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1. Introduction 

Nutraceuticals, a term combining the words “nutrition” and “pharmaceutical”, is a food or 

food product that provides medical or health benefits including the prevention and treatment of 

diseases. A functional food essentially provides a health benefit beyond the basic nutrition, 
whereas nutraceutical is used to describe an isolated or concentrated molecular extract of 
bioactive compounds. Milk is a unique food providing a variety of essential nutrients 
necessary to properly fuel the body. Inactive food proteins can release encrypted bioactive 
peptides in vivo or in vitro by digestive enzymatic hydrolysis. Bioseparation protocols offer 
unique possibilities for a number of application areas, e.g., hydrolyzate-based nutraceutical 
ingredients for functional foods, dietary supplements and medical foods. 

Many ingredients are included in the wide range of nutraceuticals, such as essential amino 
acids, conjugated fatty acids, vitamins, minerals and polyphenols. They have already been 
patented and incorporated in functional foods and nutritional beverages. Such components 
are believed to improve overall health and well-being, reducing the risk of specific diseases 
or minimizing the effects of other health concerns. However, milk is devoid of flavonoids, 
the most common group of vegetable polyphenolic compounds, which act as antioxidants 
and free radical scavengers. In contrast, the ingestion of soy and green tea extract may 
reduce the risk of developing prostate cancer and may protect against various other types of 
cancer [1-2]. An interesting patented invention has made available an extended-release form 
of polyphenols and riboflavin (vitamin B2) coated with methylcellulose [3]. Coating slows 
down the release of polyphenols in the nutraceutical preparation [3]. Possible applications of 
coating technology could be extended to all of the bioactive peptides susceptible to digestive 
enzymes. For example, glutathione can be maintained in human blood at normal levels by 
supplying it as dry-filled capsules [4]. Nutrients and bioactive compounds may be 
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microencapsulated by using mixtures of proteins or peptides and oils. Encapsulation of ω-3 
fatty acids (FA) enhances the stability and bioavailability of bioactive food ingredients [5]. By 
these means, new transparent bioavailable beverages containing ω-3 rich oils, phospholipids 
and minerals in an oxidatively stable food system were created [6]. Iron or calcium casein 
phosphopeptides (CPP) were embedded in the chitosan lactate fiber as a protective agent 
against oil oxidation [6]. A recent patent relates to a nutraceutical composition consisting of 
a sweetener admixture for food or drink comprising calcium lactate, calcium acetate, 
vitamin D3 and sucralose (for fortified zero calorie formulation) or sugar (white/brown; for 
fortified sugar preparation) [7]. Milk proteins playing a physiological role include proteins 
such as β-lactoglobulin, α-lactalbumin, immunoglobulins, lactoferrin, heat-stable proteose 
peptones, serum albumin and various acid soluble phosphoglycoproteins. Casein (CN), 
representing 80% of total milk proteins, consists of four αs1-, αs2-, β-, and κ-CN families in 
the approximate ratio 38:11:38:13. Research performed in recent years has shown that 
caseins and whey proteins are rich in encrypted biologically active peptides such as 
exorphins (casomorphins), CPP and immunopeptides [8]. The peptides are released by 
enzymes in the form of mature bioactive components or the precursors thereof [9]. They are 
3- to 20-residue long peptides released during in vivo gastrointestinal digestion. Historically, 
the opioid peptides were discovered as the result of a systematic search for exogenous 
substances, namely (i) first discovered in 1979, opioid agonist peptides derived from milk 
proteins were characterized in 1986; (ii) in 1982, angiotensin-converting enzyme (ACE)-
inhibitory peptides were found to be antihypertensive peptides; (iii) then, fibrinogen-like 
sequences with antithrombotic activity were found; (iv) phagocytic activity and lymphocyte 
proliferation of numerous immunomodulating peptides were observed; (v) CPP facilitating 
the absorption of minerals, especially calcium, magnesium and iron were found; and (vi) 
antimicrobial peptides were discovered [10]. There are many milk peptides that possess 
multifunctional activities, i.e., they can play two or more hormone-like roles. Bioactive 
peptides grouped according to their function in human well-being are shown in Figure 1. 

Nutraceutical products comprising short bioactive peptides showing in vitro or in vivo 
antimicrobial, ACE-inhibitory activity and/or antihypertensive and/or antioxidant activity 
are being considered for possible use by the pharmaceutical industry. The CN hydrolyzates 
could serve as food preservatives to reinforce the body's natural defenses or as 
pharmaceutical products for facilitating the control of blood and/or bacterial infections [12]. 
Much research has been devoted to increasing mineral transport by phosphorylated groups 
of peptides [13]. CPP in commercial hydrolysed casein (Tatua Cooperative Dairy Co. Ltd, 
New Zealand and Arla Foods Ingredients and Sweden) seem to help the absorption of 
chelated calcium, iron, copper, zinc and manganese in the intestine (Table 1). Thus, CPP-
bound amorphous calcium phosphate (ACP) displayed anticariogenic effect when added to 
dentifrices or oral care products by localizing calcium and phosphate ions at the tooth 
surface. Similarly, it has been claimed that a chewing gum or other confectionery product 
containing a combination of CPP-ACP and sodium bicarbonate as active ingredients can 
provide dental health benefits [14]. In experiments on humans, synthetic CPP-ACP 
nanocomplexes incorporated in mouth rinses and sugar-free chewing gums have been 
proven to be potential anticariogenic agents [15] (Table 1). 
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Figure 1. Main bioactivity of peptides formed by the enzymatic digestion of milk proteins (source: [11]). 

ACP= amorphous calcium phosphate; CPP= Casein phosphopeptides 

Table 1. Commercial dairy products and ingredients with health or function claims based on CPP 
content (source: modified from [16]). 

2. Bioactive peptides released in vitro by the hydrolysis of milk proteins  

Peptides with various bioactivities can be produced according to two different methods: i) in 

vitro fermentation of milk inoculated with starter cultures and ii) in vitro digestion of milk 
proteins by one or more proteolytic enzymes.  

Brand name Product type
Claimed functional 

bioactive peptides
Health/function claims Manufacturer

HCP102/HCP 105 Hydrolysate ingredient CPP Helps mineral absorption Tatua (New Zealand)

Capolac Hydrolysate ingredient CPP Helps mineral absorption Arla Foods Ingredients (Sweden)

Recaldent Chewing gum ACP-CPP Anticariogenic Cadbury Adams (USA)

Recaldent Toothpaste ACP-CPP Anticariogenic GC Tooth Mousse (USA)
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(i) The proteolytic system of lactococci is able to degrade milk proteins using cell-wall-
bound proteinases by releasing di-, tri-, and/or oligo-peptides and amino acids supporting 
the growth of bacteria. In addition, lactococcal peptidases released into the curd/cheese 
consequently to autolysis can further degrade the internalized peptides to amino acids [17]. 
The higher the exopeptidase activity in cheeses, the greater the age of the cheese [18]. 
Consistently, yogurt and other cultured dairy drinks have some of the highest counts of cells 
that actually survived and thus possessed the lowest number of peptides derived from the 
aminopeptidase activity. In a comprehensive review of literature, no enzyme with 
carboxypeptidase (CPase) activity has been reported for either lactococci or other LAB [19-
20]. The bacterial peptidases have different and partly overlapping specificities (Figure 2).  

 
Figure 2. A simplified model presenting proteolysis, transport, peptidolysis and regulation of the 
proteolytic system of Lactococcus lactis on casein breakdown [20-22]. Intracellular peptidases PepO and 
PepF are endopeptidases, PepN/PepC/PepP are general aminopeptidases, PepX is X-prolyldipeptidyl 
aminopeptidase, PepT is tripeptidase, PepQ is prolidase, PepR is prolinase, PepI is proline 
iminopeptidase, and PepD and PepV are dipeptidases D and V. The role of PepN, PepC, PepI, PepP and 
PepA and PepO, PepF, PepX, PepQ, PepR, PepV, PepT and peptidolytic cycles are depicted 
schematically (various alternative routes of breakdown are possible for most peptides).  

Although the intracellular endopeptidases PepN and PepC are unable to hydrolyze casein 
molecules, the X-prolyl dipeptidyl aminopeptidases (PepX) are active on oligopeptides 
hydrolyzing the internal bonds of casein-derived peptides. Taken together, these enzymes 
are able to remove the N-terminal residues from peptides, with the specificity primarily 
depending on the nature of the N-terminal amino acid [20-21]. Di- and tripeptides generated 
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by endopeptidases, general aminopeptidases and PepX are next subjected to additional 
cleavage by the tripeptidase, PepT, and dipeptidases, PepV and PepD (Figure 2). Other 
peptidases with more specific substrate specificities include PepA, which liberates N-
terminal acidic residues from 3- to 9-residue long peptides; PepP, which prefers tripeptides 
carrying proline in the middle position; PepR and PepI, which act on dipeptides containing 
proline in the penultimate position; PepQ, which cleaves dipeptides carrying proline in the 
second position; and PepS, which shows preference for peptides containing two to five 
residues with Arg or aromatic amino acid residues in the N-terminal position [20-21,23] 
(Figure 2). This proteolytic system is able to support LAB growth to high cell densities (109–
1010 cfu/mL) in milk containing only small amounts of hydrolytic products that are 
transportable into the cells for assimilation. Lb. helveticus and Lb. delbrueckii ssp. bulgaricus 
possess cell wall proteinase activity stronger than that of lactococci. The number of 
intracellular proteins released by St. thermophilus is greater than that by Lb. helveticus [24]. 
Proteins released in cheese from a starter-based thermophilic LAB, such as Lb. helveticus, Lb. 

delbruecki subsp. lactis and Streptococcus salivarius subsp. thermophilus and Propionibacterium 
freudenreichii, have been identified using 2D-PAGE and mass spectrometry (MS) analysis 
[24]. Similarly, bioactive peptides have been determined using High Performance Liquid 
Chromatography (HPLC) and offline Matrix-Assisted Laser Desorption/Ionization Mass 
Spectrometry-Time-Of-Flight (MALDI-MS-TOF) [25]. These peptides were all generated 
from CN and released upon proteolysis depending on the bacterial strain [26]. In this 
manner, proteinases play a primary role, as they are able to generate specific bioactive 
peptides. Recombinant human αs1-casein digested by trypsin gave rise to several ACE-
inhibitory peptides and calcium-binding CPP. These peptides did not form in cheese whey, 
although they can be formed from CN during fermentation using various commercial dairy 
starters [27]. The combination of the LAB bacteria and proteolytic enzymes could serve to 
increase the range of bioactive peptides. 

(ii) In vitro hydrolysis of CN by pepsin and trypsin could produce many bioactive peptides. 
Pepsin, an endopeptidase with broad specificity, preferentially cleaves hydrophobic, 
preferably aromatic, residues. Trypsin specifically hydrolyses peptide bonds just after a 
lysine or an arginine residue of β-casein A1 and A2 variant (11 and 4, respectively); κ-
casein A and B (9 and 5); αs2-CN A (24 and 6); or αs1-CN B (14 and 6). In this manner, 
tryptic hydrolysates of CN contain uneven peptides of up to 8159 Da and also free amino 

acids [28]. We have demonstrated that CN hydrolysate by pepsin (P) and trypsin (T) in 
succession does not contain peptides with molecular mass greater than 2431 Da. β-CN 
resulted extensively hydrolyzed into a high number of oligopeptides by using proteases 
with well defined cleavage specificity. Controlled partial hydrolysis by proteinases could 
lead to the formation of partially degraded proteins critical for obtaining new functional 
products. The choice of digestion enzymes needs to be evaluated carefully because 
influences the hydrolysate final composition. A high number of peptides with 
antimicrobial, anti-hypertensive and opiod-like activity has been identified (Table 2), 
some of which exactly matched those described in the literature for potential bioactivity 
(Table 2). The potent opioid β-CM7 peptide retained part of its original opioid activity-



 
Milk Protein 8 

like food hormone when progressively shortened. The synthetic β-casomorphin 
derivatives have been shown to be highly specific and potent β-type opioid receptor 
ligands [29]. 

We also performed sequential milk protein (powder sample) digestions using various 
endoproteases facilitating a consistent partial hydrolysis. The high degree of specificity in 
terms of cleaving peptide bonds exhibited by a cocktail of enzymes (P, T and P432 from 
Biocatalysts, U.K) yielded a limited number of CPP. After fractionation on an HA column, 

 
 

PT= Pepsin and Trypsin action; P= Phosphate group. 

 
Table 2. Identity of bioactive peptides found in the PT digest of milk protein powder sample. The 
bioactivity of the peptide from which they derive and the references are reported. 

Identity of bioactive 

peptides 
Bioactivity References PT peptides 

β-CN (f60-70); (f59-61); 

(f59-64); (f60-68)
Opiod [29-30] (f58-68); (f59-63); (f59-62)

β-CN (f74-76) (f69-80); (f71-80); (f75-80)

β-CN (f80-90); (f84-86)
(f80-88); (f81-89); (f81-88); (f81-92); (f81-93); 

(f81-94)

β-CN (f108-113) (f108-103)

β-CN (f140-143) (f139-142)

β-CN (f177-183) (f177-183); (f177-184); (f179-182)

β-CN (f169-174) (f169-176); (f172-176)

β-CN (f193-198) (f193-199)

β-CN (f193-202) (f193-202)

β-CN (f1-25)4P 

Mineral carrier, 

immunomodulatory, 

cytomodulatory

[34-38]
(f12-17)1P; (f12-25)3P; (f12-25)4P; (f15-25)2P; 

(f15-25)3P; (f19-25)1P; (f19-25)2P

β-CN (f29-41)1P Mineral carrier [13] (f33-42)1P; (f33-43)1P; (f33-44)1P

β-CN (f84-86) 
(f80-87); (f81-88); (f81-89); (f81-92); (f81-93); 

(f81-94)

αs1-CN (f23-34) (f24-32)

αs1-CN (f25-27) (f25-31)

αs1-CN (f90-96); (f90-95); 

(f91-95)
Opiod (agonist) [39-41] (f92-95); (f91-95); (f90-95)

αs1-CN (f142-147) (f142-145); (f143-146); (f143-150); (f144-149)

αs1-CN (f157-164) (f155-164)

αs1-CN (f194-199) (f194-199); (f197-199); (f193-199)

αs1-CN (f110-119)1P

αs1-CN (f41-55)1P; (f68-79)2P

αs2-CN (f174-179) (f174-179)

αs1-CN (f189-193) (f189-193)

αs2-CN (f138-146)1P

αs2-CN (f124-137)2P; (f126-136)2P; (f126-137)2P

κ-CN (f33-38) Opiod (antagonist) (f58-65)1P

[31-33]

[31-33]

[31-33]

[13]

[31-33]

[13]

ACE-Inhibitory

ACE-Inhibitory

ACE-Inhibitory

ACE-Inhibitory

Mineral carrier

Mineral carrier
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both non-CPP and CPP were identified as shown in Table 3. Different oxidation rates of Met 
residues in the same protein resulted in formation of the peptides with different molecular 
mass. In most cases, a single Met-containing peptide and its oxidized counterpart were 
identified. However, in many cases, when proteins contained several consecutive 
endoprotease sensitive bonds, different long peptides containing the same Met-oxidation 
site(s) were identified. The data in Table 3 suggest that the cocktail enzymes containing 
amino- and CPases, in addition to P and T, progressively reduce the size of peptides without 
altering the degree of phosphorylation. Evaluation of protein/peptide quality can take 
advantage of the tandem MS for the detection of native, partly oxidized and partly 
dephosphorylated peptides. 

