sector of any country strengthen the economy by contributing in its gross 

domestic product (GDP). In Pakistan, the major agricultural crops include cotton, wheat, 

rice, sugarcane, potato and tomato etc. All of the above mentioned crops has great potential 

for yield and contribute 24 % in gross domestic product (GDP) of Pakistan economy [1]. 

There is a major gap in the actual yield potential of each crop with respect to its harvested 

yield, possible reasons include disease attack, environmental damages and in some cases 

lack of quality seed. Disease attack as being the most common cause include infections by 
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pathogens like viruses, bacteria and insects etc. Viruses can cause most devastating effects 

due to their systemic infections and hence decrease crop productivity in primary infection 

and reduce seed quality for subsequent use through persistent infection. Viral epidemics are 

often associated with the emergence of a new form of the viral strain or a new form of 

vector.  

Viruses are a major threat to agriculture all over the world. Up till now, more than 1200 

plant viruses have been reported which include 250 of those viruses that cause significant 

losses in crop yield [2]. In nature, viral particles exist as obligate parasites which consist of 

hereditary material packed in a thick layered coat and completely depend on host cell 

throughout their life cycle. Viruses utilizes host resources like nucleic acid, amino acids and 

certain proteins for their replication and survival, thus disturbing host plant metabolism to a 

considerable extent. Most of the infecting plant viruses are ssRNA viruses like sugarcane 

mosaic virus, potato virus Y etc. In an infected plant, virus accumulation goes higher with 

increased progeny rate through its replication. The spread of the virus in a plant is achieved 

through its movement from infected cell to healthy one via plasmodesmata while long 

distance movement occurs through phloem. Entry of virus in plant usually occurs through 

physical injury like wound etc or via certain viral vectors like aphid, fly etc. 

Cotton (Gossypium hirsutum) as being commonly known as ‘white gold’ is an important 

cash crop in many developing countries including Pakistan. It is a natural fibre and has 

many uses in industries. It accounts for 8.2 percent of the value added in agriculture and 

about 2 percent to GDP of Pakistan.  The yield of the crop is severely affected by the viruses 

including geminiviruses (leaf crumple and leaf curl) and tobacco streak virus etc. These 

viruses can cause severe losses when infections occur on young plants; some infect cotton 

yield while others affect lint quality as well [3].  

Potato (Solanum tuberosum) is the world's major food crop and is one of the leading 

vegetables. Viruses are a serious problem, not only because of effects caused by primary 

infection, but also because the crop is vegetatively propagated and the viruses are 

transmitted through the tubers to subsequent generations. Potato virus Y (PVY) is 

probably the most damaging and widespread virus of potato and is found wherever 

potato crops are grown, where losses are reported upto 10 to 90% [4]. PVY is transmitted 

through aphids. 

Sugarcane (Saccharum spp. hybrid) is among the top 10 food crops of the world, and yearly 

provides 60% to 70% of the sugar produced around the world [5]. Yield harvested by the 

farmers of Pakistan is very low whose main cause is mosaic disease of sugarcane which 

continues to be a potential threat to the sugarcane production. It is a very common disease 

in all the major sugarcane growing regions, because of the perpetuation of the disease virus 

through vegetative propagules. Sugarcane mosaic virus (SCMV) is reported to infect 

sugarcane naturally and can cause severe losses to the farmers and lesser production to the 

industry [6,7]. Aphids are the vector for transmission of the disease. Seed produced by 

infected cane can also transmit the disease. 
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Tomato (Lycopersicum  esculentum) ranks among the most widely grown vegetables all over 

the world. In general, viral diseases are not a routine problem in most tomato plantings but 

incidence of some viruses including tomato spotted wilt virus, tomato leaf rolling, tobacco 

mosaic virus and single and double virus streak viruses has devastating impact on crop 

yield with losses of upto 100% have also been reported [8]. Tobacco mosaic virus is one of 

the most stable viruses known because it is able to survive in dried plant debris as long as 

100 years. 

