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1. Introduction 

A number of hypotheses have been proposed regarding the origins of life on Earth. In the 

Russian text of 1924, Oparin (1938) suggested that simple molecules (e.g., CH4, NH3) in the 

early Earth, reacted to form small bio-molecules and complex bio-polymers (e.g., nucleoside, 

nucleotide, peptide, polynucleotide) which then evolved into multimolecular functional 

systems, and finally ‘life’ [1]. A few years later, Haldane (1929) independently proposed a 

similar hypothesis for the origins of life [2]. It was Bernal (1951), however, who first 

suggested that clay minerals played a key role in chemical evolution and the origins of life 

because of their ability to take up, protect (against ultraviolet radiation), concentrate, and 

catalyze the polymerization of, organic molecules [3]. Indeed, Cains-Smith (1982) has 

suggested that clay minerals can store and replicate structural defects, dislocations, and 

ionic substitutions, and act as ‘genetic candidates’ [4]. Thus, intercalation of organic 

molecules and monomers into the layer structure of clay minerals, such as montmorillonite 

and kaolinite, would favor the formation and replication of biopolymers with specified 

sequences (e.g., enzymes, polynucleotides).  

The composition of the primitive atmosphere is an important factor influencing the 

formation of small biomolecules. Urey (1952) and Miller and Urey (1959) proposed that the 

early Earth had a reducing atmosphere, and conducted their experiments on chemical 

evolution accordingly [5, 6]. Computer simulation, however, would indicate that the 

primitive atmosphere was not reducing. Moreover, it was very difficult to synthesize bio-

organic molecules under reducing conditions.  

In this review we describe the environment of the primitive Earth, outline the clay-induced 

formation of small molecules and simple bio-molecules, discrimination of optical isomers, 

and polymerization of bio-molecules, and then briefly remark on the RNA world and the 

origin of cells. 
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2. Environment of the early Earth 

In discussing the origins of life, it is important to know the state of the early Earth. Cosmic 

dust grains, rotating around the primitive Sun, coalesced to form planetesimals, and then 

larger bodies (e.g., planets) through gravitation, giving rise to the solar system about 4.6 

billion years ago [7]. The surface of the primitive Earth was molten to a depth of 1000 km [8]. 

The light elements had disappeared into space but various gases were retained on the 

surface by gravitation. As the temperature decreased, the surface of the magma ocean 

gradually solidified. Water vapor, carbon oxide, nitrogen gas began to cover the Earth 

surface, forming the primitive atmosphere. Water vapor gave rise to clouds which turned 

into rain, feeding rivers and oceans. Dissolved metal ions from rocks entered into the 

primitive ocean. Lightnings and volcanic eruptions often occurred. Small and large 

meteorites also bombarded the early Earth. These events and light from the sun were 

conducive to creating simple organic compounds and small bio-molecules.  

2.1. Atmosphere 

In an early paper, Urey (1952) suggested that Earth’s primitive atmosphere was mainly 

composed of anoxic gases (e.g. NH3, CH3) and water vapor [5]. On the other hand, Levine et 

al. (1982) proposed that non-reductive gases (e.g. CO, CO2, N2) made up the 

paleoatmosphere [9]. More recently, Owen (2008) argued for a composition between anoxic 

and non-reductive gases [10].  

2.2. Meteorite  

There are basically two types of meteorites: primitive and fractionated. Table 1 shows a 

classification scheme for meteorites. Carbonaceous (C-)chondrite is considered to be the 

earliest type of meteorite, containing a ‘memory’ of the primitive solar system. C-

chondrites are mainly composed of Mg-rich minerals including a hydrous silicate, 

serpentine. They also contain organic and bio-organic molecules (e.g., amino acids). When 

such meteorites rained down on the early Earth, the energy of collision would convert 

simple organic molecules to bio-organic compounds. Table 2 lists the range and variety of 

organic molecules in space. 