By this means, phosphorylated peptides (2 and 3P/mole) of a precursor of lactophorin (LP) 
(28 kDa milk glycoprotein), proteose-peptone component 3, and glycosylation-dependent 
adhesion molecule 1 were detected. In addition, three low molecular weight non-CPP 
derived from LP were detected. 

Native milk proteins used as the substrate for digestion by enzymes did not form CPP. 
This suggests that denatured LP and other whey proteins could have the tendency to form 
low molecular-mass peptide aggregates characterized by a poor solubility. For this reason, 
the use of milk protein and/or any milk substrate powder must be discouraged to 
eliminate phosphates and salts from the substrate. The enzymatic hydrolysis of the casein 
implies the use of endoproteases. However, the protein hydrolysate with alcalase is used 
in infant formulae, dietetic foods, nutraceuticals, ice creams, dressings, fermented 
products, yogurts, and personal care products. CPP released by alcalase are truncated 
with respect to those released by trypsin. The identified peptides can be categorized into 
two groups, one containing multiphosphorylated peptides and the other tri-, di- and 
mono CPP. Each group contained a number of variously long peptides due to the broad 
specificity of alcalase cleaving peptide bonds mainly on the carboxyl side of Glu, Met, 
Leu, Tyr, Lys, and Gln. The exoproteases responsible for the hydrolysis are inactivated by 
heating for ~10 min to ~85 °C. The in vitro sequential use of pepsin, pancreatic proteases 
and extracts of human intestinal brush border membranes, mimicking the respective 
gastric, duodenal and jejuneal in vivo digestion of CN, exhibited significant bioactive 
effects. A limited number of CN and whey protein peptides survived the in vitro 
simulated gastro-intestinal digestion. The anionic character seems to confer a marked 
resistance to multi-phosphorylated CPP hydrolysis by endoprotease. Ten out of 19 CPP 
contained SerP available for binding minerals, and four of these peptides, αs1-CN (f57-
90)5P, αs1-CN (f56-90)5P, αs1-CN (f55-76)5P, β-CN (f1-52)5P, were reported for the first 
time in the CN digests [42]. Only β-CN (f1-25)4P, 3P and 2P survived the simulated 
gastrointestinal digest of CN [43].  

The ingress of foreign material in general, such as CPP, across the mucosal brush-border 
into the enterocyte is conditioned by the efficient dephosphorylation of peptides by alkaline 
phosphatase. This aspect deserves more in-depth investigation.  
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Phosphoserine residues are coloured red. 

 

 

Table 3. Native and partly Met-oxidized CPP isolated from a three enzyme (Pepsin, trypsin and P432) 
milk protein hydrolyzate. 

Expected Calculated

αs1-CN 1222.5 1222.5 110 - 119 (L)EIVPNSAEER(L) 1P

 1517.8 1517.6 68 - 79 (S)SEEIVPNSVEQK(H) 2P

 1525.7 1525.5 41 - 53 (L)SKDIGSESTEDQA(M) 2P

 1586.6 1586.5 43 - 55 (K)DIGSESTEDQAME(D) 2P; Oxidation (Met) 

 1672.7 1672.6 41 - 54 (L)SKDIGSESTEDQAM(E) 2P; Oxidation (Met) 

 1785.8 1785.6 41 - 55 (L)SKDIGSESTEDQAME(D) 2P

 1801.7 1801.6 41 - 55 (L)SKDIGSESTEDQAME(D) 2P; Oxidation (Met) 

 1963.9 1963.8 39 - 55 (N)ELSKDIGSESTEDQAME(D) 1P; Oxidation (Met)

 1989.9 1989.7 37 - 52 (K)VNELSKDIGSESTEDQ(A) 3P

 2060.7 2060.7 37 - 53 (K)VNELSKDIGSESTEDQA(M) 3P

αs2-CN 900.4 900.3 58 - 65 (S)SEESAEVA(T) P

937.4 937.3 141 - 147 (D)MESTEVF(T) 1P; Oxidation (Met)

1067.4 1067.3 57 - 65 (S)SSEESAEVA(T) 2P

1089.5 1089.4 138 - 146 (K)TVDMESTEV(F) 1P

 1105.4 1105.4 138 - 146 (K)TVDMESTEV(F) 1P; Oxidation (Met)

 1252.6 1252.5 138 - 147 (K)TVDMESTEVF(T) 1P; Oxidation (Met)

 1410.6 1410.5 126 - 136 (R)EQLSTSEENSK(K) 2P

 1538.7 1538.6 126 - 137 (R)EQLSTSEENSKK(T) 2P

 1623.7 1623.6 1 - 13 KNTMEHVSSSEES(I) 2P

 1639.7 1639.5 1 - 13 KNTMEHVSSSEES(I) 2P; Oxidation (Met) 

 1680.8 1680.6 124 - 136 (L)NREQLSTSEENSK(K) 2P

 1719.7 1719.5 1 - 13 KNTMEHVSSSEES (I) 3P; Oxidation (Met) 

 1808.9 1808.7 124 - 137 (L)NREQLSTSEENSKK(T) 2P

β-CN 639.3 639.3 12 - 16 (E)IVESL(S) 1P

 900.5 900.4 19 - 25 (S)SEESITR(I) 1P

 1067.4 1067.4 18 - 25 (S)SSEESITR(I) 2P

 1354.6 1354.5 15 - 25 (E)SLSSSEESITR(I) 2P

 1434.6 1434.5 15 - 25 (E)SLSSSEESITR(I) 3P

 1447.7 1447.5 33 - 43 (K)FQSEEQQQTED(E) 1P

 1576.7 1576.6 33 - 44 (K)FQSEEQQQTEDE(L) 1P

 1689.8 1689.6 33 - 45 (K)FQSEEQQQTEDEL(Q) 1P

 1775.8 1775.7 12 - 25 (E)IVESLSSSEESITR(I) 3P

 1855.6 1855.6 12 - 25 (E)IVESLSSSEESITR(I) 4P

κ-CN 968.4 968.4 145 - 152 (A)TLEDSPEV(I) 1P

 1734.7 1734.7 147 - 161 (L)EDSPEVIESPPEINT(V) 1P

Lactophorin  1226.5 1226.51 34 - 43 (L)SKEPSISRED(L) 1P

 1306.6 1306.5 34 - 43 (L)SKEPS ISRED(L) 2P

 1419.6 1419.56 34 - 44 (L)SKEPS ISREDL(I) 2P

 1499.7 1499.5 34 - 44 (L)SKEPS ISREDL(I) 3P

Molecular mass (Da)Parent 

protein
Start End Peptide sequence Peptide modifications
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3. In vivo digestion of casein, formation of CPP and their physiological 

importance 

Among the biologically active peptides, CPP characterized by SerP and/or ThrP residues 
account for ~30% of monoesters of hydroxyl amino acids. They mainly occur in the Ser/Thr-
Xaa-SerP/Glu/Asp sequence consensus, where Xaa is any amino acid residue but Pro. The 
three-phosphorylated motif -SerP-SerP-SerP-Glu-Glu- occurs in αs1-CN (f66-70), αs2-CN (f8-12), 
αs2-CN (f56-60), and β-CN (f17-21). According to the current CN nomenclature, bovine αs1-CN, 
αs2-CN, β-CN, and κ-CN possess 8-9, 11-13, 4-5, and 1-2 phosphate (P) residues, respectively, 
and the P number could change according to the casein variant [44]. For example, β-CN D has 
one SerP residue less than the A counterpart due to the substitution Lys18 → Ser18. 

The in vivo digestion of milk proteins takes place mainly in the stomach under the action of 
pepsins, gastric digestive proteinases that are able to digest ~20% proteins. Afterwards, the 
pepsin digests pass to the duodenum where peptides are further hydrolyzed by pancreatic 
enzymes. The digestion is completed by membrane proteases and a variety of peptidases 
embedded in the brush border of the small intestine and released by the intestinal microflora. 
These peptidases release an amino acid residue or a dipeptide from the N- and C-terminal side 
of oligopeptides [45-47]. Phosphatase(s) located in the brush border of the apical membrane of 
enterocytes, act(s) in removing phosphate groups, thus promoting partial or full peptide 
dephosphorylation of peptides in different body districts. The phosphorylated sequence is 
responsible, at the intestinal pH, for binding Ca++, Zn++, and Mg++ and for the in vivo resistance 
of the complex to gastrointestinal proteases [48]. Fe complexed to β-CN (f15-25)4P was 
scarcely hydrolyzed throughout the digestion, suggesting that the coordination of iron ions to 
CPP inhibits the action of both phosphatase and peptidases [49]. Brush border enzyme alkaline 
phosphatase activity could improve the absorption of Fe complexed CPP by releasing Fe from 
peptides. Moreover, Fe complexed to β-CN CPP was absorbed more than Fe complexed to αs1-
CN CPP [50]. The differences in protein composition between cow and breast milk could 
explain some of the differences in the Fe bioavailability of the latter [50]. Iron deficiency, a 
major worldwide nutritional problem, can be reduced by CPP. Fe complexed CPP prevents the 
formation of poorly absorbed high molecular weight ferric hydroxides. Zinc absorption can 
also be enhanced by the formation of Zn complexed to CCP, in particular to β-CN (f1-25)4P 
[51]. Some portion of the mineral complexed CPP formed in the small intestine was resistant to 
the digestive and enteric bacteria enzymes and found in the feces of rats fed a casein-based 
diet [52]. Although literature data regarding intestinal CPP absorption are conflicting, the 
peptides seem to interact directly with the plasma membrane. One possible mode of CPP 
action on the transmembrane flux of calcium is that CPP might insert themselves into the 
plasma membrane and form their own calcium selective channels or act as calcium-carrier 
peptides rapidly internalized via endocytosis or other processes and eventually provide 
ionized calcium in the cytosol [53]. Cellular uptake studies of fluorine-18 labeled CPP in 
human colorectal adenocarcinoma cell line (HT-29) and human head and neck squamous cell 
carcinoma line (FaDu) cells at 37 °C and 48 °C showed a poor cell penetration because of the 
poor transport of the phosphopeptides through the cell membrane [54]. The results from in 

vivo studies are still too controversial, as there are many factors affecting Ca availability, such 
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as the various co-present dietary compounds in the intestinal lumen [55]. Despite the vigor of 
the saturable active transport process by the duodenum, most of the absorption of ingested 
calcium occurs in the ileum (88% of calcium), jejunum (4%) and duodenum (8%) [56]. An 
important factor determining the contribution of the ileum to overall calcium absorption is the 
relatively long transit time of calcium in the segments of the small intestine, accounting for 
approximately 102 min in the ileum and 6 min in the duodenum [57]. The higher absorption of 
calcium occurred when inorganic P was added to the Ca-CPP preparation. CPP exhibit a 
potent ability to form soluble complexes with Ca2+ and other trace elements, preventing the 
formation of Ca-phosphate precipitate in the intestine. CPP could limit the inhibitory effect of 
phosphate on Ca availability and increase Ca transport across the distal small intestine [55]. All 
components of the diet reaching the ileum make calcium soluble or keep it in solution within 
the ileum. Several molecules, particularly CPP, stimulate the passive diffusion of minerals. 
CPP have been for the first time detected in human ileostomy fluid, confirming their ability to 
survive gastrointestinal passage into the human distal ileum [58]. CPP released during milk 
digestion appeared to be stable for up to 8 h in ileostomy contents [58]. The in vivo formation of 
bovine CPP was demonstrated in the small intestinal fluid of minipigs after ingestion of a diet 
containing casein [59] and in the stomach and duodenum after ingestion of milk or yogurt [60]. 
The in vivo survival of CPP to the prolonged intestinal passage in the distal small intestine is a 
prerequisite for their function as bioactive substances [58]. CPP are protected from 
degradation in the gut by the milk matrix, provided that they are ingested as milk constituents 
and not as isolated CPP. Whole casein or individual casein fractions are used as raw materials 
to obtain CPP as dietary supplements. Ca could be bound to either SerP or Glu residues [61], 
suggesting that CPP may enhance the solubility of calcium in the intestinal lumen, thereby 
increasing the mineral availability for absorption in the small intestine [62,13]. Chemically 
synthesized CPP, i.e., β-CN (f1-25)4P and αs1-CN (f59-79)5P, carrying the characteristic cluster 
Ser(P)-Ser(P)-Ser(P)-Glu-Glu, increase the intracellular calcium uptake by the human cultured 
HT-29 tumor cells [63], Caco-2 cells [64] and osteoblasts [65]. A more pronounced effect has 
been observed for β-CN-derived peptides than for αs1-CN-counterparts. It has been suggested 
that CPP promote calcium binding, which would depend on the structural conformation 
conferred by the two phosphorylated ‘acidic motif’ and the N-terminal sequence of β-CN [63].  

Dental caries are initiated via the demineralization of tooth hard tissue by organic acids 
directly from the diet or produced from fermentable carbohydrate by dental plaque 
cariogenic bacteria. CPP can help to replace the minerals that were previously lost 
consequently to caries [66-67]. Hence, there is a great interest in developing CPP as 
nutraceutical ingredients for the formulation of functional foods. 