Various control measures have been taken to overcome losses caused by plant viruses which 

are expensive and also inadequate.  Biotechnologists have developed and adopted several 

strategies for virus resistance in crop plants. These include cross protection, pathogen 

derived resistance and more recently RNA interference. Therefore, the development of virus 

resistant varieties seems the only economically feasible way to control viruses [9]. Today, 

use of resistant varieties has been advocated as the most promising and least expensive 

method of viral disease suppression. With the appealing results of RNAi in silencing target 

genes of attacking virus, RNAi seems to have potential for creating virus resistant crops. 

A plant is said to be resistant if it has the ability to suppress viral disease symptoms by 

inhibiting its replication or by blocking the virus expression. Resistance mechanism in plants 

may be either protein mediated or RNA mediated, however final outcome of both is 

reduced accumulation of virus in the host plant. Acquired resistance could be either high 

almost reaching immunity with no disease symptoms or moderate to low where mild 

symptoms of particular viral disease can be seen. In contrast, when a viral infected plant 

shows normal growth rate with a good yield along with milder symptoms of disease, it is 

said to be a tolerant plants. In this case, the host plant supports multiplication of virus rather 

than blocking its replication [10,11]. 

3. History of virus resistance in transgenic plants 

When a plant encounters virus, it reacts naturally through hypersensitive response (HR) and 

extreme resistance response (ER) which induces the production of secondary metabolites 

termed as response elements in plants. These response elements include elevated levels of 

ethylene, jasmonic acid, salicylic acid, nitric oxide and increased rate of ion flux, in 

combination these factors block the virus entry and /or helps eliminate the virus (figure 1).  

The acquired virus resistance mechanisms in plants are of two types: a) gene silencing 

independent virus resistance and b) gene silencing dependable virus resistance via Post 

Transcriptional Gene Silencing (PTGS). The first includes coat protein-mediated, movement 

protein-mediated and replicase protein-mediated resistance, while second includes 

pathogen-derived resistance, antisense RNA mediated resistance and RNA-mediated 

resistance. PTGS is an evolutionary conserved mechanism in plants against potential harms 

by viruses and transposons. In this process, a plant defends itself by exploiting the 

requirement of plant RNA viruses to replicate using a double-stranded, replicative 

intermediate (dsRNA).  The double-stranded RNA produced is cleaved into approximately 
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21 nucleotide fragments by the Dicer enzyme [12]. Evidence suggest that transgene loci and 

RNA viruses can generate double-stranded RNAs which are similar in sequence to the 

transcribed region of target genes, which further undergo endonucleolytic cleavage to 

generate small interfering RNAs (siRNA) that promote degradation of cognate RNAs.  

 

Figure 1. Natural response of plants against viral attack, where production of secondary metabolites 

cause extreme or moderate resistance. 

The first approach made by plant agronomists was the inoculation of susceptible plant with 

a milder strain of the target virus. This technique was named as cross protection and was 

employed on crops like tomato, papaya and citrus [13-15]. Scientists were met with success 

as considerable resistance was achieved in transgenic plants through employment of this 

approach but the success was accompanied with a major drawback that the milder strain of 

the virus providing protection to one crop may cause serious diseases on varieties growing 

nearby.  

To compensate the drawback of cross protection, pathogen derived resistance (PDR) based 

strategies were employed. These are based on the insertion of resistant genes that are 

derived from the pathogen (virus) into the host plant. Resistance was achieved by 

expressing viral genes in plants including coat protein, movement protein and replicase 

protein gene, each of them targets at a step crucial to virus replication. Coat protein gene is 

responsible for viral uncoating and is involved in virus replication [16], movement protein is 

crucial for cell to cell movement of the infecting virus [17] whereas the Rep protein  is 

involved in virus replication and its genome integrity [18,19]. Resistance was either due to 

protein accumulation (coat protein mediated resistance, movement protein mediated 

resistance and replicase protein mediated resistance) or because of accumulation of small 

RNA sequences (replicase mediated resistance).  

