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1. Introduction 

Since the start of genomics research, genome-wide expression studies have been used 

prolifically as a tool to improve our understanding of the involvement of genes in various 

biological processes. Measuring gene expression patterns simultaneously across all the 

genes in the genome, i.e. transcriptomics, is a uniquely powerful technology to explore 

potential novel candidate genes for a particular process. This genome-wide approach has 

the huge advantage that we do not have to specify in advance which genes we believe to be 

involved, and as such, we are not limited by our current knowledge. Transcriptomics is an 

important first step to study traits that are under the control of several to many genes (i.e., 

polygenic traits) and responsive to external conditions and internal states (i.e., multifactorial 

traits).  

The identification of potential novel candidate genes, however, is only a limited part of the 

power of transcriptomics. With this technology, the expression of thousands of genes is 

measured simultaneously. It provides a snapshot of all genes that are actively transcribed 

during a particular process. When we compare these measurements between conditions or 

treatments, those genes that are expressed at higher or lower level under a particular 

condition can be identified. As such, transcriptomics maximizes the awareness of effects 

anywhere in the genome, including those associated by costs, trade-offs and epistatic 

interactions. This could be viewed as a complication of transcriptomics data, because a 

change in expression does not necessarily reflect a causal relationship to the process of 

interest. In fact, however, it is also one of the major strengths of this technology. By 

combining various bio-informatic tools and resources, it is possible to obtain an insight into 

intricate gene-interaction networks, the regulatory control of traits, and the implications of a 

trait or process on the full phenotype.   
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In functional genomics, transcriptomics studies are typically a comparison between 

biological samples (e.g., a cell type, organ, individual, or group of individuals) that were 

collected under different conditions, to analyse which genes were up-regulated or down-

regulated (i.e., were expressed at higher, respectively, lower levels) in response or relation to 

the condition. These conditions can be experimentally induced (e.g., treatment versus 

control, different dosages of a chemical, different food conditions or temperatures, etc.), or 

they represent different natural stages (e.g., diseased versus healthy, male versus female, 

different developmental stages or aged individuals, different genotypes, different tissues, 

different epigenetic profiles, etc). Including a proper control treatment or reference is 

crucially important for the interpretation of gene expression differences that results from 

such a comparison. There will always be a large number of genes expressed in any 

biological sample, and without control or reference, it is impossible to attribute expression 

of particular genes to the condition of interest. The purpose of transcriptomics is to reveal 

how the expression patterns change under different conditions. 

Transcriptomics technology is used to characterize the composition of the messenger RNA 

(mRNA) pools from each biological sample. The mRNAs are the transcripts of a gene that 

carry the information encoded in the gene to the site of protein synthesis. When a particular 

mRNA is present in a biological sample, it implies that the corresponding gene was 

expressed, and a template is available for the synthesis of the protein product of that gene. 

The abundance of each mRNA in the pool represents the level of expression of the 

corresponding gene. By comparing the relative proportional representation of each mRNA 

in the total mRNA pool among the samples, we can identify which genes differed in 

expression in response or relation to the compared conditions. The most widely use 

technological platform for whole-genome expression studies are microarrays, although the 

sequencing of the transcriptome is rapidly increasing in popularity (Figure 1).  

Microarrays are solid-based platforms (e.g., glass slides), containing millions of copies for 

thousands of ‘reporter probes’ that comprise part of the sequences of the genes in the 

genome. By binding (or ‘hybridizing’) fluorescent-labelled copies of the original mRNAs to 

the probes, measuring the label intensities for each position on the array, and associating 

these positions to their specific reporter probes, one can infer the presence and abundance of 

each transcript in the labelled RNA pool (Figure 1). It is assumed this representation is 

proportional to their abundances in the original mRNA samples. Microarrays are relatively 

cheap, and the tools to analyse the data have been developed, matured and tested. This 

makes microarrays an affordable and accessible platform for many applications [1]. After 

the initial introduction of expression arrays that reported only on known or predicted genes, 

tiling arrays were developed that contained reporter probes across the full genome, 

including the non-coding, non-translated and non-transcribed chromosomal regions.  This 

enabled the identification of novel transcripts, including non-coding RNA genes, as well as a 

better characterization of splice variants and exons [2].  

The latest developments in next-generation sequencing technologies are making 

transcriptome sequencing more affordable, and they provide a number of advantages over 

microarrays [3]. For this approach, the mRNA pool is converted into cDNA (either wholly 
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or after a partial digestion), which is then used as template for high-throughput sequencing. 

The generated sequence information is mapped to, or assembled into, a reference 

transcriptome, and the number of sequence copies generated for each gene is used to infer 

the number of mRNA copies in the original sample (Figure 1). Sequencing approaches 

provide more comprehensive information on the transcript characteristics (e.g. splice 

variants, mRNA sequence variations, gene fusions, etc.), they are not limited to the known 

or predicted genes of an organism or the genes represented on an microarray, and they 

avoid some problems inherent to slide-based technologies [4]. A downside of transcriptome 

sequencing is that the Quality Control and pre-processing and analysis procedures for these 

data have not yet fully matured, and the assembly of, or mapping against, the reference 

transcriptome requires substantial computing power, making this technology still less 

accessible.  

In essence, both technological platforms yield data of very similar nature, although the 

information of sequencing approaches may be more specific and detailed than array-based 

approaches. After the specific pre-processing that each platform requires, the data can be 

analysed with similar methods, leading to a list or ranking of genes that show changes in 

expression patterns or transcript characteristics (e.g. splice variants) among the compared 

conditions. As such, the gene list provides a first step to identify the genes that potentially 

matter or are affected by a particular condition. A change in expression, however, is 

insufficient evidence for establishing a clear link between a gene and the trait of interest. At 

best, the genes on the list may be associated with the trait or condition of interest, while 

causality or direct involvement in the trait still needs to be established through additional 

empirical approaches.  