4. CPP enrichment by different techniques 

CPP preferably comprise components released by four different casein families, each having 
a molecular weight greater than 500 Da. Multiply and singly, tryptic CPP can be 
simultaneously detected using MALDI-TOF, and the location of phosphate groups by a 
combination of tandem mass spectrometry and computer-assisted database search 
programs, such as SEQUEST (Trademark, University of Washington, Seattle Wash) [68-69]. 
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Nano-electrospray MS/MS has been used for phosphopeptide sequencing and exact 
determination of phosphorylation sites [70]. However, mass spectrometric analysis of 
proteolytic digests of proteins rarely provides full coverage of the phosphorylated sequence, 
with parts of the sequence often going undetected. In addition, protein phosphorylation is 
often sub-stoichiometric, such that ionization of CPP present in lower abundance in complex 
hydrolysates is ordinarily suppressed by strongly ionizable non-phosphorylated peptides. 
The MALDI-MS desorption/ionization efficiency for phosphopeptides was reported to be an 
order of magnitude lower than that recorded for the non-phosphorylated counterpart, and 
ionization became more difficult as the number of phosphate groups increased [71]. Direct 
analysis of phosphopeptides utilizes two orthogonal MS scanning techniques, both based on 
the production of phosphopeptide-specific marker ions at m/z 63 and/or 79 in the negative 
ion mode. These scanning methods combined with the liquid chromatography (LC)-
electrospray mass spectrometry (ESI) and nano-electrospray MS/MS allow the selective 
detection and identification of phosphopeptides even in complex proteolytic digests. Thus, 
even when the signal of the phosphopeptide is indistinguishable from the background, as in 
the conventional MS scan, low-abundant and low-stoichiometric phosphorylated peptides 
can be selectively determined in the presence of a large excess of non-phosphorylated 
peptides. This strategy is particularly well suited to phosphoproteins that are 
phosphorylated to varying degrees of stoichiometry at multiple sites [72]. However, the 
identification and characterization of phosphoproteins would be greatly improved using 
selective enrichment of CPP prior to MS analysis. An ancient technique for phosphoprotein 
enrichment consisted of the precipitation of phosphopeptides as insoluble barium salts and 
recovery by centrifugation, as according to the Manson & Annan method [73]. High-
throughput phosphoproteome technologies currently rely on combining pre-separation of 
proteins, most commonly by high-resolution two-dimensional polyacrylamide gel, in-gel 
tryptic cleavage of proteins, and subsequent MALDI-TOF or ESI-MS/MS mass spectrometry 
analysis of peptides [74]. The high resolving power of 2-DE with the sensitive MS requires 
extensive manual manipulation of samples. Alternative methods are based on chemical 
derivatization. For example, for β-elimination, a strong base such as NaOH or Ba(OH)2 is 
used to cleave the phosphoester bonds of phosphoserine and phosphothreonine and form 
dehydroalanine or dehydroaminobutyric acid, respectively, each able to react with different 
nucleophiles, such as ethanedithiol (EDT) or dithiothreitol (DTT). This procedure provides a 
considerably simpler method to enrich CPP. By using cross-linking reagents with affinity 
tags, such as biotin, interfering non-cross-linked peptides are eliminated, and CPP are 
highly enriched [75]. Although the chemical derivatization methods are highly selective, 
they are not widely applied in phosphoproteome studies due to sample loss by the multiple 
reaction steps and unavoidable side reactions [76]. Immobilized metal-ion affinity 
chromatography (IMAC, with Fe3+, Ga3+, Ni2+ and Zr4+ metal ions) and metal oxide affinity 
chromatography (MOAC, with TiO2, ZrO2, Al2O3 and Nb2O5) have been widely used for the 
quantitative binding of CPP on resin or adsorbent. Iminodiacetic acid (IDA, a tridentate 
metal-chelator) or nitrilotriacetic acid (NTA, a quadradentate metal chelator) are often used 
as IMAC functional matrices reacting with multivalent metal ions to form chelated ions with 
positive charges useful for the purification of phosphopeptides. Usually Fe3+, Ga3+ and Al3+ 

are bound to a chelating support prior to fractionating the complex mixture of peptides 
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before MS analysis [77-78]. Ga3+ showed selectivity for CPP higher than Fe3+ and Al3+ [77,79]. 
Phosphopeptides bound to IMAC resin are successively recovered in the column effluent by 
increasing either pH or the phosphate concentration in the buffer [80]. The negatively 
charged CPP selectively interact with TiO2 microspheres via bidentate binding at the 
dioxide surface [81-83]. TiO2-MOAC showed higher specificity than immobilized gallium 
(Ga3+), immobilized iron (Fe3+), or zirconium dioxide (ZrO2) affinity chromatography for 
phosphopeptide enrichment. The main problem associated with the chelating resins is the 
metal-ion leaching, which leads to CPP loss during the enrichment procedure. The 
selectivity of these methods was somewhat compromised by the detection of several acidic 
non-CPP that were also retained by the TiO2 column [84]. To overcome this drawback, the 
carboxyl groups are methyl esterified which eliminates the non-specific adsorption of acidic 
peptides on IMAC [85]. Considerable efforts have been expended to remove acidic non-CPP 
by washing the resin with 2,5-dihydroxybenzoic acid (DHB) [86] or phthalic acid [87]. It has 
been found that aliphatic hydroxyl acid modified metal oxide works more efficiently and 
more specifically than aromatic modifiers such as DHB and phthalic acid in titania and 
zirconia MOC [88]. However, all affinity techniques developed for the current enrichment 
strategies of CPP gave reproducible but incomplete results due to poor binding of low 
concentrations of CPP and the insufficient recovery of multiple phosphorylated peptides [89]. 
Recently, a specific hydroxyapatite (HA)-based enrichment procedure has been developed 
for complex mixtures of phosphoprotein/CPP [90]. Salt such as calcium phosphate, also 
occurring in bone and tooth tissue in the HA form, with the formula [Ca10(PO4)6(OH)2], has 
been previously used to enrich bone proteins [91]. The phosphate groups of 
phosphoproteins interact with crystalline lattice Ca2+ [92] more strongly than do the carboxyl 
groups [93]. Moreover, increasing protein phosphorylation leads to tighter binding of the 
proteins/CPP to HA [92]. One might conclude that the affinity of the multi-phosphorylated 
proteins/peptides for HA is significantly higher than that of the same components with 
lower phosphorylation. Essentially, the HA-based protocol immobilizes on HA 
microgranules proteins/peptides through their phosphate groups, while the non 
phosphorylated components are washed out using various buffers. In a previous article, 
CPP immobilized on HA were progressively eluted, increasing phosphate in the elution 
buffer, and then identified by off-line MALDI-MS [94]. This procedure was accelerated, and 
loss during elution was minimized by spotting HA-CN/CPP microgranules onto a MALDI 
target and analyzing the peptides directly by MALDI-TOF [90]. This method was useful for 
measuring the phosphorylation level of phosphoproteins/CPP quickly, with less than 2 h 
elapsing from the fractionation of the protein/CPP to the readout of the MALDI spectra 
(excluding the trypsinolysis step).  

The more important advantages of the procedure are the possibility of (1) detecting 
phosphorylated proteins/peptides even in complex mixtures, (2) determining phosphorylated 
sites and those dephosphorylated by phosphatase, (3) attaining information regarding 
weakly and heavily phosphorylated peptides and (4) adding the HA-CPP complex directly to 
food, which is enabled by the use of an edible resin such HA [90]. Moreover, use of available 
commercial CPP preparations by the food industry is difficult for three primary reasons: i) 
the matrix bound to CPP is often not edible and such products can be hazardous; ii) the 
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preparation of CPP is a long and a laborious procedure that requires cumbersome and 
expensive manipulation; and iii) CPP have an unpleasant taste even in modest amounts, 
which disadvantageously limits their direct utilization as a human food ingredient. A novel 
HA-based method for food grade CPP preparation has been performed on tryptic digests of 
casein. HA captured all CPP free of non-CPP [90]. There were approximately 32 HA bound 
CPP, and all non-CPP peptides were eluted [90]. HA-based enrichment procedure has been 
successfully applied to phosphopeptide recovery from complex biological fluids such as 
human serum thus providing a great source of potential biomarkers of disease. Four primary 
phosphopeptides derived from fibrinogen were enriched from human serum (Figure 3a-b, 
Table 4). A similar set of phosphorylated peptides was previously obtained using a modified 
IMAC strategy coupled to iterative mass spectrometry-based scanning techniques [95], using 
the titanium ion-immobilized mesoporous silica particles and MALDI-TOF [96] and cerium 
ion-chelated magnetic silica microspheres [97].  

 

 
 

Figure 3. MALDI-MS-TOF spectra for the human serum before (a) and after (b) enrichment by HA 
(insert is the zoomed between 700 and 3000 Da). 

Fibrinopeptide A (FPA) (f1-16)1P, (SerP3), a 16-residue long peptide (1615 Da) (Table 4), is 
the segment anchored on the thrombin surface [98]. The other three phosphopeptides, (f1-
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15)1P, (f2-15)1P and (f2-16)1P (Table 4), are hydrolytic products of FPA. The serum level of 
fibrinogen and its hydrolytic products may reflect the expression and activation of enzymes 
including kinase, phosphatase, and protease [99]. An altered ratio of FPA (f2-15) and FPA 
(f1-16) is detected in patients affected by hepatocellular carcinoma; the 
D2[pS]GEGDFLAEGGGV15 peptide is upregulated, and the A1D[pS]GEGDFLAEGGGVR16 
peptide is down-regulated greatly. The other two peptides, A1D[pS]GEGDFLAEGGGV15 
and D2[pS]GEGDFLAEGGGVR16, varied only slightly between the two groups [96]. The 
proportions of fibrinogen and their phosphorylation products offer new opportunities for 
basic research in exploring new frontiers in bio-marker discovery. 

 
 

 
Phosphoserine residues are coloured red. 

Table 4. Identification of phosphorylated fibrinogen fragments from human serum immobilized on 
HA. 

4.1. CPP in commercial milk as specific indicators of heated milks 

Because of the lower value, the addition of UHT and milk powder to raw or pasteurized 
milk is prohibited (EU Directives 92/46 CEE and 94/71 CEE) for cheese milk. The intensity of 
heat treatment was found to correlate with the furosine content. Glycated proteins and 
peptides formed during the initial stages of the Maillard reaction are indirectly evaluated 
through the furosine content [100-101]. The Amadori compound formed upon the reaction 
of lysine residue with a lactose molecule will prevent the digestive enzymes from reaching 
the binding sites. Native and lactosylated forms of β-CN (f1-28)4P, (f1-27)4P and αs2-CN (f1-
24)4P, although typical of UHT milk and milk powder, are missing in raw, pasteurized milk 
(71.7 °C for 15 s) and intensely pasteurized milk. The lactosylated peptides that varied with 
heat treatment characterize UHT milk added in amounts not lower than 10% to raw and 
pasteurized milk [102]. Milk delactosed with microbial β-galactosidase did not suppress the 
Maillard reaction; indeed, the furosine concentration increased to 35-400 mg/100 g of protein 
[103]. As expected, a lactose-reduced UHT milk had β-CN (f1-28)4P glycated mainly by its 
monosaccharides (Figure 4a).  

Therefore, the nonenzymatically glycated CPP derived from the reaction of one molecule of 
glucose or galactose with a lysine residue (m/z 3641) can be considered to be the signature 
peptide of lactose-reduced milk (Figure 4). 
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Figure 4. Enlarged view of the MALDI spectrum of β-CN (f1-28)4P (MH+ = 3479 Da) signature 
glycosylated CPP in lactose-reduced UHT milk (a) and lactosylated CPP in UHT milk (b). The mass 
differences corresponded to lactose and glucose/galactose residues. 

4.2. CPP in yogurt  

Yogurt is a fermented milk defined as the “food produced by culturing one or more of the 
optional dairy ingredients (cream, milk, partially skimmed milk, and skim milk) with a 
characteristic bacteria culture that contains the lactic acid-producing bacteria, Lactobacillus 

delbrueckii subsp. bulgaricus and Streptococcus thermophilus”. A heat treatment of 90 °C for 10 
min is considered optimal to obtain a good quality yogurt [104], and the addition of milk 
powder increases the content of furosine to more than 300 mg/100 g protein [105]. In yogurt, 
enzymes could give rise to the liberation of a particularly high number of bioactive peptides, 
among them CPP, which could be partly due to LAB proteolytic activity. Comparison of 
CPP in raw, pasteurized and intensely heated milks has previously shown that there is a 
plethora of milk peptides among which a few were glycosylated CPP [102]. Yogurt is 
prepared from intensely heated milk instead of low-pasteurized drinking milk. The CPP of 
two preparations were enriched on HA and analyzed by MALDI-TOF (Table 5). The 
proportion of CPP with molecular masses between 2.5 and 4 kDa was significantly higher in 
yogurt than in pasteurized milk as shown in Table 5. Only four fragments of CPP-derived 
peptides produced during yogurt preparation occur in pasteurized milk (Table 5). 
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n.d. not detected; * CPP detected in vitro because it was liberated by plasmin in raw milk and enriched on HA. 

Table 5. List of HA-enriched CPP identified in commercial samples of yogurt and pasteurized milk. Relative 
intensity of each peak is reported. 

Yogurt
Pasteurized 

milk

Measured MH
+ 

Theoretical 

1327.5 1326.4 αs1-CN (f44-54)2P 0.3 n.d.

5009.1 5008.7 αs1-CN (f39-79)6P 0.6 n.d.

5089.3 5088.7 αs1-CN (f39-79)7P 1.2 n.d.

6959.0 6958.7 αs1-CN (f35-90)8P 0.6 n.d.

7087.1 7086.9 αs1-CN (f34-90)8P 0.2 n.d.

1493.6 1492.7 αs2-CN (f139-150)1P 1.2 n.d.

1617.5 1616.5 αs2-CN (f1-12)3P 2.0 n.d.

1931.7 1930.8 αs2-CN (f1-15)3P 8.6 n.d.

2007.9 2006.7 αs2-CN (f7-21)4P 0.4 n.d.

2356.2 2355.1 αs2-CN (f1-18)4P 20.8 n.d.

2666.7 2665.4 αs2-CN (f51-72)4P 2.3 n.d.

2748.6 2747.5 αs2-CN (f1-21)4P* 3.0 26.9

2876.8 2875.7 αs2-CN (f1-22)4P 1.8 n.d.