Uptill now, scientists have made considerable successful attempts to generate virus resistant 

transgenic plants by employing PDR concept [20, 21]. For example, virus-resistant potato 

varieties having PVY coat protein (CP) or P1 gene sequences has been reported in numerous 

studies [22-27]. Biotechnologists employed various genes of PVY and have met with mixed 

success in engineering PVY resistant transgenic potato plants [22,28-30,24,31,25,32]. In 

another study, the presence of the movement protein (pr17 protein) was reported to create 

resistance in transgenic plants against luteovirus Potato leaf roll virus [33]. 
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Although pathogen derived resistance strategies hold promise for upto 90% resistance 

against target virus and are being employed still to date but some remarkable and potential 

threats are also associated with the use of this technology. The major one includes; the 

expression of a gene fragment derived from virus in transgenic plant confers resistance to 

particular virus but at the same time also raises environmental safety concerns regarding the 

constitutive expression of viral genes. It is supposed that infecting virus can interact with 

expression product in transgenic plants and can potentially modify the biological properties of 

the existing virus, ultimately leading to creation of new virus species which have novel 

pathogenic properties, host range and altered transmission specificity. In the initial 

experiments, the virus resistance was based on protein expression but resistance was neither 

so stable nor effective as compared to the resistance achieved through RNAi.  

Among pathogen derived resistance strategies, antisense RNA complementary to part of 

the viral genome proves to have potential utility for protecting plants from systemic virus 

infection [34]. Antisense RNAs refer to small untranslatable RNA molecules that pair with a 

target RNA sequence on homology basis and thereby exert a negative control on interaction 

of target RNA with other nucleic acids or protein factors.  Further, RNase H cause an 

increase in rate of degradation of double stranded RNA [35]. Antisense RNA technology 

was quickly adopted by plant researchers because other approaches like homologous 

recombination and gene-tagging mutagenesis used were based on reverse genetics and also 

these were not applicable in plants nor these were well developed. This background makes 

antisense RNA-mediated suppression more powerful tool for transgenic research and also 

for the development of commercial products [36]. 

 

Figure 2. Major milestones in virus resistance strategies drawn to scale, starting form cross protection to 

RNA-mediated gene suppression. 

4. RNA silencing 

The development of the concept of pathogen derived resistance gave rise to strategies 

ranging from coat protein based interference of virus propagation to RNA mediated virus 

gene silencing. Virus resistance is achieved usually through the antiviral pathways of RNA 
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silencing, a natural defense mechanism of plants against viruses. The experimental 

approach consists of isolating a segment of the viral genome itself and transferring it into 

the genome of a susceptible plant. Integrating a viral gene fragment into a host genome does 

not cause disease (the entire viral genome is needed to cause disease). Instead, the plant’s 

natural antiviral mechanism that acts against a virus by degrading its genetic material in a 

nucleotide sequence specific manner via a cascade of events involving numerous proteins, 

including ribonucleases (enzymes that cleave RNA) is activated. This targeted degradation 

of the genome of an invader virus protects plants from virus infection.  

a. Transcriptional Gene Silencing (TGS) 

In plants, silencing is of two types: transcriptional and post transcriptional gene silencing.  

In both types, the inactivated genes are in trans position as homologous genes upon 

interaction reside on opposite chromosomes. TGS and PTGS differ from each other with 

respect to the underlying mechanism they exhibit. TGS requires sequence homology 

between promoters as compared to PTGS which require homology between coding region 

of the interacting genes. In TGS, an inactive allele residing on one chromosome can render 

another allele silenced. The mechanism behind transcriptional gene silencing is suggested to 

be DNA-DNA interaction which is thought to play an important role [37,38]. In other 

studies, it was proposed that RNA molecules interact with DNA and subsequently induce 

DNA methylation which then leads to gene silening [39-42], however it is not clear whether 

methylation of DNA alone is sufficient for silencing or not. It is proposed that DNA 

methylation in promoter region has a strong negative effect on interaction of certain 

transcription factors with promoter. Possible mechanism of TGS is depicted in figure 3. 

b. Post Transcriptional Gene Silencing (PTGS) 

‘RNA interference’ is a conserved mechanism of post transcriptional gene silencing (PTGS). 

It has rapidly gained favor as a “reverse genetics” tool to knock down the expression of 

targeted genes in plants. The term RNAi was coined in 1998 by Fire and Mello to describe a 

gene-silencing phenomenon based on double-stranded RNA [43]. PTGS mechanism controls 

processes including development, the maintenance of genome stability and defense against 

molecular parasites (transposons and viruses). Several reports pointed out that PTGS in 

plants is strictly linked to RNA virus resistance mechanism [44-46]. 