Before discussing how gene lists can be generated or used for further analysis, it is 

important to emphasize that certain limitations are inherent to transcriptomics data. These 

limitations can be specific to the used platform, for instance microarrays can only report on 

the activity of genes that are known or represented on the array. Most limitations, however, 

are irrespective of the technology. As mentioned, genes that are differentially expressed are 

not necessarily causal to a particular trait or response. Moreover, not all the genes that are 

involved in a response or trait are detected by a changes in expression. Any post-

transcriptional modifications or non-transcriptional processes (such as the re-directing of a 

transcription factor from its regular processes towards another function) are typically not 

detectable by a change in gene expression. A further precautionary note is warranted for the 

design, set-up and execution of any transcriptomics study. An essential requirement for 

associating changes in gene expression among different samples to a particular condition or 

treatment of interest, is to ensure that the only difference is the condition or treatment of 

interest. For example, the collection of control and treatment samples should be done 

simultaneously (e.g., not before infection and 12 hours after infection) by the same person, to 

avoid that circadian rhythms or handling effects differ between the samples. When such 

precautions would not be taken, genes responsive to the treatment would be confounded 

with genes responsive to these extraneous factors. It is impossible to resolve such 

confounding effects after the measuring of gene expression. The only way to avoid such  
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Figure 1. Schematic overview of transcriptomics approaches, using microarrays or transcriptome 

sequencing. Although the technologies differ, both approaches compare all the mRNAs in biological 

samples under different conditions, and provide quantifications of the abundance of all gene transcripts 

for each sample. Images of GeneChips® courtesy of Affymetrix.  
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issues is to take due care during experimental design, sample collection and sample 

preparation. Despite these limitations that are inherent to any transcriptomics technology, 

the resulting data does provide an array of possibilities for further meaningful analysis.  

In this chapter, I will illustrate various ways in which transcriptomics data can be analysed, 

to identify novel candidate genes for the process of interest, and additionally, how to move 

beyond this list of candidate genes towards the molecular mechanisms and gene interaction 

networks of a trait. For these illustrations, I will mostly use transcriptomics data on the 

innate immunity in Drosophila larvae after parasitism. Our analysis on the transcriptomics 

during the acute immune response to infection by parasitic wasps [5], as well as between 

strains that differ genetically in resistance to these parasites [6], revealed a complex gene 

interaction network associated with defense mechanisms. The immune response to parasites 

is triggered by recognizing the invasion of the parasite, and comprises of the proliferation 

and differentiation of specialized blood cells that surround the parasite in a multi-layered 

capsule, and sealing the capsule with a layer of melanin. This melanotic encapsulation 

sequesters and kills the parasite [7]. By integrating the data from our studies with various 

resources and bioinformatics approaches, we gained a more comprehensive insight in the 

interactive and regulatory network of genes that are associated with the immune response 

to parasitism. We identified shared regulatory elements among genes that showed similar 

expression patterns, physiological costs associated with evoking the immune response, 

chromosomal positions that were associated with resistance traits and indications for 

epistatic gene-interactions. Combined, this information provided us with new insights on 

the mechanisms and complex genetic architecture of the innate immune response.  

2. Constructing a list of genes with differential expression 

The fundamental purpose of a transcriptomics experiment is to identify the genes with 

changed expression under a particular condition, which is done by comparing the 

abundance measurements for each gene transcript among the biological samples. 

Depending on the platform used, these abundance measurements are derived from 

fluorescence intensity measurements captured in digital images of the microarrays, or the 

counts of the number of transcripts for sequencing approaches (Figure 1). These 

measurements, however, are not only reflecting the biologically interesting variation in gene 

expression under the different conditions, but also a substantial level of technical variation 

that is introduced during the preparation and measuring of the samples. This includes, for 

example, residues of reagents that create a background signal on microarrays, short 

fragments of RNA that bind non-specifically to microarray probes or cannot be uniquely 

mapped to a reference genome, slight differences in RNA doses for the different samples, or 

slight differences among samples/batches in the efficiency of the molecular techniques. 

Some of these aspects affect whole samples, while others are specific to particular genes. To 

perform the meaningful comparisons on the variation in gene expression measurements, it 

is typically essential to first eliminate the bias introduced by technical variation as much as 

possible.  
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The raw intensity measurements first need to be pre-processed to deal with the technical 

variation, normalized to scale all samples to the same range, and combined into a single 

expression value per gene per sample for comparisons. Many different approaches have 

been developed for the pre-processing and normalization of microarrays, and subsequent 

studies have tried to determine the optimal strategy to remove the noise without 

introducing bias. Some approaches are outperforming others and consensus has been 

mostly reached for the commonly used microarray platforms, although full consensus for all 

microarray platforms is still lacking  [8]. Also for transcriptome sequencing, normalization is 

important to address deviations due to slight differences in doses, the gene length and GC-

content. The exploration of the best pre-processing and normalization approaches for 

transcriptome sequencing are still being established (e.g., [4,9]).   