3005.2 3004.8 αs2-CN (f2-24)4P 0.4 n.d.

3134.3 3133.0 αs2-CN (f1-24)4P* 24.2 46.0

3382.0 3381.1 αs2-CN (f49-76)4P 8.4 n.d.

3461.9 3461.1 αs2-CN (f49-76)5P 1.4 n.d.

3666.0 3665.9 αs2-CN (f16-45)2P 0.9 n.d.

4166.4 4165.3 αs2-CN (f115-149)3P* 0.6 n.d.

4294.7 4293.5 αs2-CN (f115-150)3P* 0.6 n.d.

960.5 959.9 β-CN (f30-36)1P 0.8 n.d.

1462.5 1461.4 β-CN (f17-27)3P 1.8 n.d.

1511.6 1510.4 β-CN (f17-28)2P 0.6 n.d.

1515.5 1514.4 β-CN (f15-25)4P 1.3 n.d.

1591.4 1590.4 β-CN (f17-28)3P 19.5 n.d.

1628.9 1628.3 β-CN (f15-26)4P 0.7 n.d.

1645.4 1644.3 β-CN (f14-25)4P 1.1 n.d.

1743.8 1742.5 β-CN (f15-27)4P 16.0 n.d.

1791.4 1790.6 β-CN (f15-28)3P 7.9 n.d.

1871.6 1870.6 β-CN (f15-28)4P 100.0 n.d.

1999.8 1998.7 β-CN (f14-28)4P 0.4 n.d.

2240.4 2239.0 β-CN (f8-25)4P 1.6 n.d.

2709.4 2708.5 β-CN (f7-28)4P 4.1 n.d.

2967.4 2966.7 β-CN (f1-24)4P 0.2 n.d.

3080.5 3079.9 β-CN (f4-28)4P 0.6 n.d.

3123.2 3122.9 β-CN (f1-25)4P* n.d. 5.8

3351.6 3350.2 β-CN (f1-27)4P 3.2 14.8

3479.9 3478.4 β-CN (f1-28)4P* 70.1 100.0

3607.8 3606.6 β-CN (f1-29)4P* 13.2 6.0

3803.8 3802.4 β-CN (f1-28)4P + 1 lactose 0.7 n.d.

3849.3 3848.8 β-CN (f1-31)4P 0.1 n.d.

3978.2 3977.0 β-CN (f1-32)4P n.d. 0.5

6229.8 6228.8 κ-CN (f106-163)1P 0.3 n.d.

6788.5 6787.5 κ-CN (f106-169)1P 0.1 n.d.

κ-CN derived CPP

Molecular Mass (Da)

αs1-CN derived CPP

αs2-CN derived CPP

β-CN derived CPP

CPP sequence

Relative Intensity
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For example, β-CN (f1-28)4P, a peptide representing 100% intensity (assumed as base peak) 
of the signals in MALDI spectra, was reduced by approximately 30%; this loss was 
associated with the transformation of pasteurized milk into yogurt. One can deduce that the 
original peptide undergoes degradation even considering the higher number of formed CN 
peptides. In yogurt, β-CN (f1-28)4P, the most common CPP in pasteurized milk, was 
hydrolyzed into the peptide β-CN (f15-28)4P, which thus becomes the most abundant CPP.  

β-CN (f1-29)4P, β-CN (f1-28)4P, β-CN (f1-25)4P, β-CN (f1-24)4P, αs2-CN (f1-24)4P, αs2-CN 
(f1-21)4P, resulting from the CN hydrolysis by plasmin and enriched on HA, were also 
found as C-terminally shortened peptides. During fermentation and storage, αs2-CN (f115-
150)3P and αs2-CN (f115-149)3P derived by plasmin action did not react further to produce 
shorter peptides, most likely because of the absence of proteolytic enzymes. In the yogurt 
fraction recovered by centrifugation, only five multi-phosphorylated αs1-CN and two low-
phosphorylated κ-CN, κ-CN (f106-163)1P and κ-CN (f106-169)1P, were identified. Few CPP 
were less phosphorylated than the native peptides due to the presence of milk phosphatase, 
which was denatured in all pasteurized cheese-milks. The presence of lactosylated β-CN (f1-
28)4P CPP was indicative of yogurt made with high-heat treated or milk fortified with milk 
protein powder [102]. Proteolysis of milk proteins in model yogurt systems has shown a 
similar set of primary CPP (Table 5). Therefore, the question is raised how CPP, derived 
from the enzymatic hydrolysis of yogurt CN are digested and absorbed in adult humans. 
For this reason, it is important to know the gastrointestinal resistance of CPP if used as a 
functional ingredient for fruit beverages. In the various stages of human digestion, a large 
quantity of CPP is produced in the stomach by partial hydrolysis of CN through pepsin 
action and in the small intestine by trypsin; these peptides are successively refined by 
endoproteases/exopeptidases. Although analysis of the intestinal contents of milk and 
yogurt ingestion has revealed the presence of CPP [60], their further resistance to 
gastrointestinal enzymes is poorly documented. Fragment β-CN (f1-24)4P has been 
previously identified in the lumen contents of rats after 60 min of digestion as a β-CN (f1-
25)4P derived peptide [106]. Moreover, after yogurt ingestion, β-CN (f1-32)4P CPP was 
released in the human stomach [60] and β-CN (f1-31)4P was found in a yogurt sample. The 
fragment β-CN (f1-28)4P constitutes a clear example of the multi-functionality of milk-
derived peptides because some regions in the primary structure of caseins contain 
overlapping peptide sequences that exert different biological effects, in this case both 
mineral binding and immunostimulatory action [107]. Even with the difference in the 
peptide pattern, it is evident that CPP binding iron (or other metal ions) remains soluble in 
the digestive tract, where they escape further enzyme digestion [106]. The authors have 
studied in depth the simulated digestion of CPP from peptide precursors. These studies 
greatly benefit from the knowledge of enzyme specificities and degradation mechanisms. 
CPase and chymotryptic activity of pancreatin exhibits broad specificity, cleaving bonds on 
the carboxyl side of several amino acid residues of CPP. The latter, which are in the mass 
range 960-7087 Da (Table 5), are good candidates for intestinal absorption and for playing a 
possible physiological role in mineral bioavailability. However, there are conflicting results 
on the lack of αs1-CN (f43-52)2P and αs2-CN (f1-19)4P identified by other authors after CN 
hydrolysis with pancreatin, an enzyme used during the intestinal step of simulated 
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physiological digestion [108]. Generally, the physiological effects of CPP may not always be 
extended to precursor peptides, although they are structurally similar. There are not enough 
data concerning the effects of CPP addition to probiotic acid fermented milks. However, 
probiotic bacteria such as Lactobacillus acidophilus and Bifidobacterium spp., selected because 
of their beneficial action, which they may manifest on the health of the consumer, grow 
slowly in milk because of the lack of the proteolytic activity [109]. For this reason, and also 
to reduce the fermentation time, probiotic yogurt is manufactured by yogurt bacteria 
(Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) with the addition of 
probiotic culture. In parallel, non-digestible food ingredients, i.e., “prebiotics”, resist 
digestion in the small intestine and reach the colon, where they act as a growth factor for 
Bifidobacterium species and are metabolized into short chain fatty acids by a limited number 
of the microorganisms also comprising the colonic microflora. Prebiotics are principally 
oligosaccharides (fructo-oligosaccharides, inulins, isomalto-oligosaccharides, lactilol, 
lactosucrose, lactulose, pyrodextrins, soy oligosaccharides, transgalacto-oligosaccharides, 
and xylo-oligosaccharides) that stimulate bifidobacteria growth. In probiotic yogurt 
containing inulin as a prebiotic, the number of bioactive peptides increased, which means 
that elevation in the proteolytic activity has a synergistic effect with probiotic counts of 
yogurt cultures. Therefore, the most proteolytic strains of St. thermophilus and Lb. delbrueckii 
subsp. bulgaricus, spp. enhance the growth of Lb. acidophilus and Bifidobacterium. In our 
studies, the overall opiate activity of the bio-yogurt preparation containing Lb. acidophilus 

and Bifidobacterium spp. and inulin as a prebiotic was approximately twice that typical of 
traditional yogurt. In addition, the above yogurt preparation contained a variety of opioid 
agonistic and antagonistic, immunomodulation, anti-thrombotic, ACE-inhibitor, and anti-
microbial activities. Traditional and probiotic yogurt both possess a characteristic soluble 
fraction composed by peptides exhibiting biological activity, amongst others. This fraction 
was found to include CPP, β-casomorphins and antithrombotic peptide precursors that did 
not differ greatly from one another. In a study comparing the proteolytic, amino-, di-, tri- 
and endopeptidase activity of nine strains of St. thermophilus, six strains of Lb. delbrueckii, 
fourteen strains of Lb. acidophilus and thirteen strains of Bifidobacterium spp., aminopeptidase 
activity was detected for all bacterial strains – traditional yogurt strains and probiotic 
bifidobacteria - both at the extracellular and intracellular levels. High dipeptidase activity 
was demonstrated by all bacterial strains for Lb. delbrueckii ssp. bulgaricus, Lb. acidophilus, 
and Bifidobacterium spp., whereas St. thermophilus had greater dipeptidase activity at the 
extracellular level. 

4.3. CPP in a few cheese varieties 

Whole milk contains a variety of endogenous plasmin-mediated CN peptides. In addition, 
CPP were released following cell lysis and release of intracellular LAB enzymes. This 
phenomenon was observed especially at the end of ripening in long-ripened cheeses, such 
as Comté [110], Grana Padano [111], Parmigiano-Reggiano and semi-hard Herrgard cheese 
[112]. In Grana Padano cheese, 45 CPP were identified, of which 24 originated from β-casein, 
16 from αs1-casein and 5 from αs2-casein. These CPP formally derive from three parent 
peptides, namely β-CN (f7-28)4P, αs1-CN (f61-79)4P and αs2-CN (f7-21)4P [111]. By 
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comparing CPP of Grana Padano and Herrgard cheese, it was clear that CPP were all 
progressively shortened and dephosphorylated during ripening. CPP were very resistant to 
enzymatic degradation, especially when SerP residue was at the N-terminal end. The 
number of CPP identified according to the different procedures was comparable for Grana 
Padano [111] and Herrgard cheese [112]. In both the cheeses, CPP were progressively 
shortened and dephosphorylated during ripening, with both cheeses constituting 
heterogeneous mixtures of peptides phosphorylated at various sites sharing N- and C-
terminally truncated CPP. However, some peptides proved very resistant to enzymatic 
degradation, especially when SerP residue was present at the N-terminal end of CPP [111]. 
The only SerP residue located at the N-terminus of CPP was subjected to 
dephosphorylation, exposing the dephosphorylated residue to aminopeptidase action. A 
heterogeneous CPP pattern also differentiated the cheese samples within a given form 
because of the phosphatase gradient amongst peripheral and central parts of the Grana 
Padano cheese form (3 105 vs. 3 102). This is due to heat sensitivity in the temperature range 
57 and 62 °C and the acid pH at which these enzymes are denatured. These data explain the 
discrepancy in the amount of serine, which varied by as much as 50% of SerP from the 
periphery towards the center of the cheese form [113]. In contrast, the CPP fraction of 
Herrgard cheese was more uniform, with the two cheese varieties sharing active plasmin 
and amino-peptidases from lactic acid bacteria. Because milk pasteurization denatures 
alkaline phosphatase while it activates plasmin [114], proteolysis in the above cheese is 
plasmin-dependent. It is therefore likely that CPP of pasteurized milk cheeses are 
intrinsically more stable than raw milk cheeses [111]. CPP in artisanal PDO ovine Fiore 
Sardo cheese have been previously reported [115]. Patterns of CPP similar to that observed 
for bovine cheese indicated that mechanisms of formation and degradation of CPP were 
similar regardless of the milk species and cheese variety. The dephosphorylation mechanism 
in Fiore Sardo was different from that found in Grana Padano cheese, most likely because of 
the use of different rennet types. In PDO Fiore Sardo cheese, no apparent difference in 
susceptibility to dephosphorylation was found amongst the differently located SerP peptide 
residues. This resulted in the simultaneous occurrence of partly dephosphorylated peptides, 
either internally or externally. CPP enrichment by HA, for example of pH 4.6 soluble 
fractions of hard Parmigiano Reggiano (PR) (30-mo-old), semi-hard, pasta filata Provolone 
del Monaco (PM) (6-mo-old), semi-cooked Asiago d’Allevo (AA) (3-mo-old) and mold-
ripened cheese Gorgonzola (GR) (2-mo-old) cheese, has allowed the identification of CPP in 
high number (Figure 5) which may explain the broad-specificity of the cheese enzymes 
involved in CN proteolysis. Some CPP were derived from the Lys-X or Arg-X cleavage by 
plasmin primarily located in the N-terminal region of caseins, such as β-CN (f1-28)4P (Lys28-
Lys29) or β-CN (f1-29)4P (Lys29-Ile30), αs1-CN (f61-79)5P (Lys79-His80) and αs2-CN (f1-24)4P 
(Lys24-Asn25). The native plasmin-derived CPP were then further hydrolyzed by cheese 
aminopeptidases and CPase into shorter peptides.  

It is likely that ingested cheese carries a concentrated pH 4.6 soluble CPP fraction and a 
variable number of CPP according to the cheese variety. Above all, the presence and 
integrity of plasmin-mediated products of CN is a function of the milk, whether raw or 
pasteurized. Pasteurization reduces the milk plasmin activity only by ~15 percent, whereas 
plasmin activity increases during milk storage. UHT does not inactivate the plasmin in milk, 
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Figure 5. The MALDI spectra of CPP isolated by the addition of HA to pH 4.6 soluble fractions of 
Gorgonzola (a), Asiago (b), Provolone del Monaco (c), and Parmigiano Reggiano (d) cheeses. The inset 
magnifies the m/z values in the lower molecular mass peptide range 0.8-4 kDa.  
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and proteolytic activity will continue to damage milk. Heat treatments modify the peptide 
profile by increasing the content of larger peptides. The CN breakdown occurring during 
the ripening of PR cheese proceeded more slowly in PM cheese.. This means that eating PR 
cheese increases the quota of the co-ingested mineral bound CPP. In contrast, GR cheese 
show a different CPP level such as that of β-CN (f1-27)4P (3350.2 Da), resulting the most 
abundant CPP, when compared with hard cheeses (Figure 5a and 6); β-CN (f1-27)4P was 
further hydrolyzed into the shorter β-CN (f7-27)4P (2580.4 Da), β-CN (f10-27)4P (2270.0 Da), 
β- CN (f12-27)4P (2083.8 Da) and β-CN (f15-27)4 (1742.4 Da). The most abundant CPP in all 
three cheeses derived from the peptide β-CN (f1-28)4P, but long-ripened PR cheese was 
dissimilar from the other cheeses in its content of αs1-CN (f62-79)5P (2332.9 Da) (Figure 5d 
and 6). 