5. Mechanism of RNAi/PTGS 

RNAi (RNA interference) is a natural defense pathway evolved in plants against viruses and 

potential transposons. It is a cellular pathway in which target sequences are degraded on 

homology basis at mRNA level by small RNAs, thereby preventing the translation of target 

RNAs. In plants, two functionally different RNAs; microRNA (miRNA) and small 

interfering RNA (siRNA), have been characterized. The miRNAs are small 21-26nt long 

dsRNAs that are genome coded and are endogenous to every cell. Structurally, they 

comprised of a stem region which is double stranded and a loop region which is single 

stranded. The miRNAs generated from endogenous hpRNA precursors and are basically 
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involved in the regulation of development [47]. On the other hand, siRNAs are generated 

from long dsRNA and are involved in defense through RNA interference [48, 49]. 

 

Figure 3. Mechanism of transcriptional gene silencing, active in chromatin modification. 

RNAi is an immune system in plants which is directed against viruses [50]. Upon viral 

attack, long dsRNAs are produced from the replication intermediates of viral RNAs that act 

as substrate for an endonuclease termed Dicer which is located in the cytosol [51].  Dicer 

recognizes these dsRNAs and cleave them into duplex siRNA (21-25 nt) [52]. The siRNA 

duplex comprised of two strands; strand complementary to target mRNA is guide strand 

and other is passenger strand. The guide strand of short siRNA duplex is incorporated into 

the RNA-induced silencing complex (RISC) and then siRNA programmed RISC degrade 

viral RNA. As the RISC complex encounters a foreign mRNA which could be of virus origin, 

it has two consequences. 1) If the homology of guide strand and target mRNA is 100%, then 

perfect complement form between them resulting in mRNA cleavage and subsequent 

degradation or 2) in case of imperfect complement, where few mismatches exist between 

guide strand of RISC and target mRNA, translation of target mRNA is inhibited (figure 4). 

Same mechanism operates in microRNA triggered gene silencing. miRNAs processed from 

stem loop precursors (shRNA and/or hpRNA) and requires Dicer activity [53] followed by 
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RISC assembly and subsequent degradation of homologous RNA in a sequence specific 

manner. 

 

Figure 4. Model for RNA silencing, an ordered biochemical pathway which is triggered by dsRNA of 

viral origin. The source of dsRNA is either the synthetic siRNA or pre-microRNA. Genome encoded pri-

miRNAs are processed by Drosha (an RnaseIII enzyme) into pre-miRNAs which are exported in the 

cytosol. dsRNA (siRNA or miRNA) subsequently joins Dicer, Ago and some other accessory proteins 

located in the cytosol forming RISC (RNA induced Silencing Complex).  The degree of complementarity 

between the RNA silencing molecule and its cognate target determines the fate of the mRNA: blocked 

translation or mRNA cleavage/ degradation. 

RISC is a combination of Dicer (an endonuclease enzyme), some accessory proteins namely 

argonaute (ago1, 4, 6, 9; catalytic endonucleases) and RNA binding proteins (RBP), and 

some trans-acting RNA-binding proteins (TRBP) [54,55].  

Stability of RNAi induced silencing is based on enzymatic methylation of siRNA. This 

reaction is catalyzed by the enzyme methyltransferase (HEN1) which methylates the siRNA 

at 3’ end, hereby preventing it from oligouridylation and subsequent degradation [56].  

6. Systemic spread of RNAi 

When RNAi is induced at one site in an organism including plant, a mobile signal is 

generated which spread cell to cell and systemically throughout the organism [57-

59,43,60,61] and make RNAi response obvious in distant tissues of the plant. This silencing 

signal moves inside plant either through the intercellular spaces called plasmodesmata or 
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through the phloem as shown in figure 5 [59,60]. Presence of a mobile signal has been 

proposed to be an integral part in systemic spread of silencing. The first evidence of the 

presence of a mobile silencing signal came from the study of Agro infiltration assay or 

particle bombardment in development of transgenic tobacco plants [59,60,62]. Subsequently, 

in silenced tissues of Agro-infiltrated plants, T-DNA or Agrobacterium was detected which 

suggests that mobile signal is responsible for propagation of silencing from one tissue to 

another [59] and this signal can also cross graft junction [59,60,62]. Candidates proposed to 

be responsible for mobile silencing signal involve siRNAs, Aberrant RNAs and dsRNA [63].  