2.3. Bombardment by meteorites and asteroids 

The craters on Moon were formed about 3.8−4.0 billion years ago through bombardment 

by meteorites and asteroids [11]. At the same time, huge numbers of meteorite and 

asteroids would have hit the relatively larger Earth because of its proximity to Moon. As a 

result, the surface temperature of Earth would markedly increase, and most liquid water 

would have evaporated. Likewise, many simple organic compounds or large bio-

molecules that were present, or formed through meteorite impact, would have volatilized 

or decomposed.  
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Stony chondrites 

Enstatite chondrites 

H(high-Fe) chondrites 

L(low-Fe) chondrites 

LL(low Fe and low metal) chondrites 

Carbonaceous chondrites: Type I No Chondrule, & Type II Chondrule  

Achondrites 

Ca-poor: Aubrites, Diogenites, Ureilites, Chassignite 

Ca-rich: Angrite, Nalhlites, Eucrites, Howardites  

Stony- Irons 

Pallasites, Mesosiderites  

Irons 

I AB, II AB, IIAB, IVA, IV B  

Table 1. Classification of meteorites [59]. 

 

Nitryl and acetylene derivative etc. 

HCN, HC3N, HC5N, HC7N, HC9N, HC11N, HC2CHO, CH3CN, CH3C3N, CH3C2H, 

CH3CH2CN, CH2, CHCN, HNC, HNCO, HNCS, HNCCC, CH3NC, HCCNC  

Aldehyde, Alcohol, Ether, Ketone, Amine, etc. 

H2CO, H2CS, CH3CHO, NH2CHO, H2CCO, CH3OH, CH3CH2OH, CH3SH, (CH3)2O, 

(CH3)2CO, HCOOH, HCOOCH3, CH3COOH, CH2NH, CH3NH2, NH2CN, H2C3, H2C4, H2C6  

Allene 

c-C3H2, c-SiC2, c-C3H, c-C2H4O  

Molecular ions 

HCS+, CO+, HCO+, HOCO+, H2COH+, HCNH+, HC3NH+, HOC+  

Radical 

OH, CH, CH2, NH2, HNO, C2H, C3H, C4H, C5H, C6H, C7H, C8H, CN, C3N, C5N, CH2CN, 

CH2N, NaCN, C2O, NO, SO, HCO, MgNC, MgCN, C2S, NS  

Table 2. Organic molecules in space [60]. c- (Allene): circlar. 

2.4. Clay minerals 

Clay minerals would have formed by weathering of volcanic glass and rocks. Also, when 

the temperature of land and atmosphere decreased, the highly concentrated cations and 

anions in the primitive ocean would have precipitated on the primitive ocean floor, and 

there interacted to yield certain compounds. The oldest rock on Earth is sedimentary in 

origin, suggesting that land erosion by rivers had already happened. Water would have 

come into contact with volcanic glass and rocks, opening the way to clay mineral formation. 

The Mars investigation indicates the occurrence in the planet’s surface of clay minerals with 

an age of > 3.5 Ga, and a chemical composition consistent with Al-Si-O-H and Mg-Si-O-H 

systems [12]. By analogy, clay minerals would have formed on the early Earth. 
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3. Simple bio-molecules 

The bio-organic compounds of ‘life’ comprise amino acids, nucleic acid bases, sugars, and 

lipids (Tables 3 and 4; Figure 1). The role of clay minerals in the synthesis of amino acids, 

nucleic acid bases and sugars is described below. 

 

Amino acid Side chaine (R) Amino acid Side chaine (R) 

Glycine (Gly) -H 
Aspartic acid 

(Asp)  

Alanine (Ala) -CH3 
Glutamic acid 

(Glu)  

Valine (Val) 
Asparagine 

(Asn)  

Leucine (Leu) 
Glutamine 

(Gln)  

Isoleucine (Ile) Lysine(Lys) -CH2-CH2-CH2-CH2-NH2 

Phenylalanine 

(Phe) 
Arginine (Arg)

 

Tyrosine(Tyr) 
 

Histidine (His)

 

Serine (Ser) -CH2-OH 
Tryptophan 

(Try) 

 

Threonine(Thr) 
 

Proline (Pro) 

 

Cysteine (Cys) -CH2-SH   

Methionine (Met) -CH2-CH2-S-CH3   

Table 3. Twenty bio-amino acids and their side chains. Proline: the side chaine is red. The structure of 

the amino acid: R-CH(NH2)-COOH 
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Phosphatidate

Phosphatidylcholine 

Phosphatidylethnolamine 

Phosphatidylglycerol 

Phosphatidylinositol 

Phosphatidylserine 

Cardiolipin 

Sphingomyelin 

Glycolipid 

Cholesterol

Table 4. Main lipids of biologial membrane. [61] 

 

Figure 1. Components of RNA (or DNA) and nucleoside and nucleotide. 
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3.1. Amino acids 

Miller and Urey (1959) were able to synthesize bio-molecules from simple precursors (e.g., 

NH3, CH3, water) by circulating the mixture past an electric discharge (“spark”), simulating 

a lightning strike. Table 5 lists the compounds obtained abiotically under reducing 

atmospheric conditions. When montmorillonite was added to Miller’s (1953) system, 

Shimoyama et al. (1978) found that the yield of amino acids with an alkylated side chain 

increased [13, 14] (Table 5). Subsequently, Yuasa (1989) conducted the sparking experiment  

using HCN and NH4(OH) in the presence of montmorillonite [15], obtaining glycine, 

alanine, and aspartic acid as the main products. 