 
Figure 6. Histogram representation of CPP at 100% relative intensity and their performance in four 
cheeses.  

β-CN (f1-28)4P (3478.4 Da) in AA cheese was the most abundant signal of the MALDI 
spectra and it was partially hydrolyzed into the shorter peptides β-CN (f7-28)4P (2708.5 Da), 
β-CN (f15-28)4P (1869.7 Da) and β-CN (f17-28)3P (1589.6 Da) (Figure 5b and 6). Considering 
exclusively the CPP molecular mass in the 3-3.5 kDa range of AA and GR cheese, the 
intensity of a high number of peptides transformed into a number of progressively lower 
molecular weight CPP, with accompanying liberation of peptides (Figure 5). The most 
common group of CPP occurred in the mass range of 1.7-2.9, reaching the maximum 
intensity for β-CN (f12-28)4P (2212.0 Da) in PM and αs1-CN (f62-79)5P (2332.9 Da) in PR 
cheese (Figure 5c-d and 6). The presence of β-CN (f16-22)3P (977.7 Da) was discovered in 
both AA and PR cheeses and was not detected in the PM and GR cheeses (Figure 5). Our 
results show that longer plasmin-mediated peptides degraded into shorter CPP. These 
peptides became more evident when the chymosin retained in the cheese was largely 
inactivated by cooking the curd at high temperatures (~55 °C). The hydrolysis of CN by 
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chymosin was covered by that of plasmin, which became the principal proteolytic enzyme 
in the cheese. This phenomenon is particularly evident in PM raw milk cheese for which the 
plasmin-mediated β-CN (f1-28)4P peptide, representing ~0.1% of the CPP, was almost 
completely hydrolyzed into the shorter peptides β-CN (f11-28)4P (2341.1 Da), β-CN (f12-
28)4P (2212.0 Da), β-CN (f11-25)4P (1985.7 Da) and β-CN (f12-25)4P (1856.6 Da) (Figure 5c). 
When comparing the PR and PM cheese, the former had a high extent of β-CN (f1-28)4P as 
judged by the higher levels of the peptide. This demonstrates that CPP of PR cheese are 
progressively transformed into a number of lower-molecular-weight peptides. In contrast, 
the quasi-total absence in the PM cheese of β-CN (f1-28)4P and relatively few of the various 
sizes β-CN-derived CPP (Figure 6) could be the effect of the enzyme decline from the 
optimum level of activity to zero enzyme activity. 

αs1-CN CPP originated for the greater parts from the internal regions of the amino acid 
sequence, namely αs1-CN (f61-79)5P and αs1-CN (f33-60)3P.  

 
Figure 7. The number of CPP derived from αs1-CN (f59-79)5P and αs2-CN (f1-24)4P in Parmigiano 
Reggiano, Provolone del Monaco, Asiago and Gorgonzola cheeses.  

In PR cheese, 23 casein-derived CPP were found to derive from the internal region of αs1-
CN, i.e., αs1-CN (f59-79)5P, whereas they were not detected in AA (Figure 7).  

 
Figure 8. Amino acid sequence of the αs1-CN (f59-79) 4P peptide and the CPP identified in PR cheese. 
Phosphoserine residues are indicated by red boxes. 
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The profile of the CPP depicts the mechanisms of both the proteolysis and 
dephosphorylation in a long ripened cheese. Peptide αs1-CN (f61-79)5P, most likely arising 
from the parent peptide αs1-CN (f1-79)7P through cleavage at Met60-Glu61, was 
dephosphorylated and concurrently hydrolyzed into shorter peptides. Alkaline and/or acid 
phosphatases acting on SerP residue dephosphorylated CPP. N-terminal Ser was then 
exposed to aminopeptidase and released as a free amino acid. Bacterial CPase or 
exopeptidase such as cathepsin D/chymosin release αs1-CN (f61-74)4P and other derived 
CPP through cleavage at Asn74-SerP75 (Figure 8). In PR aged 30 months, αs1-CN (f61-79)5P 
(2462.1 Da), αs1-CN (f62-79)5P (2332.9 Da), αs1-CN (f63-79)5P (2261.9 Da), αs1-CN (f64-79)5P 
(2132.8 Da), αs1-CN (f64-79)4P (2052.8 Da), αs1-CN (f65-79)4P (1965.7 Da), αs1-CN (f62-74)4P 
(1681.3 Da), αs1-CN (f64-74)4P (1481.2 Da), αs1-CN (f64-74)3P (1401.2 Da) and αs1-CN (f65-
74)3P (1314.1 Da) were the dominant CPP (Figure 5d and 8). Indeed, only 7 CPP for PM 
cheese and 11 CPP for GR were derived from αs1-CN (f59-79)5P, namely αs1-CN (f61-79)5P 
(2462.1 Da) and αs1-CN (f61-74)4P (1810.5 Da) (Figure 5a and c and 7). Considering the αs2-
CN peptide, the αs2-CN (f1-24)4P CPP were similar in number but significantly different in 
the case of the four cheese varieties (Figure 6). The dominant αs2-CN-derived CPP were αs2-
CN (f1-24)4P (3132.9 Da) and αs2-CN (f1-21)4P (2747.6 Da) in AA cheese (Figure 5b). The 
most abundant αs2-CN-derived CPP were αs2-CN (f1-18)4P (2355.1 Da) for PM and αs2-CN 
(f6-18)4P (1751.4 Da), a shortened form of the primary CPP αs2-CN (f1-18)4P, for GR cheese 
(Figure 5a and c). αs2-CN (f7-18)4P (1614.3 Da) and αs2-CN (f8-18)4P (1515.1 Da) 
characteristically accumulated in PR cheese (Figure 5d). Similar and discrete 
phosphorylated CPP derived species for αs2-CN (f1-24) (3P and 4P) and β-CN (f1-28) (3P and 
4P) occurred in all cheeses. For the other casein fractions, primary CPP are fully 
phosphorylated, such as αs1-CN (f61-79)5P, whereas the derived peptides show a level of 
phosphorylation less than native form as observed in PM and GR. A higher 
dephosphorylation level characterized the CPP profile of PR cheese (Figure 8). The different 
profile of CPP could derive from the different length of ripening and from the cheese 
variety. 

CPP in ovine cheeses 

Cheeses that contain CPP are also manufactured from ovine milk. Proteolytic enzymes in 
Pecorino cheese originate from chymosin, pepsin and other clotting preparations such as paste 
rennet. These enzymatic activities are complemented by those secreted by the vegetative 
spores of Penicillium roqueforti during the maturation of blue-veined cheeses. The CPP patterns 
of Pecorino and Roquefort cheese have been characterized and main components identified. 
The sequence alignment of the CPP released throughout the hydrolysis of the β-CN (f1-28)4P 
in Pecorino and Roquefort cheeses are compared in Figure 9. 

In PR cheese of different ages, the released CPP were progressively degraded at C- and N-
terminal ends. CPases work from the C-terminal end and aminopeptidases from the N-
terminal end, both removing the terminal amino acid residues incrementally. LAB does not 
produce CPases; thus, the ability to liberate the carboxyterminal amino acid and peptides is 
typical of the mold. The N-terminal amino acid seemed to be released faster than the C-
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terminal residues because of the lower activity of CPases. There are negligible differences in 
the CPP level of different cheese lots primarily because of the action of the enzymes from P. 

roqueforti after its sporulation in blue-veined cheese. More long-chain CPP β-CN, such as β-
CN (f1-28)5P-4P, β-CN (f1-27)5P-4P and β-CN (f1-24)5P-4P, were detected in Pecorino 
cheese, whereas β-CN (f7-28)5P-4P and β-CN (f7-27)5P-4P resulted from the longer CPP in 
Roquefort cheese (Figure 9). In these cheese varieties, both αs1- and β-CN have been 
described as completely hydrolyzed at the end of ripening. This contradicts other findings 
indicating ~50% CN hydrolysis. Plasmin, NSLAB, and Lactobacilli contaminating flora 
proteinases are mainly responsible for extensive proteolysis in Parmigiano-Reggiano cheese, 
which is ripened for ~24 months at ~18-20 °C [116]. Here, chymosin is denatured by the high 
cooking temperature used during the manufacture of cheese. Molds develop at 
approximately 2 to 5 weeks of ripening, concurrently degrading CN into peptides of various 
sizes [117]. A similar mechanism for β-CN-derived CPP was found in Grana Padano cheese. 
Ser was proteolytically cleaved by aminopeptidases, and SerP hindered cleavage by the 
latter and continued its action after dephosphorylatation of SerP.  

 
Figure 9. Amino acid sequence of the β-CN (f1-28)4P peptide and the CPP identified in Pecorino (blue 
line) and Roquefort (yellow line) cheeses. CPP common to the two cheeses are indicated by crosses, and 
phosphoserine residues are indicated by red boxes. 

5. Anticariogenic effect of CPP in yogurt and cheese 

Due to proteolytic activity, a great number of CPP are formed in raw milk cheese. In 
contrast, the enzymatic digestion of proteins to peptides can be reduced by milk 



 
Bioactive Casein Phosphopeptides in Dairy Products as Nutraceuticals for Functional Foods 27 

pasteurization. Notwithstanding this, yogurt remains a consistent source of bioavailable 
CPP even if milk is heated to high temperatures (90 °C, 30 min) to create an inoculation 
medium in which the bacteria can grow and produce lactic acid. LAB provide plenty of 
CPP in the form of soluble complexes with Ca2+ that are effective in avoiding the life-
threatening calcium phosphate precipitation, enhancing the intestinal absorption of 
minerals and retention in the human body [34,118]. The mineral-binding power of CPP 
also depends on the number of binding sites and their relative accessibility [119]. Dairy 
products such as cheese and yogurt are both rich in multi-phosphorylated peptides 
capable of interacting with colloidal calcium phosphate to manifest anticariogenic 
properties in human and animal [120-121,13]. The mechanism of anticariogenicity might 
be due to a direct chemical effect of casein and calcium phosphate components [122]. 
Tooth enamel is a polymeric substance consisting of crystalline calcium phosphate, 
embedded in a protein matrix. Thus, CPP can significantly enhance localization of ACP at 
the tooth surface, inhibiting enamel demineralization and promoting remineralization. In 
the development of teeth and bone, CPP act as hydroxyapatite nucleator and control the 
growth of the crystals, resulting in unique crystal morphology. A new calcium phosphate 
remineralization technology has been recently developed based on the complex CPP-ACP 
[RecaldentTM CASRN691364-49-5] [66]. This preparation is claimed to stabilize calcium 
and phosphate ions in high concentrations by binding ACP to pellicle and plaque of the 
tooth surface. Moreover, CPP-ACP inhibited the adhesion of Streptococcus mutans to the 
tooth surface producing a copious reservoir of bioavailable calcium ions [67]. Cheese and 
yogurt CPP have the ability to stabilize calcium phosphate in solution, forming small 
CPP-ACP nanocomplexes. The calcium-binding ability of CPP has been applied by clinical 
dentists to show that CPP stabilize high concentrations of calcium, phosphate, and 
fluoride ions on the tooth surface by binding them to pellicle and plaque [66,123]. In 
dental plaque, CPP-ACP binds onto the surface components of the intercellular plaque 
matrix. Incorporation of CPP-ACP into the plaque will increase the calcium and 
phosphate content by forming a stable supersaturated solution of calcium phosphate. 
Thus, the availability of calcium in plaque provides a natural anticaries protective effect, 
either by suppression of demineralization promoted by fermentative acids in mouth, 
through an increased remineralization by binding calcium ions to teeth enamel, or 
possibly a combination of both. An inverse relation between plaque calcium and caries 
incidence has been evidenced [124-125]. Reynolds (1997) [126] has demonstrated that 
CPP-ACP can actually remineralize subsurface lesions in human enamel, and this is 
indeed the basis of one claim of his patent [127]. The diffusion of available CPP-ACP in 
the mouth is controlled by two main factors: i) the molecular weight of the diffusing 
species, the square of which is inversely proportional to the diffusion coefficient; and ii) 
the binding characteristics of the diffusing species, which dictate how much CPP-ACP is 
free to diffuse at a given time [128]. At neutral pH, calcium diffusion is limited by the 
quantity of bound calcium, reducing the effective diffusion coefficient (De) and creating a 
measurable restricted effective diffusion coefficient (rDe), where rDe =De/(R + 1) and R is 
the ratio of bound to free calcium. A large number of potential binding sites for calcium 
can have significant effects on the calcium diffusion coefficient; this effect is maintained at 
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low pH, although overall diffusion is slightly faster [129-130]. Conversely, one may infer 
that ACP may also bind to dental plaque and tooth enamel, thus having beneficial effects 
on teeth remineralization [67]. In addition, SerP residues of the CCP-HA complex are 
exposed to intestinal alkaline phosphatase, which favors metal ion bioavailability by 
releasing inorganic phosphate. Milk, ice cream, and cheese have been observed to lower 
the incidence of dental caries in rats [131]. Elderly people that eat cheese several times per 
week had a lower incidence of root surface caries development [132]. CPP of yogurt have 
been observed to have an inhibitory effect on demineralization and are able to promote 
remineralization of dental enamel [133]. Moreover, anticariogenic activity has also been 
reported for egg phosphopeptides (viz. phosvitin and phosphophorin) [134-135]. The 
heating process affects the bioavailability of CPP; for example, milk sterilization can 
induce dephosphorylation of phosphoseryl residues and dehydroalanine residue 
formation [136]. 