To statistically test for changes in gene expression, biological replication is essential. Having 

multiple biological units for each condition enables the estimation of variation within and 

between conditions, which allows for the partitioning of all variation into noise (i.e., 

technical and random variation), and the biologically interesting variation reflecting the 

changes in gene expression patterns. Technical replications are sometimes also incorporated 

in the platform or analysis, for example by repeating the same probes on a microarray, by 

applying a dye-swap on samples, or by testing the same samples twice. Although this can 

increase the accuracy and sensitivity for the estimation of technical variation, it is generally 

not as important as biological replication is for increasing the sensitivity and power of the 

analysis. The minimum number of replications that is required for any transcriptomics 

experiment depends, among others, on the objective of the experiment, the required 

sensitivity, the type of microarray or sequencing method used, the experimental design, and 

the number of treatment groups [10]. Measuring gene expression across a time course may 

also be a powerful way to increase the power of the analysis, as well as providing a means 

to determine the sequence of action for genes.  

For the statistical analysis of transcriptomics data, many different alternatives are available. 

Most tests developed for microarray data or transcriptome sequencing are essentially 

modifications of more standard statistical tests [8]. To identify the genes showing 

differential expression (i.e., differences in expression level) among treatments or conditions, 

many of the statistical procedures consist of some form of variance analysis and test whether 

the variance in expression patterns among treatments or conditions exceeds the variance 

between biological replicates within a treatment. The most commonly used tests include 

(modifications of) t-tests, ANOVAs, regression analysis, mixed models and generalized 

linear models. The modifications for these tests are primarily to increase power for the often 

small sample sizes, and to avoid violation of the assumptions for the parametric tests, in 

particular the assumptions of a Normal distribution and independence among 

measurements. Modifications include methods to shrink variance estimates (using 

combined information on variance for the large number of measurement on a single 

sample), permutation approaches and empirical Bayesian methods. Similar to the best 

choice for the number of biological replicates, the best statistical approach depends on the 

objective of the experiment, the transcriptomics platform used, the experimental design, the 

number of treatment groups and the number of replicates per treatment.   
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Not only statistical significance, but also the magnitude of a change in expression (or the ‘fold 

change’) between conditions is often provided, sometimes as an auxiliary for biological 

significance. Fold changes are typically provided at a log2 scale, so that the fold changes are 

centred around zero, and a doubling or halving of expression level in the treatment compared 

to the control would result in an equal deviation from zero. These fold change data can be 

plotted to visualize the differentially expressed genes, either in relation to the average 

expression level of that gene (MA-plot, Figure 2a), or in relation to the statistical significance 

(volcano plot, Figure 2b). It should be realized, however, that fold changes are fickle indicators 

of biological significance. Firstly, depending on the position and role of a particular gene in a 

regulatory network (e.g., a central transcription factor, or a direct regulator of transcriptional 

activity), a small fold change may have large biological implications. Large fold changes could 

be primarily expected at the margins of these networks, which may involve the final effectors 

of the response while that may reveal little about the key regulators of the response. Secondly, 

microarrays typically only detect large fold changes in the intermediate range of expression 

values. Low levels of expression may be below the detection limit of the array, and 

background noise or corrections may obscure any changes in the expression of such genes. 

High levels of expression may result in saturation of the probes, vastly underestimating the 

actual fold changes. Transcriptome sequencing approaches would not be biased towards these 

intermediate expression levels, but instead, could suffer from exaggerated fold-change 

estimates for genes not expressed, or expressed at very low level, in one sample or both 

samples (when the denominator approaches zero). 

 

Figure 2. Plots that summarize the fold-change differences in gene expression between two conditions. 

a) MA plots portray for each gene the average gene expression across the two conditions on the x-axis 

(A), and the log2 fold change difference in expression between the two conditions on the y-axis (M).  b) 

Volcano plots portray for each gene the log2 fold change in difference of expression between the two 

conditions on the x-axis (Fold Change) and the statistical significance for the t-test on expression 

measurements between the two conditions on the y-axis (–log10 P-value). The presented data is on 

Drosophila larvae 12 hours after being parasitized and control larvae (that had not been parasitized)  [5]. 

The ‘outliers’ in both plots represent genes that differed in expression between the two conditions. In 

red are the genes that both scored a P-value < 0.001 and had at least a 2-fold change in expression 

between the two conditions. Applying these combined criteria for assigning significance would exclude 

several ‘outlier’ genes with high average expression levels (a) and/or with low p-values (b).    
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Finally, to determine the genes with significant differences in expression among conditions 

or treatments, a statistical correction needs to be applied for the large number of statistical 

tests for each experiment (i.e., multiplicity or multiple testing). In a transcriptomics 

experiments, several thousands of genes are tested, and each gene is analysed for differences 

in expression among conditions. In statistics, we normally use a type I error rate of α = 0.05, 

which means that we accept that in 5% of cases where we rejected the null hypotheses (H0: 

no differences among conditions) and called something ‘significantly’ different, the 

observed difference was purely by chance. When we do not correct the type I error rate 

while performing thousands of statistical tests (i.e., one for each gene), this would result in 

hundreds of genes called significantly differentially expressed, while these differences were 

merely by chance. Genes that are deemed differentially expressed while they are not, are 

false positives. Genes that are deemed not differentially expressed while they are, are false 

negatives. Correcting for false positives in large scale experiments is needed to avoid 

including many erroneous calls, but it needs to be carefully balanced by controlling for false 

negatives to ensure optimal sensitivity and accuracy of the analysis. 

The typical statistical correction for false positives in non-genomic experiments with 

multiple testing is a Bonferroni correction, which divides α by the number of statistical tests 

applied to the data. This approach, however, is often too conservative (i.e., accepting the 

null hypothesis H0, while it was false) for the thousands of tests in transcriptomics analyses, 

and would result in a large number of false negatives. The most widely used correction for 

multiple testing in transcriptomics analysis is a False Discovery Rate (FDR) correction, 

which attempts to provide a more even balance between false positives and false negatives. 