 

Glycine Succinic acid 

Glycolic acid Aspartic acid 

Sarcosine Glutamic acid 

Alanine Iminodiacetic acid

Lactic acid Iminoacetic-propionic acid 

N-Methylalanine Formic acid 

α-Amino-n-butyric acid Acetic acid 

α-Aminoisobutyric acid Propionic acid 

α-Hydroxybutyric acid Urea 

β-Alanine N-Methy urea 

Table 5. Organic compounds dected in Miller’s experiment [5,13]. Bold: bio-amino acid. Red; more of 

these compounds were obtained in the presence of monmtrillonite [13]. 

Some components of the primitive atmosphere are soluble in water. Under hydrothermal 

conditions, as would pertain in a thermal vent, the dissolved components would react to 

form various amino acids (e.g., glycine, alanine, lysine, isoleucine) as Marshall (1994) has 

reported [16]. 

The primitive atmosphere might not have been reducing, however. Further, bio-organic 

molecules are difficult to obtain under the conditions used by Miller (1953) [14]. In an 

attempt to make for favorable conditions, Kobayashi et al. (1990) used proton irradiation to 

produce a reducing atmosphere from an oxidizing one [17]. Nevertheless, the role of clay 

minerals in the formation of bio-molecules remains uncertain. Infrared spectroscopy 

suggests that the dust in the diffuse interstellar medium contains aliphatic hydrocarbons 

[18]. Again, it is uncertain whether clay minerals are involved in their formation.  

3.2. Adsorption of amino acids by clay minerals 

Clay minerals would be capable of adsorbing bio-organic molecules from the early ocean. 

The resultant clay-organic complexes would partly be deposited on the ocean floor. 

Greenland et al. (1962, 1965) investigated the interactions of various amino acids with H-, 

Na-, and Ca-montmorillonites [19, 20]. Arginine, histidine, and lysine adsorbed to Na- and 

Ca- montmorillonites by cation exchange. Other amino acids (alanine, serine, leucine, 
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aspartic acid, glutamic acid, phenylalanine) adsorbed to H-montmorillonite by proton 

transfer. The adsorption of glycine and its oligo-peptides by Ca-montmorillonite and Ca-

illite increased with the degree of oligomerization (molecular weight). Hedges and Hare 

(1987) suggested that the amino and carboxyl groups of the amino acids were involved in 

their adsorption to kaolinite [21], while Dashman and Stotzky (1982, 1984) reported that 

kaolinite adsorbed less amino acids and peptides than did montmorillonite [22, 23].  

Serpentine is a clay mineral, formed by the weathering of olivine and pyroxene. As such, 

serpentine would be expected to occur on the surface of the early Earth. Serpentine, 

however, has a limited capacity for taking up amino acids (Hashizume, 2007) although it 

can adsorb measurable amounts of aspartic and glutamic acids [24]. On the other hand, 

allophane can take up appreciable amounts of alanine [25]. The adsorption isotherms 

showed three distinct regions as the (equilibrium) concentration (Ce) of alanine increased: a 

nearly linear rise at low Ce, a leveling off to a plateau at intermediate Ce, and a steep linear 

increase at high Ce. The oligomers of alanine were also adsorbed by allophane but the extent 

of adsorption did not vary greatly with solute molecular weight [26].  

3.3. Optical discrimination  

Amino acids can exist in two enantiomeric (chiral) types, namely, D (dextrorotatory) and L 

(levorotatory) (Figure 2). Both enantiomers would have formed, in equal amounts under 

abiotic conditions, giving a racemic mixture with a D/L molar ratio of 1/1. The amino acids 

in living organisms, however, are generally of the L-type. This finding is one of the 

problems associated with the origins of life.  