6. CPP as nutraceutical ingredients in functional foods  

6.1. Examples of commercial CPP preparation 

Some commercial products have been developed containing moderately hydrolyzed milk 
proteins as the sole protein source. Hypoallergenic formulas are based on partially or 
extensively hydrolyzed proteins. Both formulae are better tolerated by small premature 
infants than native cow milk protein. Ultrafiltered micellar casein and microfiltered whey 
protein concentrate are known to slow down the digestive process. Typical composition 
data of commercial phosphopeptide preparations (m/m) include 91.3% (TN x 6.47) or 94.8 
(dry basis) protein, 16.0% CPP, and 6.0% free amino acids. Compared with the expected CPP 
composition, the commercial preparation contained ~5% undigested protein, ~30% peptides 
in the intermediate molecular mass 5000-20000 Da range, and ~48% of molecular mass in the 
500-5000 Da range (Tatua, New Zealand). The preparation is generally very complex and 
dependent on the procedure used to perform casein hydrolysis. Therefore, commercial 
products can be considered to be an enriched-CCP preparation containing 16% CPP 
without specification of the peptide size and phosphorylation degree. Preliminary 
analysis performed by MALDI-TOF analysis indicated that the signal in the mass spectra 
originated exclusively from the β-CN digestion. The intensity of non-CPP such as β-CN 
(f191-209), β-CN (f184-209), β-CN (f177-209) and β-CN (f170-209) was sufficiently high to 
obscure other CN peptides (MALDI spectrum not shown). As reported above, a number 
of available techniques allow the separation of CPP and non-CPP. To reduce the large 
dynamic range of non-CPP, HA was used for CPP enrichment [90,94,102]. CPP included 
multiply phosphorylated peptides (up to 4 phosphorylation residues). CPP β-CN (f1-
28)4P and 3P, β-CN (f1-25)4P, 3P and 2P and β-CN (f2-25)4P, 3P and 2P were found and 
may be indicative of the progressive CPP dephosphorylation (MALDI spectrum not 
shown). Interestingly, in addition to β-CN, the commercial CPP (Tatua, NZ) also 
displayed αs1- or αs2-CN-derived CPP, invisible or weakly visible before the sample was 
treated with HA (Table 6). 
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Finally, a method for reducing the complexity of peptide mixtures was the separation of 
non-CPP and CPP by trapping CPP on HA under neutral conditions. This could be the 
principle for an industrially based production of CPP.  

* indicates a CPP containing the alternative non-allelic deletion of Gln78 [137]; Phosphoserine residues are coloured red. 

Table 6. CPP identified in a commercial CPP preparation (Tatua Co-operative Dairy Company Ltd) by 
tandem MS sequencing. 

6.2. Examples of industrial methods for CPP preparation 

Starting from CN, the overall preparation process gave 16% CPP (Figure 10), less than the 
theoretical yield of 23% (Ytheor =22.8%), which means approximately 20% yield on the basis of 
weight, a yield higher than that obtained by other researchers [138-140]. In their production 

Measured Theoretical 

αs1-CN 1138.4 1138.4 115 - 123 (N)SAEERLHSM(K) 1P

1526.7 1526.7 35 - 47 (K)EKVNELSKDIGSE(S) 1P

1831.9 1831.8 75 - 89 (N)SVEQKHIQKEDVPSE(R) 1P

1859.9 1859.9 75 - 89 (N)SVEKHIQKEDVPSER(Y)* 1P

1926.5 1926.7 43 - 58 (K)DIGSESTEDQAMEDIK(Q) 2P

1950.9 1950.9 104 - 119 (K)YKVPQLEIVPNSAEER(L) 1P

1988.0 1987.9 75 - 90 (N)SVEQKHIQKEDVPSER(Y) 1P

2054.7 2054.7 43 - 59 (K)DIGSESTEDQAMEDIKQ(M) 2P

2185.8 2185.8 43 - 60 (K)DIGSESTEDQAMEDIKQM(E) 2P

2400.9 2400.9 41 - 60 (L)SKDIGSESTEDQAMEDIKQM(E) 2P

2597.0 2597.0 37 - 58 (K)VNELSKDIGSESTEDQAMEDIK(Q) 2P

2856.1 2856.1 37 - 60 (K)VNELSKDIGSESTEDQAMEDIKQM(E) 2P

3113.2 3113.3 35 - 60 (K)EKVNELSKDIGSESTEDQAMEDIKQM(E) 2P

3193.2 3193.3 35 - 60 (K)EKVNELSKDIGSESTEDQAMEDIKQM(E) 3P

3699.6 3699.5 61 - 90 (M)EAESISSSEEIVPNSVEQKHIQKEDVPSER(Y) 4P

3779.6 3779.5 61 - 90 (M)EAES ISSSEEIVPNSVEQKHIQKEDVPSER(Y) 5P

3974.5 3974.6 59 - 90 (K)QMEAESISSSEEIVPNSVEQKHIQKEDVPSER(Y)  4P; Oxidation (Met)

4479.0 4479.0 23 - 60 (R)FFVAPFPEVFGKEKVNELSKDIGSESTEDQAMEDIKQM(E) 2P

αs2-CN 1432.6 1432.6 135 - 146 (N)SKKTVDMESTEV(F) 1P

1538.6 1538.6 126 - 137 (R)EQLSTSEENSKK(T) 2P

1578.6 1578.6 123 - 134 (T)LNREQLSTSEEN(S) 2P

1694.7 1694.7 125 - 137 (N)REQLSTSEENSKK(T) 2P

1793.7 1793.7 123 - 136 (T)LNREQLSTSEENSK(K) 2P

1921.8 1921.8 123 - 137 (T)LNREQLSTSEENSKK(T) 2P

2715.3 2715.3 115 - 137 (R)NAVPITPTLNREQLSTSEENSKK(T) 2P

3051.3 3051.2 1 - 24 KNTMEHVSSSEESIISQETYKQEK(N) 3P

3131.2 3131.2 1 - 24 KNTMEHVSSSEESIISQETYKQEK(N) 4P

3786.6 3786.6 115 - 146 (R)NAVPITPTLNREQLSTSEENSKKTVDMESTEV(F) 3P

4034.6 4034.8 115 - 148 (R)NAVPITPTLNREQLSTSEENSKKTVDMESTEVFT(K) 3P

β-CN 1600.7 1600.7 29 - 40 (K)KIEKFQSEEQQQ(T) 1P

1785.7 1785.7 35 - 48 (Q)SEEQQQTEDELQDK(I) 1P

1945.8 1945.8 29 - 43 (K)KIEKFQSEEQQQTED(E) 1P

2559.2 2559.1 29 - 48 (K)KIEKFQSEEQQQTEDELQDK(I) 1P

2805.2 2805.2 1 - 24 RELEELNVPGEIVESLSSSEESIT(R) 2P

2885.2 2885.2 1 - 24 RELEELNVPGEIVESLSSSEESIT(R) 3P

2906.3 2906.3 29 - 51 (K)KIEKFQSEEQQQTEDELQDKIHP(F) 1P

2961.3 2961.3 1 - 25 RELEELNVPGEIVESLSSSEESITR(I) 2P

2965.3 2965.2 1 - 24 RELEELNVPGEIVESLSSSEESIT(R) 4P

3041.2 3041.3 1 - 25 RELEELNVPGEIVESLSSSEESITR(I) 3P

3053.4 3053.4 29 - 52 (K)KIEKFQSEEQQQTEDELQDKIHPF(A) 1P

3121.1 3121.3 1 - 25 RELEELNVPGEIVESLSSSEESITR(I) 4P

3396.5 3396.5 1 - 28 RELEELNVPGEIVESLSSSEESITRINK(K) 3P

3476.5 3476.5 1 - 28 RELEELNVPGEIVESLSSSEESITRINK(K) 4P

Molecular Mass (Da)
Start End Peptide Sequence

Peptide 

Modifications

Parent 

Protein
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experiments, the authors obtained a CPP preparation as high as 18.8% degree of hydrolysis 
(DH).  

 
Figure 10. Schematic representation of the process-scale isolation of tryptic CPP from caseinate, 
showing the protein flow through the process (source: [141]). 

The example of 2000 L Na-caseinate solution containing 180 kg protein and 1 kg trypsin 
yielded 29 kg of calcium-enriched CPP, corresponding to a yield of ~16% (w/w) [141]. A 
variety of raw materials such as acid casein, sodium caseinate, and calcium caseinate, as 
well as skimmed raw milk, milk concentrate by ultrafiltration, pasteurized and UHT milk 
near the limit date for consumption, may be used as the substrate for CPP production. The 
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optimal parameters for the hydrolysis with trypsin were 37 °C and pH between 7.5 and 8.5. 
The casein hydrolysate solution was roughly fractioned by ultrafiltration with appropriate 
membranes to obtain soluble CPP both in the “permeate” and “retentate”. Lower-molecular 
peptides/phosphopeptides occurred in the “permeate” and larger in the “retentate”. The 
diafiltrate containing the tryptic casein digest was loaded on the ion exchange resin, and the 
non-CPP flowed through and were recovered for further use, e.g., as substrate for bacterial 
culture. Bound CPP, free of non-CPP, are eluted using sodium hydroxide, e.g., 0.2 M, and 
conductivity and absorbance monitored at 280 nm. The eluate containing CPP is collected 
and then concentrated, typically by reverse osmosis. Peptides were pasteurized (85 °C, 15 s) 
and spray dried, yielding sodium enriched CPP (Na-CPP). In other cases, to obtain calcium-
enriched CPP, the concentrate is added with CaCl2 in excess, diafiltered, and then CPP 
solution concentrated by reverse osmosis until the filtrate conductivity was negligible (less 
than 3 mS cm-1). The concentrate is spray dried, and the product is labeled as calcium-
enriched CPP (Ca-CPP).  

6.3. Traditional and new processes for the use of CPP in alimentary products  

A Ca2+/ethanol selective precipitation procedure was used to produce a CPP and non-CPP 
concurrently from an alcalase digest of whole casein in which the traditional and new 
processes for CPP production were reported [142]. CN is trypsinized, and the pH of the 
solution is adjusted to 4.6 to separate the non-peptide material. The CPP-Ca2+ aggregation 
was induced by ethanol addition in the supernatant and recovered as precipitate for freeze 
drying. In the novel process, the step of non-peptide material removal was omitted, and 
non-CPP (CNPP) was recovered as supernatant for use in alimentary products. For casein, 
the use of alcalase, a cheap enzyme suitable for industrial application, for hydrolysis was 
suggested [142]. The CN hydrolysates were separated into the two types of peptides using 
combined treatment with CaCl2 and ethanol. CPP and non-CPP comprised components with 
molecular weight lower than 2509 Da and 2254 Da, respectively, as determined using size 
exclusion HPLC. A DH of 20% for the CN hydrolysate was achieved. At the end, the 
recovery of CPP reached 24%. The phosphorus component of CPP was 3.08%, and nitrogen 
recovery was approximately 76% [142]. CPP generally had an improved solubility and 
transparency even under acid conditions and could be used as ingredient for beverages such 
as sport drinks, soft drinks, health drinks, fermented products, vitamin concentrates, fruit or 
fruit fractions.  

6.4. Patented methods for CPP production as ingredients for alimentary products 

A method for the preparation of selected anticariogenic CPP comprised the steps of 
complete digestion of CN as soluble monovalent cation salt with a proteolytic enzyme: the 
addition of a mineral acid to the solution to adjust the pH to approximately 4.7; the removal 
of any produced precipitate; the addition of CaCl2 to a concentration of approximately 1.0% 
(w/v) to cause the aggregation of CPP; the separation of the aggregated CPP from the 
solution through a filter with a molecular weight exclusion limit within the range 10000 to 
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20000 while passing the bulk of the remaining CPP in solution; the diafiltration of the 
separated CPP with water through a filter; the concentration of the solution; and the drying 
the retentate [143]. Peptides not included in the aggregation were removed by 
ultrafiltration/diafiltration. By this means, anticariogenic CPP at purity greater than 90% 
were obtained [143]. CPP including calcium, magnesium or both salts (or zinc, ferric or other 
salts) are produced by submitting CN to proteolytic enzyme hydrolysis, ultrafiltering the 
resulting hydrolyzate to produce a permeate containing CPP, adding a bivalent cation salt to 
the peptides to form CPP aggregates, and separating by ultrafiltration the CPP aggregates 
and non-CPP [144]. When CPP salts need to be converted to free phosphopeptides, they can 
be restored by acidification with HCl; the solution is then diafiltered extensively through a 
1000 molecular weight cut-off membrane to remove excess calcium chloride. 

6.5. Example of CPP applications as nutraceuticals in functional foods 

The CPP-salts complex can be added to different foods. A stable acidic beverage or other 
alimentary products can be obtained by digesting casein with trypsin, precipitating the 
insoluble components at acid pH, adjusting the pH of the obtained supernatant to 
approximately 6.0, then adding calcium chloride and ethanol to recover an acid-soluble 
calcium complex of CPP and the reaction product and adding them to a soft drink [145]. The 
acid-soluble calcium complex of CPP enhances calcium absorption from food because 
calcium may be absorbed by the body in the form of soluble calcium. Acid-soluble CPP is a 
mixture of αs1-, αs2- and β-CPP, forming essentially no turbidity in solution at pH of 3.0 or 
less, and having purity greater than 90%, molecular weights between approximately 2500 
and 4600 Da, and the ability to solubilize at least 100 ppm calcium at a concentration of 0.5 
mg/ml CPP. The acid-soluble CPP produced in vitro also have a solubilizing capability on 
iron. It is widely believed that iron must be solubilized for absorption through the small 
intestine. Accordingly, health may also be enhanced by the absorption of the soluble iron in 
the drink by the human body. Similarly, magnesium may be solubilized in a drink or edible 
product of this type [145]. Therefore, in addition to drinks, preparation of CPP with high 
negative charge could be used as additive for healthy foods or for dietetic or pharmaceutical 
compositions, as they are capable of increasing the in vivo absorption of calcium or other 
ions [146]. Another interesting invention relates to processes and the compositions that are 
useful to remineralize the teeth of mammals, particularly humans, and impart acid 
resistance thereto. These compositions included a gum base or carrier, sweetening agents, 
CPP-ACP preparation and food-grade acids [147]. Because many chewing gum and 
confectionery products usually contain acids, many consumers enjoying chewing gum and 
confectionery products ingest acids causing demineralization of the tooth surface. CPP-
calcium phosphate complexes are known to have anticariogenic teeth strengthening effects 
that could be used address the problem of dissolution or demineralization of tooth enamel 
and the resultant formation of dental caries. Exogenous CPP-ACP preparations have also 
been added to milk in 2.0-5.0 g⁄L amounts to remineralize enamel subsurface lesions, which 
actually increased with respect to the control [148]. 
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These inventions create functional foods with undoubted beneficial effects on human health, 
possibly promoting recalcification of bones, protecting the tooth enamel from decay and 
other possible health benefits. 