Several FDR approaches exist, but they generally adjust or replace the P-value for 

significance to reflect the likely proportion of false positives among the genes that are called 

significant. For example, when we would identify 100 genes with an FDR adjusted P-value 

(Padj or q-value) of <0.05, we would on average expect less than 5 of these genes to be false 

positives [11].  The acceptance level for significance used with FDR often ranges from Padj 

<0.001 to <0.10, depending on the desired sensitivity and accuracy, the sample size (i.e., 

power) and the estimated numbers of genes with differential expression. 

The end result of all pre-processing steps, normalisation, statistical analyses and corrections 

for false positives is a list or ranking of genes that significantly changed expression in 

response or relation to the different conditions that were compared. This lists contains 

potential candidate genes that may be actively involved in the process of interest. However, 

many genes are also included in the list that are only indirectly associated with the response 

or process of interest. Moreover, the gene list does not contain all the (candidate) genes that 

are involved in the process, but only these that could be detected by transcriptomics and 

under the particular experimental conditions (e.g. time points during the response, sample 

sizes, technological platform) and analysis choices (e.g. normalization approach, acceptance 

thresholds for significance). Finding gene expression changes in a transcriptomics 

experiments is not required, nor sufficient, evidence for the function of a gene or its 

involvement in a biological process.  It is, however, a valuable starting point for further 

analysis.   
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3. Standard explorations of the gene list 

The first inspection of a gene list typically is to link the gene names to what is known, 

predicted and published about these genes, both in terms of the function of the gene 

(product), the protein family or protein domains that the gene codes for, and the signal 

transduction pathways in which it participates. For model species and other species for 

which the full genomic sequence is available, repositories exist that combine several sources 

of information on individual genes (for example, see “www.nature.com/scitable/content/ 

Genomics-Databases-744357” for a list of species-specific repositories [12]). The annotation of 

genes is mostly following a controlled vocabulary or restricted terminology. For functional 

annotations, Gene Ontology (GO) is a widely used vocabulary. Gene Ontology describes the 

genes and their products (e.g., the proteins for which a gene codes) within three main 

Ontology domains: Molecular Function, Biological Process and Cellular Component. Genes 

can be described at various hierarchical levels using this GO terminology, ranging from 

broad over-arching themes to very specific descriptions. Descriptions of protein domains are 

often inferred based on sequence similarity to other organism, for example using the InterPro 

terminology. Since many proteins are involved in several biological processes or contain 

more than one functional domain, genes (or gene products) have often different GO 

annotations across the three GO domains and different IP annotations (Table 1).  

 

Gene Name 

(symbol) 

Gene Ontology Annotation InterPro Annotation

αPS4 

 

Cellular Component: Integrin complex

Biological Process: Cell adhesion 

Biological Process: Cell-matrix adhesion

Biological Process: Heterophilic cell-cell 

adhesion 

Molecular Function: Cell adhesion 

molecule binding 

Molecular Function: Receptor activity

Integrin alpha chain

Integrin alpha beta-propellor  

Integrin alpha-2  

Integrin alpha chain, C-terminal 

cytoplasmic region, conserved site  

FG-GAP 

lectin-24A 

 

Cellular Component: -

Biological Process: Galactose binding 

Molecular Function: -

C-type lectin

C-type lectin fold 

Thiolester containing 

protein II (TepII) 

Cellular Component: Extracellular 

space 

Biological Process: Antibacterial 

humoral response 

Biological Process: Defense response to 

gram-negative bacterium 

Biological Process: Phagocytosis, 

engulfment 

Molecular Function: Endopeptidase 

inhibitor activity 

Molecular Function:  Peptidase 

inhibitor activity  

Terpenoid cylases/protein 

prenyltransferase alpha-alpha toroid 

Alpha-macroglobulin, receptor-binding 

Alpha-2-macroglobulin, N-terminal 

Alpha-2-macroglobulin, N-terminal 2 

A-macroglobulin complement 

component  

Alpha-2-macroglobulin, conserved site  

Alpha-2-macroglobulin, thiol-ester 

bond-forming 

Table 1. Examples of gene annotations, using the vocabulary of the Gene Ontology (GO) and InterPro 

(IP). Annotations are provided for three genes that were differentially expressed during the immune 

response of Drosophila after infection by parasites  [5]. The GO annotations describe the function and 



 
Functional Genomics 10 

process that have been reported for the protein, and the IP annotations describe the protein domains. 

Genes that are involved in different processes, or coding for proteins with multiple functional domains, 

may contain a variety of annotations. Many genes, however, are not fully annotated. 

The abundance and reliability of annotation information is highly variable among genes 

and species: some genes are well studied and annotations are solidly supported by 

empirical evidence, while other genes are not annotated, only partially annotated or 

annotations are based only on unconfirmed computer predictions or non-traceable author 

statements. Furthermore, for model organisms the functional annotations have 

accumulated by the studies of many researchers over long periods, while for non-model 

organisms or new model organisms, there is often only limited detailed knowledge 

available. Yet, even for these non-model organisms, various resources exist that enable 

high level analysis of transcriptomics data based on homologies, such as, for example, the 

Blast2GO suite [13].  

Gene lists from transcriptomics experiments are particularly amenable for enrichment 

analyses of functional annotations. An enrichment of a particular functional annotation 

implies that it is represented more often among the gene list members than would be 

expected by chance alone, based on the proportion of the genes in the genome with that 

annotation. Multiple interfaces and online tools have been developed for this purpose (e.g., 

DAVID for large gene lists [14] and Catmap for gene lists that are ranked for significance, 

but without actually applying a significance threshold cutoff [15]). When the conditions or 

treatments of interest resulted in a coordinated response in the gene interaction network, the 

likelihood increases of finding genes with changed expression sharing the same annotation. 