 

Figure 2. D- and L-enantiomers (“mirror” images) of amino acids. R represents the side chain (Table 3). 

The question arises whether clay minerals can discriminate between D- and L-amino acids 

when placed in contact with a racemic mixture. Using Na-montmorillonite and a racemic 

mixture of several amino acids, Friebele et al. (1981) did not observe any difference in 

adsorption between the D- and L-enantiomers [27]. This finding is not altogether surprising 

since clay minerals have no chirality in their bulk structures although the layer structure of 

kaolinite may be chiral due to the presence and positioning of vacancies (Figure 3). The edge 

surface of a montmorillonite layer may also be structurally chiral due to the presence of 

defects. These chiral structures, however, are not individually separable. 

CC

COOH COOH

NH2 NH 2

H H

R R

L D
mirror
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Figure 3. Overlap of Al atoms in stacked layers of kaolinite. Black circles indicate occupied Al site, and 

white circles indicate vacant Al sites [62]. 

On the other hand, quartz crystals are intrinsically chiral and, as such, can show stereo-

specific effects. Bonner et al. (1974), for example, found that L-quartz preferred L-alanine 

to its D-enantiomer, while D-quartz adsorbed more D- than L-alanine. The difference in 

preference was about 1%. Interestingly, Siffert and Naidja (1992) reported that 

montmorillonite showed stereo-selectivity in the adsorption and deamination of aspartic 

and glutamic acids. Likewise, Hashizume et al. (2002) reported that an allophane from 

New Zealand, extracted from a volcanic ash soil, showed a clear preference for L-alanyl-L-

alanine over its D-enantiomer [30]. They suggested that the size, intramolecular charge 

separation, and surface orientation of L-alanyl-L-alanine zwitterions combined to confer 

‘structural chirality’ to the allophane-amino acid complex. Although the allophane sample 

was purified before use, the presence of trace amounts of organic matter might have left a 

chiral ‘imprint’.  

3.4. Nucleic acid bases 

Nucleic acids contain two purine bases (adenine, guanine), and three pyrimidine bases 

(cytosine, uracil, thymine) (Figure 1). Uracil and thymine are found in RNA and DNA, 

respectively.  

Adenine could be prebiotically synthesized from hydrogen cyanide, and cytosine from 

cyanoacetylene, while uracil could arise from cyanoacetylene via malic acid. Chittenden and 

Schwartz (1976) reported that the addition of montmorillonite increased the rate of adenine 

formation [32]. 

No nucleic acid bases were found in the Miller experiment [6]. Adenine was formed, 

however, when a mixture of HCN and montmorillonite was added to the reaction vessel, 

and exposed to lightning [15]. Similarly, uracil could be synthesized from CO, N2 and H2O 

by proton irradiation [17]. 

mirror
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3.5. Adsorption of nucleic acid bases by clay minerals 

The adsorption of nucleic acid bases by montmorillonite has been widely investigated. 

Lawless et al. (1984) and Banin et al. (1984) reported that the adsorption of adenosine 

monophosphate (AMP) by montmorillonite, containing different exchangeable cations (Zn, 

Cu, Mn, Fe, Ca, Co, Ni), generally increased as solution pH decreased [33, 34]. In the case of 

Zn-montmorillonite, adsorption of 5’-AMP reached a maximum at pH ~7. The extent of 

adsorption was primarily influenced by the acid dissociation constant of the nucleic acid 

base. Winter and Zubay (1995) investigated the relative ability of montmorillonite and 

hydroxylapatite in adsorbing adenine and adenine-related compounds [35]. They found that 

montmorillonite adsorbed more adenine than the other compounds (adenosine, 5’-AMP, 5’-

ADP, 5’-ATP), while hydroxylapatite preferred adenosine phosphate to adenine and 

adenosine. The extent of adsorption depended on solution pH, and might also be affected by 

the buffer used.  

More recently, Hashizume et al. (2010) investigated the adsorption of adenine, cytosine, 

uracil, ribose, and phosphate by Mg-montmorillonite [36]. At comparable concentrations in 

the equilibrium solution, adsorption decreased in the order adenine > cytosine > uracil, 

while ribose was hardly adsorbed. Hashizume and Theng (2007) found that allophane had a 

greater affinity for 5’-AMP than for adenine, adenosine, or ribose [37]. Again, very little 

ribose was adsorbed. The strong adsorption of 5’-AMP accords with the high phosphate-

retention capacity of allophane [38]. 