7. Conclusion 

Proteins are no longer considered merely nutritional components because they possess 
encrypted peptides with possible biological properties [149-153]. The cited literature has 
highlighted that bioactive peptides may be released in vitro or in vivo by digestive and bacterial 
enzymes starting from casein or generally inactive precursors [151,154-155]. We have 
examined the case of casein-derived phosphopeptides that can be applied as dietary 
supplements in “functional foods” and produced on an industrial scale. With this, it has been 
demonstrated that, each time a health-enhancing nutraceutical is required for a functional 
food, an appropriate enzymatic hydrolysis of casein needs to be designed [156-157]. In 
addition to the anticariogenic activity, the most important function displayed by CPP is that 
soluble and encrypted casein phosphopeptides can arrive without modification of the 
phosphorylated sequence to the brush border membrane. It is postulated that short-sequence 
peptides reach their putative receptors in many tissues without modification. Whether they 
enter blood circulation or whether their action is restricted to a peripheral circle are current 
questions that await response. In conclusion, this review has considered milk and cheese CPP 
for specific food ingredients. The contribution of in vitro casein digests by gastric proteases to 
potential biologically active substances in the intestine must be simultaneously considered. 
Scientists are currently involved in investigations to define the in vivo fate of all of the bioactive 
peptides. The in vitro studies have allowed the scientists to compare the predicted and the 
experimental sequence of CPP. This step is preliminary to the clinical investigations designed 
to determine the bioactivity of the milk hydrolysates. These findings open an industrial 
perspective that will permit the unrestricted use of CPP in healthy promoting food application. 

Author details 

Gabriella Pinto, Marina Cuollo, Sergio Lilla, Lina Chianese and Francesco Addeo 
Department of Food Science, University of Naples “Federico II”, Parco Gussone, Portici (Naples), 

Italy 

Simonetta Caira 
Food Science Institute of the National Research Council (C.N.R.), Via Roma, Avellino, 

Italy 

Acknowledgments 

Publication in partial fulfilment of the requirements for PhD in Sciences and Technologies of 
Food Productions - XXV Cycle, University of Naples ‘Federico II’. The Authors gratefully 



 
Milk Protein 34 

acknowledge the American Journal Experts Association for the text revision 
(http://www.journalexperts.com/). This work was partly supported by the financial aid to 
C.L. from MIUR, Program PRIN-2008 HNHAT7-004. 

8. References 

[1] Lambert JD, Hong J, Yang GY, Liao J, Yang CS. Inhibition of Carcinogenesis by 
Polyphenols: Evidence from Laboratory Investigations. American Society for Clinical 
Nutrition 2005;81(1) 284S-291S.  

[2] Aggarwal BA, Shishodia S. Molecular Targets of Dietary Agents for Prevention and 
Therapy of Cancer. Biochemical Pharmacology 2006;71(10) 1397-1421.  

[3] Chang DS. Preparations for Sustained Release of Nutraceuticals and Methods of 
Controllably Releasing Nutraceuticals. US Patent 07115283. 

[4] Cartwright R, Hendricks LE. Nutraceutical Composition. US Patent 20030091552. 
[5] Torres-Giner S, Martinez-Abad A, Ocio MJ, Lagaron JM. Stabilization of a Nutraceutical 

Omega-3 Fatty Acid by Encapsulation in Ultrathin Electrosprayed Zein Prolamine. 
Journal of Food Science 2010;75(6) N69-79.  

[6] Mora-Gutierrez A, Gurin MH. Bioactive Complexes Compositions and Methods of Use 
Thereof. US Patent 7780873. 

[7] Policker Y. Nutraceutical Sweetener Composition. US Patent 2010/0068347. 
[8] Schanbacher FL, Talhouk RS, Murray FA, Gherman LI, Willett LB. Milk-Borne Bioactive 

Peptides. International Dairy Journal 1998;8(5) 393-403. 
[9] Husson SJ, Landuyt B, Nys T, Baggerman G, Boonen K, Clynen E, Lindemans M, Janssen 

T, Schoofs L. Comparative Peptidomics of Caenorhabditis Elegans versus C. Briggsae 
by LC-MALDI-TOF MS. Peptides 2009;30(3) 449-457. 

[10] Fosset S, Tomé D. Nutraceuticals from Milk. In: Roginski H, Fuquay JW, Fox PF. (ed.) 
Enciclopedia Dairy Science. London: Accasemy Press; 2003. p2108-2112. 

[11] Silva SV, Malcata FX. Caseins as Source of Bioactive Peptides. International Dairy 
Journal 2005;15(1) 1-15. 

[12] Recio Sanchez I. Bioactive Peptides Identified in Enzymatic Hydrolyzates of Milk 
Caseins and Method of Obtaining Same. US 2010/0048464. 

[13] FitzGerald RJ. Potential Uses of Caseinophosphoeptides. International Dairy Journal 
1998;8(5-6) 451-457. 

[14] Luo SJ, Wong LL. Oral Care Confections and Method of Using. US Patent  
6733818.  

[15] Reynolds EC, Cai F, Shen P, Walker GD. Retention in Plaque and Remineralization of 
Enamel Lesions by Various Forms of Calcium in a Mouthrinse or Sugar-free Chewing 
Gum. Journal of Dental Research 2003;82(3) 206-211.  

[16] Korhonen H, Pihlanto A. Bioactive Peptides: Production and Functionality. 
International Dairy Journal 2006;16(9) 945-960. 

[17] Law J, Haandrikman A. Proteolytic Enzymes of Lactic Acid Bacteria. International 
Dairy Journal 1997;7(1) 1-11. 



 
Bioactive Casein Phosphopeptides in Dairy Products as Nutraceuticals for Functional Foods 35 

[18] Gatti M, Fornasari ME, Mucchetti G, Addeo F, Neviani E. Presence of Peptidase 
Activities in Different Varieties of Cheese. Letters in Applied Microbiology 1999;28(5) 
368-372.  

[19] Léonila J, Gagnaire V, Mollé D, Pezennec S, Bouhallab S. Application of 
Chromatography and Mass Spectrometry to the Characterization of Food Proteins and 
Derived Peptides. Journal of Chromatography A 2000;881(1-2) 1-21. 

[20] Christensen JE, Dudley EG, Pederson JA, Steele JL. Peptidases and Amino Acid 
Catabolism in Lactic Acid Bacteria. Antonie Van Leeuwenhoek 1999;76(1-4) 217- 
246.  

[21] Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN. The Proteolytic Systems of 
Lactic Acid Bacteria. Antonie Van Leeuwenhoek 1996;70(2-4) 187-221. 

[22] Doeven MK, Kok J, Poolman B. Specificity and Selectivity Determinants of Peptide 
Transport in Lactococcus Lactis and Other Microorganisms. Molecular Microbiology 
2005;57(3) 640-649.  

[23] Fernandez-Espla MD, Rul F. PepS from Streptococcus thermophilus. A New Member of 
the Aminopeptidase T Family of Thermophilic Bacteria. European Journal of 
Biochemistry 1999;263(2) 502-510.  

[24] Gagnaire V, Piot M, Camier B, Vissers JP, Jan G, Léonil J. Survey of Bacterial Proteins 
Released in Cheese: a Proteomic Approach. International Journal of Food Microbiology 
2004;94(2) 185-201. 

[25] Saz JM, Marina ML. Application of Micro- and Nano-HPLC to the Determination and 
Characterization of Bioactive and Biomarker Peptides. Journal of Separation Science 
2008;31(3) 446-458. 

[26] Miclo L, Roux É, Genay M, Brusseaux É, Poirson C, Jameh N, Perrin C, Dary A. 
Variability of Hydrolysis of β-, αs1-, and αs2-Caseins by 10 Strains of Streptococcus 

thermophilus and Resulting Bioactive Peptides. Journal of Agricultural and Food 
Chemistry  2012;60(2) 554-565. 

[27] Pihlanto-Leppälä A, Rokka T, Korhonen H. Angiotensin I Converting Enzyme 
Inhibitory Peptides Derived from Bovine Milk Proteins. International Dairy Journal 
1998;8(4) 325-331. 

[28] Pélissier JP. Protéolyse des Caséines. Sciences des Aliments 1984;4(1) 1-35. 
[29] Teschemacher H, Koch G, Brantl V. Milk Protein-Derived Opioid Receptor Ligands. 

Biopolymers 1997;43(2) 99-117. 
[30] Meisel H. Chemical Characterization and Opioid Activity of an Exorphin Isolated from 

in Vivo Digests of Casein. FEBS Letters 1986;196(2) 223-227. 
[31] Ondetti MA, Cushman DW. Enzymes of the Renin-Angiotensin System and their 

Inhibitors. Annual Review of Biochemistry 1982;51 283-308 
[32] Bruneval P, Hinglais N, Alhenc-Gelas F. Angiotensin I Converting Enzyme in Human 

Intestine and Kidney. Ultrastructural Immunohistochemical Localization. 
Histochemistry 1986;85(1) 73-80. 

[33] Meisel H. Casokinins as Bioactive Peptides in the Primary Structure of Casein. In 
Schwenke KD, Mothes R. (ed.) Food Proteins: Functionality. New York: VCH-
Weinheim; 1993. p67-75. 



 
Milk Protein 36 

[34] Sato R, Noguchi T, Naito H. Casein phosphopeptide (CPP) Enhances Calcium 
Absorption from the Ligated Segment of Rat Small Intestine. Journal of Nutritional 
Science and Vitaminology 1986;32(1) 67-76. 

[35] Reynolds EC. Remineralization of Enamel Subsurface Lesions by Casein 
Phosphopeptide-Stabilized Calcium Phosphate Solutions. Journal of Dental Research 
1997;76(9) 1587-1595. 

[36] Meisel H, Olieman C. Estimation of Calcium binding Constants of Casein 
Phosphopeptides by Capillary Zone Electrophoresis. Analytica Chimica Acta 
1998;372(1-2) 291-297. 

[37] Hala I, Higashiyama S, Otani H. Identification of a Phosphopeptide in Bovine αs1-
Casein Digest as a Factor Influencing Proliferation and Immunogloblin Production in 
Lymphocyte Cultures. Journal of Dairy Research 1998;65(4) 569-578. 

[38] Hala I, Ueda J, Otani H. Immunostimulatory Action of a Commercially Available 
Casein Phosphopeptide Preparation, CPP-III. in Cell Cultures. Milchwissenschaft 1999; 
54(1) 3-7. 

[39] Loukas S, Varoucha D, Zioudrou C, Streaty R, Klee WA. Opioid Activities and 
Structures of alpha-Casein-Derived Exorphins. Biochemistry 1983;22(19) 4567- 
4573. 

[40] Loukas S, Panetsos F, Donga E, Zioudrou C. Selective δ-Antagonist Peptides, Analogs 
of α-Casein Exorphin, as Probes for the Opioid Receptor In: Nyberg F. Brantl V. (ed.) β-
Casomorphins and Related Peptides. Uppsala: Fyris-Tryck AB; 1990. p143- 
149. 

[41] Pihlanto-Leppälä A, Antila P, Mäntsälä P, Hellman J. Opioid Peptides Produced by in 
Vitro Proteolysis of Bovine Caseins. International Dairy Journal 1994;4(4) 291- 
301. 

[42] Miquel E, Gómez JÁ, Alegría A, Barberá R, Farré R Recio I. Identification of Casein 
Phosphopeptides after Simulated Gastrointestinal Digestion by Tandem Mass 
Spectrometry. European Food Research and Technology 2006;222(1-2) 48-53. 

[43] Picariello G, Ferranti P, Fierro O, Mamone G, Caira S, Di Luccia A, Monica S, Addeo F. 
Peptides Surviving the Simulated Gastrointestinal Digestion of Milk Proteins: Biological 
and Toxicological Implications. Journal of Chromatography B. Analytical Technologies 
in the Biomedical and Life Sciences 2010;878(3-4) 295-308.  

[44] Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, 
Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE. Nomenclature of the Proteins of Cows' 
Milk—Sixth Revision. Journal of Dairy Science 2004;87(6) 1641-1674. 

[45] Kenny AJ, Maroux S. Topology of Microvillar Membrance Hydrolases of Kidney and 
Intestine. Physiological Reviews 1982;62(1) 91-128.  

[46] Yoshioka M, Erickson RH, Woodley JF, Gulli R, Guan D, Kim YS. Role of Rat Intestinal 
Brush-Border Membrane Angiotensin-Converting Enzyme in Dietary Protein Digestion. 
American Journal of Physiology-Gastrointestinal and Liver Physiology 1987;253(6 Pt 1) 
G781-G786. 



 
Bioactive Casein Phosphopeptides in Dairy Products as Nutraceuticals for Functional Foods 37 

[47] Erickson RH, Song IS, Yoshioka M, Gulli R, Miura S, Kim YS. Identification of Proline-
Specific Carboxypeptidase Localized to Brush Border Membrane of Rat Small Intestine 
and its Possible Role in Protein Digestion. Digestive Diseases and Sciences 1989;34(3) 
400-406.  

[48] Mellander O, Folsch G. Enzyme Resistance and Metal Binding of Phosphorylated 
Peptides. In: Bigwood EJ. (ed.) Protein and Amino Acid Function. New York: 
Pergamoon Press Inc; 1972. p569-79.  

[49] Boutrou, R, Coirre E, Jardin J, Léonil J. Phosphorylation and Coordination Bond of 
Mineral Inhibit the Hydrolysis of the β-Casein (1−25) Peptide by Intestinal Brush-Border 
Membrane Enzymes. Journal of Agricultural and Food Chemistry 2010;58(13) 7955-
7961. 

[50] Kibangou IB, Bouhallab S, Henry G, Bureau F, Allouche S, Blais A, Guérin P, Arhan P, 
Bouglé DL. Milk Proteins and Iron Absorption: Contrasting Effects of Different 
Caseinophosphopeptides. Pediatric Research 2005;58(4) 731-734.  