Such enrichments may be informative for identifying different biological processes or 

protein families that are associated with, or affected by, a response to the condition or 

treatment of interest. This may also be informative to identify possible costs or trade-offs 

that are associated with the response. For example, within the gene list for the response to 

parasite infection [5], we identified a set of genes involved in puparial adhesion. These 

genes were expressed at lower levels in the infected larvae at 72 hours after infection, and 

reflect the delay in development these larvae incurred by investing energy and resources in 

the immune response.     

The list of differentially expressed genes can be compared to other gene lists, which could be 

derived from other transcriptomics studies, known candidate genes for the process of 

interest, or any other approach that identified a set of genes associated with a particular 

condition. Venn diagrams can summarize these gene list comparisons (Figure 3). Reporting 

how many of the genes were shared with other gene list(s), and how many are unique for 

each gene list, provides a quick overview of the numbers of genes that may be of particular 

interest. Sometimes it is the genes that are also present in the other gene list(s) that are of 

particular interest, for example when multiple sources of evidence are combined or to 

identify cross-talk between gene interaction networks. Alternatively, one could focus on the 

unique genes to identify novel candidate genes that had not previously been associated with 

the process of interest.    
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Figure 3. Venn diagram of differentially expressed genes in Drosophila larvae after infection by a 

parasitic wasp, and genes that have been previously implicated in defense responses and anti-microbial 

immune responses. Infection by a parasitic wasp (‘macro-parasite’) triggers a cellular immune response 

that is substantially different from general defense responses and the mostly humoral immune response 

against bacterial and fungal infections (‘micro-parasites’). This is reflected both in the relatively large 

number of known immunity genes that did not change expression after infection with macro-parasites, 

and in the large number of differentially expressed genes after macro-parasite infection that had not 

previously been associated with immunity and defense. Redrawn with permission after [5], first published 

by BioMed Central. 

When several conditions or time points are included in the experimental design, clustering 

the genes according to their expression pattern across these conditions or time points allows 

for identifying groups of genes that responded similarly, and analysing these separately 

from genes with different behaviour. An enrichment analyses on such groups of genes may 

identify a common theme to groups with a particular expression profile across the 

conditions or time points. For example, in our transcriptomics study after infection with 

macroparasites, we identified groups of genes with a peak in up-regulated expression 1-6 

hours after infection, at 6-24 hours after infection, and at 24-72 hours after infection, and 

groups with down-regulated expression either throughout the time course, or at 72 hours 

after infection (Figure 4). The first group of genes was enriched for immunity genes (clusters 

1 and 2), the second group of genes for proteolysis and serine-type endopeptidases (cluster 

12), and the last group in puparial adhesion (cluster 9). These patterns can be used both to 

get a more detailed profile for the various processes that occur during the response. 

Additionally, it may serve as a starting point for inferring the functions of unannotated 

genes. For example, the Drosophila genome codes for 201 genes with serine-type 

endopeptidase activity, which function in development, immunity and various other 

biological processes. Only 22 of these genes had been functionally annotated with a role in 

immunity, but unannotated serine-type endopeptidase genes that responded similarly to 

infection as genes with a functional annotation in immunity or defense could be putatively 

assigned the same functions [16].      
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Figure 4. Clustering of genes that show similar expression patterns in Drosophila larvae across the 72 

hour time course after infection by parasitic wasps. The average expression levels (± standard errors of 

the mean) for the genes within the clusters (log2 transformed and divided by the median expression 

level for that gene across all time points) is shown. Dashed red lines represent the gene expression in 

parasitized larvae and solid blue lines represent the gene expression in control (not parasitized) larvae. 

Partially redrawn with permission after [5] , first published by BioMed Central.  

In addition to these general approaches for any transcriptomics analysis, regardless of the 

platform that was used, some additional insights could be gained from using tiling arrays or 

transcriptome sequencing. Not only the expression level could be determined for each gene, 

but also alternative isoforms of transcripts, including splice variants and sequence variations 

(either in the coding regions or in the untranslated regions of the transcripts). In humans, 

transcriptome sequencing revealed that splicing isoforms from various tissues showed 

systematic differences, including exon skipping, alternative 3’ or 5’ splice sites, mutually 

exclusive exons and alternative first or last exons [17]. New methods allow for the 

quantification of gene expression levels for the individual isoforms, which can improve the 



Beyond the Gene List: Exploring Transcriptomics Data  
in Search for Gene Function, Trait Mechanisms and Genetic Architecture 13 

accuracy of expression measures and provide details on the role of the untranslated regions 

in gene expression regulation [18]. 

4. Beyond the gene list 

The descriptions of the analyses so far have centred on querying repositories containing the 

functional annotations for genes, to explore what is known on the genes in the gene list and 

what additional light this may shed on sub-processes, the unannotated genes and associated 

responses. Yet, many additional resources and genomic databases are available that may be 

cross-referenced and combined with the gene list, to obtain additional information on these 

genes and their interactions. Rather than focussing on individual members of the gene list 

and what is known, these approaches search for emergent properties of the gene list. 

Especially when the organism that is studied is a model organism for which many sources 

of additional information are publicly available, there is a large array of possibilities for 

further analyses.  

In addition to searching in specific repositories for functional annotations of genes, the 

extraction of information on genes and proteins from text documents (e.g., scientific 

papers) can leap across the boundaries of scientific disciplines. Text mining is the 

automated extraction of information on proteins or genes from a large literature collection 

(such as PubMed). It searches for associations between proteins and functional descriptors 

in the text. These descriptors can be of molecular origin to describe the annotations of the 

protein (as in the repositories), but also of a physiological, phenotypic or pathological 

origin to describe the inferences for the organism, or of phylogenomics origin related to the 

evolution of a gene. Through this additional dimension of information, text mining can 

help, for instance, to identify associations of the protein to rare mutations that are 

implicated in diseases, or to protein-protein interactions and regulatory pathways [19]. 