The adsorption of nucleic acid bases to clay mineral surfaces has also been assessed by 

computer simulation. An ab initio study by Michalkova et al. (2011) suggests that uracil was 

adsorbed perpendicularly to the kaolinite surface [39]. With montmorillonite, on the other 

hand, nucleic acid bases tend to adsorb in a face-to-face orientation with respect to the basal 

siloxane plane [40].  

3.6. Sugar 

Sugars may be synthesized from formaldehyde through the Formose reaction. Clay and 

layered minerals (e.g., montmorillonite, brucite) can catalyze the self-condensation of 

formaldehyde. Further, the sugar oligomers formed are stabilized by adsorption to 

montmorillonite [41, 42].  

4. Polymerization of bio-polymers 

4.1. Peptides  

Peptides are polymers of amino acids (Table 3; Figure 4). On the early earth, peptides may 

have formed at places where energy is produced, such as thermal vents on the sea floor. The 

primitive ocean may have contained small bio-molecules, including amino acids. As already 

mentioned, clay minerals would have played an important role in concentrating and 

polymerizing such molecules on their surfaces.  
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Figure 4. Polymerization of amino acids. Red indicates peptide bonding. R1 and R2 represent amino 

acid side chains (Table 3). 

According to the thermal vent model, organic molecules sink to the sea floor around a 

thermal vent, and polymerize under conditions of high pressure and temperature [43]. The 

polymers formed would then move away from the thermal vent. Imai et al. (1997) have 

attempted to synthesize oligopeptides in a flow reactor, simulating a submarine 

hydrothermal system [44]. Details of the instrumentation have been given by Matsuno 

(1997) [45]. With glycine as the monomer, both di- and tri-glycine were formed. The effect of 

metal cations on amino acid oligomerization was also investigated but that of clay minerals 

has not been assessed.  

The temperature of seawater on the early Earth is expected to be appreciably higher than 

that at present, a condition that would favor organic molecule polymerization. The thermal 

copolymerization of various amino acids (aspartic acid, glutamic acid, glycine, alanine, 

leucine) has been reported by Fox and Harada (1958). Indeed, they were able to synthesize a 

protenoid microsphere [46].  

Plate tectonics would have been operative in the early Earth. When organic-rich sediments 

moved into a trench where the temperature and pressure are higher than at the surface, the 

water in the sediments would be depleted. As a result, the concentration of organic 

molecules would increase, promoting their polymerization [47]. The synthesis of glycine 

peptides with montmorillonite under trench-like hydrothermal conditions (5−100 MPa 

pressure; 150 C temperature) has been reported by Ohara et al. (2007) who obtained up to 

10-mers of glycine [48].  

Clay mineral particles on the beach undergo repeated drying and wetting, being dried at 

low tide, and wetted at high tide. This condition would favor polymerization of the clay-

associated organic molecules. Using kaolinite and bentonite as the clay minerals, and 

glycine as the organic species, Lahav et al. (1978) obtained measurable amounts of glycine 

oligomers up to the 5-mer [49], as shown in Table 6. Ferris et al. (1996) obtained about 50-

mers of glutamic acid [50] by incubating (activated) glutamic acid with illite. 

In a “shock” experiment, simulating collision of meteorite and asteroids with Earth, by 

Blank et al. (2001) amino acids were polymerized into oligo-peptides (mostly dimers and 

trimmers) [51].  
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Cycles Net heating Yields (nmol/mg clay) 

No. period (days) Dimer Trimer Tetramer Pentamer 

Kaolinite 

11 33.7 2.27 0.45   

21 55.0 1.99 0.79 0.29 trace 

27 67.4 2.25 1.01 0.33 trace 

33 77.3 2.21 0.83 0.32 trace 

27 67.4 0.97 0.38 0.10 trace 

27 67.4 1.31 0.55 0.15 trace 

27 67.4 3.50 1.58 0.60 trace 

Bentonite 

11 32.8 6.37 0.20 n.d. n.d. 

21 55.0 7.99 0.60 n.d. n.d. 

27 67.4 4.92 0.61 trace n.d. 

27 67.4 2.92 0.20 n.d. n.d. 

27 67.4 12.7 1.90 trace n.d.  

11 57.0 36.7 8.2 2.5  

1 10.6 11.9 trace n.d.   

5 25.4 26.9 1.9 n.d.  