 

Figure 5. Mobile silencing signal passes from infected cell to healthy cell upon RNAi induction. Candidate 

of RNA silencing could siRNA, aRNA or dsRNA and travel through plasmodesmata and/or phloem. 

Conclusively, transgenic approach mediated by RNAi pre-programmed an existing antiviral 

defense in plants [21,64-66].  Plant viruses are the strong inducers of RNAi as well as a 

target. The simplicity and specificity of RNAi has made RNAi a routine tool for the 

generation of virus resistant crops.  

7. Effective RNAi inducers 

In general, gene silencing has proven fruitful with both sense- and antisense transgenes in 

plant cells [67,68]. An RNA molecule that contains a fragment of a sense strand, an antisense 

strand and a short loop sequence between the fragment making a tight hairpin turn is 
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termed as short hairpin RNA (shRNA) which has the ability to suppress the expression of 

desired genes via RNA interference [69]. Silencing can be more efficiently achieved by 

utilizing shRNA cassettes [70-72] which usually include a specific plant promoter and 

terminator sequences to control the expression of inversely repeated sequences of the dsRNA. 

Upon subsequent delivery of shRNA cassette in the plant cells, dsRNA molecules comprised 

of a loop (single-stranded) and a stem region (double-stranded) are formed. Further, stem 

region is used by Dicer as a substrate and trigger RNAi mechanism [72-74]. RNA silencing 

mediated by the use of shRNA cassette enforces stable and heritable gene silencing [67] as it 

utilizes the specific promoter to ensure that the shRNA is always expressed. Another reason 

which justify that the silencing efficiency can be more powerful when using shRNA cassette is 

due to the fact that dsRNA are being fed into a later step in the silencing pathway where they 

act as a substrate for Dicer (RNaseIII like enzyme) and therefore bypasses the step in which 

dsRNAs need plant encoded RdRps for their production [75]. 

Practically in development of virus resistant transgenic plants, specific hairpinRNA 

expression constructs have been designed for transformation. In this strategy, small dsRNAs 

which are hallmark of PTGS, are produced from the transformed construct and ultimately 

induce silencing. Scientists have used hpRNA construct for silencing of viral gene in potato 

and obtained efficient silencing results accompanied with production of siRNA [76]. Similarly, 

some others have compared various constructs in terms of their silencing potential and 

confirmed that most efficient and strong silencing in tobacco can be achieved through the 

expression of an intron containing construct, which trigger PTGS [77]. However, in another 

study where PVY resistant potato plants were obtained through CP gene expression, evidence 

for existence of both protein and RNA mediated mechanisms was verified [27]. 

While considering the appealing outcome of RNAi in development of virus resistant 

transgenic plants as reviewed in this article and the use of hairpin RNA for strong silencing, 

production of transgenic potato resistant against potato virus Y and sugarcane plants 

resistant against sugarcane mosaic virus developed by [69] at Centre of Excellence in 

Molecular Biology (CEMB), University of the Punjab has been quoted as an example in 

following chapter. 

8. Development of PVY and SCMV resistant transgenic plants 

Tabassum et al. [79] have developed PVY and SCMV resistant potato and sugarcane plants 

respectively through siRNA technology by targeting capsid protein gene of respective virus. 

In the study, the respective plant was equipped with shRNA cassette that reacts 

continuously against invading virus specifically, thus resulting in degradation of viral 

mRNA in a sequence-specific manner. Specialty of this shRNA cassette is that it contained 

screened siRNA (the one most efficient in in-vitro experiments) out of bulk. The 22nt long 

siRNA was used as core sequence in shRNA cassette while loop sequence and flanking 

sequences were taken from highly active regulatory microRNA of respective host plant.  