Text mining is different from a typical literature search, in that it not simply lists the hits, 

but parses the retrieved information according to further specifications (Figure 5). Various 

tools are available online (see for example www.ebi.ac.uk/Rebholz/resources.html for an 

overview).  

Physiological responses or the focal tissue of a response to the treatment or condition of 

interest may also be explored through analysis of the gene list. For some model organisms, a 

tissue atlas is publicly available that specifies the level of expression for each gene in all 

tissues and/or developmental stages (e.g., FlyAtlas, Human Atlas Suite and eMouse Atlas). 

A large fraction of genes in the genome are not expressed homogeneously throughout the 

body, but show high specificity for particular tissues [21]. Using this information provides a 

means to screen for tissues that may contribute disproportionally to the response. For 

example, when the gene list is enriched for genes that are primarily expressed in a particular 

tissue (e.g. testes, brain, liver or salivary glands), this could indicate that these tissues are 

most severely affected or responding to the treatment of interest. Additionally, the atlases 

have raised an awareness for experimental design in transcriptomics studies: when the 

transcriptomics responses are localized in a particular (minor) tissue, it is difficult to detect  
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Figure 5. Example of the output from a text mining tool, iHOP [20], for one of the genes that was 

differentially expressed in Drosophila larvae after parasite infection. The functional annotations for the 

same gene, TepII, are summarized in Table 1. The text mining tool provided additional information on 

the evolution of the gene through information on related genes (paralogs) and domains of the gene that 

show signs of positive selection. Screenshot retrieved from “iHOP - http://www.ihop-net.org/". 
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accurate expression differences when the tissue is not studied in isolation. The chances of 

missing or underestimating the change in gene expression in mixed-tissue comparisons, or 

inappropriate tissues, are substantial.  

To gain insight in the regulatory control of the response to the treatment or condition, a 

screen for cis-regulatory elements in the upstream regions of genes with differential 

expression may reveal transcription factors and/or co-factors that are involved. These cis-

regulatory elements can consist of Transcription Factor Binding Motifs (TFBM), promotors, 

enhancers, silencers and other sequence motifs that regulate the genes [22]. To identify 

(putative) cis-regulatory elements, one could search for known sequence motifs (e.g., TFBMs 

or promotors) within a specified region upstream of the start codon and in the first intron. 

Several databases exist (for example, TRANSFAC, RegTransBase and JASPAR) that contain 

the published TFBMs and promotors. As the binding sites are often relatively short (often 4-

12, but up to 30 bases long), and not all positions in the sequence are interacting (strongly) 

with the transcription factor, some sequence variation in the motif is common. Therefore, 

the TFBM are usually provided as positional weight matrices, which describe the relative 

occurrences of each base for each position. This can be converted into a graphical 

representation, or sequence logo, where the size and order of the stacked letters (A,C,G,T) 

represents the relative occurrence of the base at that position (Figure 6). These motifs may be 

investigated for particular genes of interest to obtain a prediction on the Transcription 

Factor(s) that regulate their expression.  

 

Figure 6. The Transcription Factor Binding Motif for the NF-ƘB transcription factor Relish / dorsal of 

Drosophila melanogaster, depicted as sequence logo and Positional Frequency Matrix. The variation that 

is commonly found in the binding motif for a transcription factor is incorporated by specifying for each 

position in the motif the frequency at which each base is recorded. The size of the stacked letters for 

each position represent the relative occurrence of the respective bases on each position.   

 

POSITIONAL FREQUENCY MATRIX 

A 0 0 0 0 4 2 0 0 0 1 

C 1 0 0 0 1 1 0 1 9 8 

G 7 7 9 8 0 0 0 0 0 0 

T 1 2 0 1 4 6 9 8 0 0 
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Apart from investigating the cis-regulatory elements for particular genes of interest, 

transcriptomics data is also highly suitable to test for over-represented cis-regulatory 

elements across (clusters of) co-expressed genes. This approach can identify groups of genes 

that are possibly co-regulated by the same Transcription Factor(s). Programs have been 

specifically developed to screen whether certain known motifs occur more often than you 

would expect by chance (for example, Clover [23]). These programs can also be extended 

with custom-made libraries of motifs, to include sequence motifs that could contain yet 

unidentified cis-regulatory elements. These novel motifs could be derived from aligning the 

upstream sequences of orthologs to identify conserved sequences among related taxa, or 

through the use of de novo motif discovery programs. Alternatively, MotifRegressor searches 

for any motif that is shared among genes that responded similarly in an expression study 

[24].  

Analyzing the cis-regulatory elements in co-expressed genes can be used to start unravelling 

the genetic architecture of a trait. In our study for the response to parasite infection, we 

identified seven cis-regulatory elements that were over-represented among the differentially 

expressed genes, using a combination of MotifRegressor and Clover. Three of these motifs 

were TFBMs for transcription factors that were known to be involved in the immune 

responses (the GATA-factor serpent, the NF-ƘB Relish/dorsal and the Janus kinase Stat92E), 

while three others novel motifs were identified that have not yet been associated with any 

regulatory function. The expression levels of the transcription factor serpent was not 

changed after parasitation, which may appear counter-intuitive as the TFBM was over-

represented in differentially expressed genes. Analysing the expression patterns of the 

clusters of co-expressed genes with the enriched TFBMs, however, and linking these to 

functional annotations for these groups of genes, suggested that this transcription factor was 

drawn away from it regular functions in development and metabolism (co-regulated genes 

with lower expression levels), towards the activation of the immune response (co-regulated 

genes higher expression levels) [5]. Additionally, we could hypothesize that the novel motifs 

may also be involved in coordinating the immune response to parasite infection. Using the 

cisRED database [25] as a first exploration of these novel motifs, two of these motifs were 

retrieved as a predicted regulatory element in the human genome sequences, including a hit 

in the upstream region of a known trans-activator of the MHC II complex (ZXDA). 