11 57.0 40.1 7.9 1.2 0.8 

Table 6. Yields of glycine oligomers in the presence of kaolinite and bentonite, subjected to wetting and 

drying cycles [49]. n.d. = not detected 

4.2. Nucleotide polymers (RNA world) 

One hypothesis concerning the origins of life involves the ‘RNA world’ in which RNA 

molecules acted as both enzyme-like catalysts and genetic materials [52]. The four nucleic 

acid bases in RNA have a complementary function. Thus. RNA would be able behave like 

DNA, although uracil (U) and ribose were used in RNA instead of thymine (T) and 

deoxyribose in DNA [53]. The molecule of RNA is composed of a nucleic acid base, ribose 

and phosphate. Combination of a nucleic acid base with 1’-ribose gives rise to a nucleoside, 

and the addition of phosphate at the 3’- and 5’- positions of ribose yields a nucleotide 

(Figure 1). RNA is therefore a polynucleotide.  
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The clay-catalyzed synthesis of polynucleotides has been investigated by Ferris and 

coworkers. Using the 5-phosphorimidazolide of adenine (ImpA) as the activated RNA 

monomer, Ferris and Ertem (1993) were able to obtain oligomers containing 6−14 monomer 

units in the presence of montmorillonite [54]. The formation of RNA oligomers, however, is 

but the first step towards preparing RNA with more than 40 monomers that are 

theoretically required for the initiation of the RNA world. Long-chain (elongated) RNA can 

be obtained using the “feeding” procedure; that is, by daily addition of ImpA to the 

decanucleotide (10-mer primer) adsorbed to Na-montmorillonite. Polynucleotides 

containing more than 50-mers are formed after 14 feedings although the principal products 

contain 20–40 monomer units [55]. Using activated adenosine-, uridine-, guanosine- or 

cytosine-5’-phospho-1-methyladenine, Joshi et al. (2009) obtained the corresponding 40 to 

50-mers [56]. 

5. Cell origin  

Lipids make up part of the living cell (Table 4). In water lipids form a micelle structure 

where that the outer hydrophilic part is in contact with water, and the hydrophobic part is 

turned inside (Figure 5). The cell wall has a trans-membrane protein through which 

nutrients enter the cell.  

 

Figure 5. Micelle structure. Hydrophilic group: phospate group, choline group, phosphocholine group 

etc. Hydrophobic group: stearate, oleate, linoleiate etc. 

Clay minerals might function as a primordial cell [4]. When clay minerals are deposited on 

the ocean floor (or dried), the particles form a pile, enclosing small spaces (Figure 6). It is 

conceivable that the small spaces behave like cells. Further, when clay minerals are 

dispersed in water, bubbles form in water or the surface of water, while the clay particles 

gather at the boundary between water and air, as shown in Figure 7 [57]. In such a case, clay 

minerals make a cell-like spherule. 

Hydrophobic group

Hydrophilic group 
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Figure 6. Schematic figure of the room (green) to function like the cell. Clay mineral layers were 

dispersed in water and then dry water but small rooms play the role like the cell [4].  

 

Figure 7. Schematic figure of a bubble shape sheet clay mineral micelle [57]. 

Unlike surfactants, lipids are difficult to synthesize. Surfactants may transform into lipids. 

Apatite has been reported to be capable of catalyzing the formation of a proto-lipid [58]. 

Water
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6. Conclusions 

This article describes the role of clay minerals in chemical evolution although various 

other materials in the early Earth would have participated in the formation of life-like 

structures. Most experiments related to the origins of life on Earth use specific clay 

minerals, such as montmorillonite and kaolinite. Volcanic rocks from the magma ocean 

would be enriched in Mg2+ ions. On this basis, we have investigated the interactions of 

Mg-rich clay minerals (e.g., talc, serpentine) with organic molecules, including bio-organic 

compounds. It is further suggested that the atmosphere of the early Earth contained little 

oxygen. This condition would be conducive to the formation of Fe2+-rich clay minerals 

which, therefore, might have played an important part in the synthesis of simple bio-

organic molecules. 

Besides being able to concentrate organic molecules, clay minerals can also control the 

surface arrangement of adsorbed nucleic acid bases or amino acids. By using a mixture of 

different clay mineral species, it may be possible to select a given bio-molecule over another 

for adsorption and polymerization. Although there is an element of trial and error in 

investigating the role of clay minerals in chemical evolution and the origins of life, we may 

yet be surprised by the outcome. 
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