Initially, for screening of siRNA out of bulk, a strategy based on transient transfection assay 

was optimized in mammalian cell line (CHO). mRNA knockdown efficiency of capsid 
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protein gene of target virus was analyzed by real-time PCR. In case of PVY capsid gene, one 

specific siRNA out of a total six was found to be the most effective for knockdown of 

respective mRNA in transfected CHO cells by up to 80-90%. Data obtained showed that all 

six siRNAs used reduced the mRNA expression of target gene to some extent but only 

siRNA1 significantly reduced CP-PVY mRNA expression by up to 12.25 fold and, as is 

clearly shown in figure 6, expression was almost diminished or very faint in cells transfected 

with siRNA1 as compared to the control where scrambled siRNA was transfected. The 

remaining siRNA knockdown values were: siRNA 2  -  7x decrease ; siRNA 3  -  8x decrease; 

siRNA 4  -  10.8 x decrease; siRNA 5  -  9x decrease  and siRNA 6 - 10x decrease. These 

values were based on Ct values obtained from real-time PCR studies [78].  

 

Figure 6. Relative measure of the knockdown of mRNA expression of CP-PVY gene in transient 

transfection assays. Knockdown values are based on relative Ct values obtained in realtime PCR assay; 

GAPDH was used as internal control to normalize the results. 

Similar findings were met when knockdown in mRNA expression of CP-SCMV was studied 

in-vitro through transient transfection assays. As clear from figure 7, siRNA1 reduced the 

mRNA expression of target gene by upto 96%, while inhibition by siRNA2 was 46%, 

siRNA3 and siRNA4 inhibited target gene mRNA expression upto 50% and 77% 

respectively (figure 7). 

Subsequently, the screened siRNA for both viruses was used in shRNA cassette which is 

thought to synthesize target specific siRNAs that continuously guard the plant against 

respective viral attack. shRNA cassette cloned in pCAMBIA1301 vector and transformed in 

potato and sugarcane through Agrobacterium- and particle bombardment method 

respectively. Results were compared with control non-transgenic plants. Figure 8 and 9 

depicts the results, clearly indicating that in transgenic potato having shRNA1 cassette 

integrated in them, mRNA knockdown was upto 96% whereas in transgenic potato plants 
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having shRNA4 cassette in them, PVY knockdown was upto 57% as compared to control 

where PVY infection was maximum.  

 

Figure 7. Relative measure of the knockdown of mRNA expression of CP-SCMV gene in transient 

transfection assays.  

Similarly, in transgenic sugarcane plants, shRNA1 reduced the mRNA expression of SCMV 

to lesser extent with 30% reduction only while shRNA4 caused maximum knockdown of 

95% as compared to the control non-transgenic sugarcane plant.  

 

Figure 8. Percentage inhibition in mRNA expression of PVY rendered by integrated shRNA1 and 

shRNA4 cassette in potato plants. Transgenic plants were subjected to bioassay by PVY inoculation and 

RT-PCR was performed 30 days post PVY inoculation. 

In conclusion, we have developed transgenic potato and sugarcane plants that were highly 

resistant against PVY and SCMV infection respectively. This resistance was because of the 

shRNA cassette integrated in them that is targeted against capsid protein gene of each virus. 
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These shRNAs are supposed to create long-term targeted gene inhibition in cells and whole 

plant. Our shRNA construct designing was based on the hypothesis that if we express 

potentially effective screened siRNA in hairpin form which is further combined with the 

power of most active regulatory microRNA in respective plant, the level of resistance will be 

far more effective. Applying this theme, we were able to obtain transgenic potato and 

sugarcane plants where resistance level against targeted virus was upto immunity. 

 

Figure 9. Percentage inhibition in mRNA expression of SCMV rendered by integrated shRNA1 and 

shRNA4 cassette in sugarcane plants. Transgenic plants were subjected to bioassay by SCMV infection 

and RT-PCR was performed 30 days post inoculation. 

One important aspect of this strategy in engineering PVY-resistant plants is the fact that the 

integrated shRNA sequence is not of viral origin nor it is translated into a protein. 

Moreover, the actual RNA transcript is almost undetectable because it gets cleaved quickly 

in small fragments through RNAi pathway. These two features limit the environmental risks 

of this strategy, such as trans-encapsidation or recombination of the transgene with an 

incoming virus.  
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