Although the functional characterization of the novel motif is still awaiting, these examples 

illustrate the complex genetic interactions that may coordinate the regulation of a trait.     

Not only transcription is regulated through regulatory sequences associated with genes, 

translation into proteins is also partially coordinated by regulatory sequences. A rich world 

of small non-coding RNA molecules have been discovered since the start of the genomic era, 

which added a completely new dimension to the regulation of gene interaction networks 

[26]. One large class of these non-coding RNAs, the microRNAs, bind to the 3’ untranslated 

regions (3’ UTRs) of mRNAs, inhibiting their translation by polymerases and targeting the 

mRNAs for degradation. Several databases exist that link target genes or sequence motifs in 

the 3’ UTR to specific microRNAs. These tools are accessible through the microRNA 

database miRBase [27]. Associating microRNAs to the genes in a gene list could be achieved 

in an analogous manner as the association to the transcription factors: either by searching 
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for known microRNA binding motifs within the 3’UTRs of differentially expressed genes, or 

by searching for any over-represented or conserved motifs in the 3’UTRs among the genes 

in the gene list and trying to associate those to microRNAs.  

Another approach to analyse the genetic architecture for a trait is to make use of protein-

protein interaction (PPI)  network databases. These databases contain the known and 

predicted protein-protein association network, based on experimental approaches (e.g., two 

hybrid assays, purification of protein complexes, Chromatin immunoprecipitation (ChIP), 

etc.) and/or computational methods for predicting protein interactions. A large collection of 

these PPI databases is publicly available (see for example the Jena Protein-Protein 

Interaction website ppi.fli-leibniz.de/jcb_ppi_databases.html for an extensive overview). 

Several web-based tools can be used to analyse and visualize the PPI networks (e.g., 

STRING [28] and VisANT [29]). Gene lists submitted to these tools are being assembled into 

inter-connected networks of proteins, based on the PPI databases. The submitted proteins, 

as well as the proteins that it is known (or predicted) to interact with, form the ‘nodes’ in the 

network. All connections between any of these proteins (directly, or through an 

intermediary protein) are depicted by lines or ‘edges’ (Figure 7). The topology of these 

networks describe the frequency distributions of edges per node, and this can reveal 

whether the network resembles a random assembly of proteins or not [30].  

 

Figure 7. A Protein-Protein Interaction (PPI) network for a subset of the genes involved in the 

regulation of blood cell proliferation and differentiation in Drosophila. The proteins (or ‘nodes’) are 

depicted by red or blue circles. The red symbols represent genes with changed expressed in a Drosophila 

strain with an increased immunological resistance against parasites [6]. The known PPIs among these 

proteins are depicted by lines (or ‘edges’) between nodes, mostly based on two-hybrid data. Some of the 

proteins are highly interconnected to other modules of proteins (e.g., pnt, bsk), and these genes can be 

considered ‘hubs’ or key coordinators of the changes in expression.     
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Constructing a PPI network for genes that changed expression in a transcriptomics study 

may reveal modules of genes that are associated through functional processes, or identify 

key regulators/modulators to the treatment or condition of interest. Different than with the 

clustering of genes based on similarity of expression patterns for various conditions or time 

points, a PPI network will also group genes together that behaved very different 

transcriptionally, yet may participate in the same signal transduction cascade. We 

assembled a PPI network for the genes that changed expression between two Drosophila 

lines from the same genetic background, but differing genetically in their resistance to 

parasites after only five generations of artificial selection. Approximately a third of the 

nearly 900 genes with changed expression were inter-connected in several modules through 

an intricate and non-random PPI network [6]. Some genes could be identified within the 

network that had a central position with a high level of interconnectedness, and these genes 

may function as a ‘hub’, as they have the potential to influence the activity of a large number 

of genes. These ‘hub’ genes, or their regulators, could be hypothesized to provide targets for 

selection for increased resistance to parasites, in regulating and coordinating a multitude of 

phenotypic responses.  

Another aspect of the genetic architecture of a trait is its relation to the genome architecture. 

The genes in a gene list can be mapped to chromosomal positions to search for chromosomal 

‘hotspots’ of differential expression. Transcriptional activity varies for chromosomal 

domains or regions, and characterizing these patterns may indicate regulatory mechanisms 

that act on these genes. For example, some chromosomal domains are highly transcribed 

due to epigenetic mechanisms (e.g., chromatin architectures) that maintain a high activity 

state, as is seen for heat-shock genes [31]. Such domains under epigenetic control may be 

recognized by mapping multiple highly expressed genes, or conversely, a complete lack of 

expression, in the same chromosomal region. Such genomic domains may evolve at a 

different rate. For instance, the regions around heat-shock genes are more susceptible to 

insertion by Transposable Elements (i.e., mobile DNA sequences that can translocate 

themselves within the genome) due to their chromatin architecture, which may lead to a 

faster accumulation of mutations [32]. Furthermore, some chromosomal domains are highly 

transcribed in particular tissues only, and the gene arrangements within these domains are 

highly conserved across taxa [33]. Moreover, chromosomal regions show different 

expression patterns in healthy tissues compared to cancers [34]. These examples indicate 

that the physical arrangement of genes within the genome may be a target of evolution, 

likely due to epigenetic and other regulatory mechanisms that control gene expression of 

sections of the genome.  

Additionally, examining the genomic positions of differentially expressed genes may reveal 

evolutionary processes that acted on the genes. Strong selection for a particular allele or 

genomic variant leaves a detectable pattern in the genome, which may be represented by a 

genomic clustering of genes with changed expression levels. When a particular allele 

provides an selective advantages to the individual, this locus may be swept through the 

population. Any allelic variation that is physically linked to this locus (i.e., resides in the 

nearby chromosomal domain) would be swept through the population as well. One of the 



Beyond the Gene List: Exploring Transcriptomics Data  
in Search for Gene Function, Trait Mechanisms and Genetic Architecture 19 

best examples of a strong selective sweep is a mutation in the lactase gene in humans, that 

confers lactose resistance and is highly common among Europeans. Yet, not only this 

mutation has spread through the European population, but a region spanning 

approximately a million bases was swept along as well [35]. Such a sweep can also be 

detectable in expression assays. In our own studies, we imposed a strong selective sweep for 

immunological resistance in Drosophila against parasites, and mapped the genes with 

changed expression to the chromosomes. This revealed a part of one chromosome bearing a 

signature of positive selection [6].  

Especially when information is available on sequence variations (i.e., different genotypes, or 

alleles) among the different biological samples in the experiment, genome-wide association 

mapping (GWAS) is another option to start unravelling the genetic architecture of a trait. In 

this approach, the individual variation in sequence is related to the variation in expression 

by statistical  modelling. Using a multiple regression approach, the allelic states at various 

loci (e.g., whether it has an A, T, C or G at locus x, an insertion or deletion (indel), or 

inversion) is related to the expression level of each gene. This approach can be applied both 

when the sequence variation is independently acquired, for example through independent 

genotyping assays on the same samples, or from the more detailed information that can be 

extracted from tiling arrays or transcriptome sequencing data. This approach requires large 

sample sizes to obtain sufficient power and resolution for the statistical modelling, and has 

been used in a medical context to associate rare mutations with diseases. Causally linking 

sequence variants to diseases, however, has proved to be daunting [36]. Yet, this approach 

has been useful in obtaining more basal knowledge on genome functioning, and the relative 

importance of various sequence variants (e.g., copy number variants (CNVs), Single 

Nucleotide Polymorphisms (SNPs), small insertions and deletions (indels)) on gene 

expression variation [37].      

5. Conclusions 

Transcriptomics analysis has been hugely popular to explore the unknown players in a wide 

range of biological processes, diseases, traits  and responses to stimuli. The technique is 

extremely powerful as a first step to implicate novel genes and pathways that may be involved 

or associated with a particular condition. It should be emphasized, however, that a difference 

in expression per se is not sufficient evidence to infer a direct involvement of the gene in the 

particular process or trait. This is a limitation of the technology, and it urgently requires the 

development of high-throughput empirical approaches to validate and functionally 

characterize the large numbers of genes that are putatively of interest. The availability of 

genome-wide libraries of RNAi stocks to knock down any gene of interest [38], or reference 

panels of genetic variants with fully sequenced genomes [39] are prime examples of the 

resources that are needed to follow up on transcriptomics studies. At the same time, the list of 

genes with potential involvement is certainly not the only information that can be derived 

from a transcriptomics study. It is especially the information on all the differentially expressed 

genes, including those that are not directly involved, that provides an exceptional source of 

information on regulation, correlated responses and the genetic architecture of a trait. 
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A large number of databases and bio-informatic tools are publically available to explore and 

annotate the individual genes on the gene list, and more importantly, to analyse the gene list 

collectively. The latter provides both additional power and a more comprehensive insight in 

the mechanisms and genetic architecture of a trait. Most traits, diseases and responses to 

environmental stimuli are highly complex, with environmental factors and genetic networks 

of interactions that contribute to the trait, disease or response. The factors and genetic 

network underlying a trait may be elucidated by a combination of bioinformatics 

approaches, and the emergent properties of such approaches may be more revealing than 

the search for individual candidates for a trait or process.  

Many of the bio-informatic tools that can be applied for these analyses have been made 

accessible to the research community through the Bioconductor platform 

(www.bioconductor.org) [40]. This platform is based primarily on the open-source R 

programming language and runs on all operating systems. A good introduction into this 

versatile bio-informatic environment has been made available by the Girke lab at the 

University of California, Riverside through a combination of online manuals 

(http://manuals.bioinformatics.ucr.edu/). Other freely available, online suites for the analysis 

of transcriptomics data include Babelomics (http://www.babelomics.org) [41] and Galaxy 

(http://galaxy.psu.edu/, especially for transcriptome sequencing) [42-44]. 

The latest development in high-throughput sequencing are opening up new possibilities for 

the analysis of transcriptomics data. More detailed characterization of transcripts is 

achievable, and the power of transcriptomics analysis can now also be fully harnessed for 

organisms without a sequenced genome. Many of the approaches that have been developed 

for transcriptomics data with microarrays are equally applicable to data from transcriptome 

sequencing. In that sense, the knowledge-base that has accumulated in the research 

community in transcriptomics analysis over the past decade will largely remain a valuable 

resource. The experience and expertise that has been developed in dealing with the 

limitations and possibilities of analysing microarray data will also be of use while exploring 

the specific limitations and opportunities that are associated with this new platform.  Robust 

and accurate methods need to be developed fast for the pre-processing, normalizing and 

analysing of transcriptome sequencing data. This will ensure that the full potential of this 

new technology can be made accessible to the wide research community. 
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