[51] Pérès JM, Bouhallab S, Petit C, Bureau F, Maubois JL, Arhan P, Bougle D. Improvement 
of Zinc Intestinal Absorption and Reduction of Zinc/Iron Interaction Using Metal 
Bound to the Caseinophosphopeptide 1-25 of β-casein. Reproduction, Nutrition & 
Development 1998;38(4) 465-472. 

[52] Kasai T, Iwasaki R, Tanaka M, Kiriyama S. Caseinphosphopeptides (CPP) in Feces and 
Contents in Digestive Tract of Rats Fed Casein and CPP Preparations. Bioscience, 
Biotechnology and Biochemistry 1995;59(1) 26-30. 

[53] Ferraretto A, Signorile A, Gravaghi C, Fiorilli A, Tettamanti G. Casein Phosphopeptides 
Influence Calcium Uptake by Cultured Human Intestinal HT-29 Tumor Cells. Journal of 
Nutrition 2001;131(6) 1655-1661. 

[54] Richter S, Bergmann R, Pietzsch J, Ramenda T, Steinbach J, Wuest F. Fluorine-18 
Labeling of Phosphopeptides: A Potential Approach for the Evaluation of 
Phosphopeptide Metabolism In Vivo. Biopolymers 2009;92(6) 479-488. 

[55] Erba D, Ciappellano S, Testolin G. Effect of Caseinphosphopeptides on Inhibition of 
Calcium Intestinal Absorption due to Phosphate. Nutrition Research 2001;21(4) 649- 
656. 

[56] Marcus CS, Lengemann FW. Absorption of Ca45 and Sr85 from Solid and Liquid Food at 
Various Levels of the Alimentary Tract of the Rat. Journal of Nutrition 1962;77(2) 155-
160. 

[57] Marcus CS, Lengemann FW. Use of Radioyttrium to Study Food Movement in the 
Small Intestine of the Rat. Journal of Nutrition 1962;76(2) 179-182. 

[58] Meisel H, Bernard H, Fairweather-Tait S, FitzGerald RJ, Hartmann R, Lane  
CN, McDonagh D, Teucher B, Wal JM. Detection of Caseinophosphopeptides in the 
Distal Ileostomy Fluid of Human Subjects. British Journal of Nutrition 2003;89(3) 351-
359. 



 
Milk Protein 38 

[59] Meisel H, Frister H. Chemical Characterization of a Caseinophosphopeptide Isolated 
from in Vivo Digests of a Casein Diet. Biological Chemistry Hoppe-Seyler 1988;369(12) 
1275-1279. 

[60] Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, 
Guillet R, Jollès P, Fiat AM. Casein Peptide Release and Passage to the Blood in 
Humans during Digestion of Milk or Yogurt. Biochimie 1998;80(2) 155-165. 

[61] Meisel H. Biochemical Properties of Regulatory Peptides Derived from Milk Proteins. 
Biopolymers 1997;43(2) 119-128. 

[62] Sato R, Noguchi T, Naito H. Casein phosphopeptide (CPP) Enhances Calcium 
Absorption from the Ligated Segment of Rat Small Intestine. Journal of Nutritional 
Science and Vitaminology 1986;32(1) 67-76.  

[63] Ferraretto A, Gravaghi C, Fiorilli A, Tettamanti G. Casein-Derived Bioactive 
Phosphopeptides: Role of Phosphorylation and Primary Structure in Promoting 
Calcium Uptake by HT-29 Tumor Cells. FEBS Letters 2003;551(1-3) 92-98. 

[64] Cosentino S, Gravaghi C, Donetti E, Donida BM, Lombardi G, Bedoni M, Fiorilli A, 
Tettamanti G, Ferraretto A. Caseinphosphopeptide-Induced Calcium Uptake in Human 
Intestinal Cell Lines HT-29 and Caco2 is Correlated to Cellular Differentiation. Journal 
of Nutritional Biochemistry 2010;21(3) 247-254. 

[65] Donida BM, Mrak E, Gravaghi C, Villa I, Cosentino S, Zacchi E, Perego S, Rubinacci A, 
Fiorilli A, Tettamanti G, Ferraretto A. Casein Phosphopeptides Promote Calcium 
Uptake and Modulate the Differentiation Pathway in Human Primary Osteoblast-like 
Cells. Peptides 2009;30(12) 2233-2241. 

[66] Reynolds EC. Casein Phosphopeptide-Amorphous Calcium Phosphate: The Scientific 
Evidence. Advances in Dental Research 2009;21(1) 25-29. 

[67] Rose RK. Binding Characteristics of Streptococcus mutans for Calcium and Casein 
Phosphopeptide. Caries Res 2000;34(5) 427-431.  

[68] McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR III.  
Direct Analysis and Identification of Proteins in Mixtures by LC/MS/MS and  
Database Searching at the Low-femtomole Level Analytical Chemistry 1997;69(4):767-
776. 

[69] Eng JK, McCormack AL, Yates JR III. An Approach to Correlate Tandem Mass Spectral 
Data of Peptides with Amino Acid Sequences in a Protein Database. Journal of The 
American Society for Mass Spectrometry 1994;5(11) 976-989.  

[70] Stensballe A, Andersen S, Jensen ON. Characterization of Phosphoproteins from 
Electrophoretic Gels by Nanoscale Fe(III) Affinity Chromatography with Off-line Mass 
Spectrometry Analysis. Proteomics 2001;1(2) 207-222. 

[71] Craig AG, Hoeger CA, Miller CL, Goedken T, Rivier JE, Fischer WH. Monitoring 
Protein Kinase and Phosphatase Reactions with Matrix-Assisted Laser 
Desorption/Ionization Mass Spectrometry and Capillary Zone Electrophoresis: 
Comparison of the Detection Efficiency of Peptide-Phosphopeptide Mixtures. Biological 
Mass Spectrometry 1994;23(8) 519-528. 



 
Bioactive Casein Phosphopeptides in Dairy Products as Nutraceuticals for Functional Foods 39 

[72] Annan RS, Huddleston MJ, Verma R, Deshaies RJ, Carr SA. A Multidimensional 
Electrospray MS-Based Approach to Phosphopeptide Mapping. Analytical Chemistry 
2001;73(3) 393-404. 

[73] Manson W, Annan WD. The Structure of a Phosphopeptide Derived from β-casein. 
Archives of Biochemistry and Biophysics 1971;145(1) 16-26. 

[74] Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-Dimensional 
Gel Electrophoresis-Based Proteome Analysis Technology. PNAS 2000;97(17) 9390- 
9395. 

[75] Oda Y, Nagasu T, Chait, BT. Enrichment Analysis of Phosphorylated Proteins as a Tool 
for Probing the Phosphoproteome. Nature Biotechnology 2001;19(4) 379-382. 

[76] Zhou H, Watts, JD, Aebersold R. A Systematic Approach to the Analysis of Protein 
Phosphorylation. Nature Biotechnology 2001;19(4) 375-378. 

[77] Posewitz MC, Tempst P. Immobilized Gallium(III) Affinity Chromatography of 
Phosphopeptides. Analytical Chemistry 1999;71(14) 2883-2892.  

[78] Kokubu M, Ishihama Y, Sato T, Nagasu T, Oda Y. Specificity of Immobilized Metal 
Affinity-Based IMAC/C18 Tip Enrichment of Phosphopeptides for Protein 
Phosphorylation Analysis. Analytical Chemistry 2005;77(16) 5144-5154.  

[79] Machida M, Kosako H, Shirakabe K, Kobayashi M, Ushiyama M, Inagawa J, Hiran J, 
Nakano T, Bando Y, Nishida E, Hattori S. Purification of Phosphoproteins by 
Immobilized Metal Affinity Chromatography and its Application to Phosphoproteome 
Analysis. FEBS Journal 2007;274(6) 1576-1587.  

[80] Thingholm TE, Jensen ON. Enrichment and Characterization of Phosphopeptides by 
Immobilized Metal Affinity Chromatography (IMAC) and Mass Spectrometry. Methods 
in Molecular Biology 2009;527 47-56. 

[81] Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ Selective Isolation at the 
Femtomole Level of Phosphopeptides from Proteolytic Digests Using 2D-NanoLC-ESI-
MS/MS and Titanium Oxide Precolumns. Analytical Chemistry 2004;76(14) 3935- 
3943.  

[82] Rinalducci S, Larsen MR, Mohammed S, Zolla L. Novel Protein Phosphorylation Site 
Identification in Spinach Stroma Membranes by Titanium Dioxide Microcolumns and 
Tandem Mass Spectrometry. Journal of Proteome Research 2006;5(4) 973-982.  

[83] Thingholm TE, Jørgensen TJ, Jensen ON, Larsen MR. Highly Selective Enrichment of 
Phosphorylated Peptides using Titanium Dioxide. Nature Protocols 2006;1(4) 1929- 
1935.  

[84] Dunn JD, Reid GE, Bruening ML. Techniques for Phosphopeptide Enrichment prior to 
Analysis by Mass Spectrometry. Mass Spectrometry Reviews 2010;29(1) 29-54. 

[85] Moser K, White FM. Phosphoproteomic Analysis of Rat Liver by High Capacity IMAC 
and LC-MS/MS. Journal of Proteome Research 2006;5(1) 98-104. 

[86] Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD. Highly Selective 
Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide 
Microcolumns. Molecular & Cellular Proteomics 2005;4(7) 873-886. 



 
Milk Protein 40 

[87] Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible Isolation 
of Distinct, Overlapping Segments of the Phosphoproteome. Nature Methods 2007;4(3) 
231-237. 

[88] Sugiyama N, Masuda T, Shinoda K, Nakamura A, Tomita M, Ishihama Y. 
Phosphopeptide Enrichment by Aliphatic Hydroxyl Acid-Modified Metal Oxide 
Chromatography for Nano-LC-MS/MS in Proteomics Applications. Molecular & 
Cellular Proteomics 2007;6(6) 1103-1109. 

[89] McLachlin DT, Chait BT. Analysis of Phosphorylated Proteins and Peptides by Mass 
Spectrometry. Current Opinion in Chemical Biology 2001;5(5) 591-602. 

[90] Pinto G, Caira S, Cuollo M, Lilla S, Fierro O, Addeo F. Hydroxyapatite as a 
Concentrating Probe for Phosphoproteomic Analyses. Journal of Chromatography B 
2010;878(28) 2669-2678. 

[91] Zhou HY, Salih E, Glimcher MJ. Isolation of a Novel Bone Glycosylated Phosphoprotein 
with Disulphide Cross-Links to Osteonectin. Biochemical Journal 1998;330(3) 1423- 
1431. 

[92] Schmidt SR, Schweikart F, Andersson ME. Current Methods for Phosphoprotein 
Isolation and Enrichment. Journal of Chromatography B 2007;849(1-2) 154-162. 

[93] Kawasaki T. Hydroxyapatite as a Liquid Chromatographic Packing. Journal of 
Chromatography A 544(17) 147-184. 

[94] Mamone G, Picariello G, Ferranti P, Addeo F. Hydroxyapatite Affinity 
Chromatography for the Highly Selective Enrichment of Mono- and Multi-
Phosphorylated Peptides in Phosphoproteome Analysis. Proteomics 2010;10(3) 380- 
393. 

[95] Cirulli C, Chiappetta G, Marino G, Mauri P, Amoresano A. Identification of Free 
Phosphopeptides in Different Biological Fluids by a Mass Spectrometry Approach. 
Analytical and Bioanalytical Chemistry 2008;392(1-2) 147-159. 

[96] Hu L, Zhou H, Li Y, Sun S, Guo L, Ye M, Tian X, Gu J, Yang S, Zou H. Profiling of 
Endogenous Serum Phosphorylated Peptides by Titanium (IV) Immobilized 
Mesoporous Silica Particles Enrichment and MALDI-TOFMS Detection. Analytical 
Chemistry 2009;81(1) 94-104. 

[97] Li Y, Qi D, Deng C, Yang P, Zhang X. Cerium Ion-Chelated Magnetic Silica 
Microspheres for Enrichment and Direct Determination of Phosphopeptides by Matrix-
Assisted Laser Desorption Ionization Mass Spectrometry. Journal of Proteome Research 
2008;7(4) 1767-1777. 

[98] Maurer MC, Peng JL, An SS, Trosset JY, Henschen-Edman A, Scheraga, HA. Structural 
Examination of the Influence of Phosphorylation on the Binding of Fibrinopeptide A to 
Bovine Thrombin. Biochemistry 1998, 37(17) 5888–5902. 

[99] Matrisian LM, Sledge GW Jr, Mohla S. Extracellular Proteolysis and Cancer: Meeting 
Summary and Future Directions Cancer Research 2003;63(19) 6105-6109. 

[100] Resmini P, Pellegrino L, Battelli G. Accurate Quantification of Furosine in Milk and 
Dairy Products by a Direct HPLC Method. Italian Journal of Food Science 1990;2(3) 173-
183. 



 
Bioactive Casein Phosphopeptides in Dairy Products as Nutraceuticals for Functional Foods 41 

[101] Corzo N, López-Fandiño R, Delgado T, Ramos M, Olano A. Changes in Furosine and 
Proteins of UHT-Treated Milks Stored at High Ambient Temperatures. Zeitschrift fur 
Lebensmittel-Untersuchung und-Forschung 1994;198(4) 302-306.  

[102] Pinto G, Caira S, Cuollo M, Fierro O, Nicolai MA, Chianese L, Addeo F. Lactosylated 
Casein Phosphopeptides as Specific Indicators of Heated Milks. Analytical and 
Bioanalytical Chemistry 2012 2012;402(5) 1961-1972.  

[103] Mendoza MR, Olano A, Villamiel M. Chemical Indicators of Heat Treatment in 
Fortified and Special Milks. Journal of Agriculture and Food Chemistry 2005;53(8) 2995-
2999. 

[104] Mottar J, Bassier A, Joniau M, Baert J. Effect of Heat-Induced Association of Whey 
Proteins and Casein Micelles on Yogurt Texture. Journal of Dairy Science 1989;72(9) 
2247-2256. 

[105] Tokusoglu Ӧ, Akalin AS, Unal K. Rapid High Performance Liquid Chromatographic 
Detection of Furosine (epsilon- N-2-furoylmethyl-L-lysine) in Yogurt and Cheese 
Marketed in Turkey. Journal of Food Quality 2006;29(1) 38-46. 

[106] Bouhallab S, Oukhatar NA, Molle D, Henry G, Maubois JL, Arhan P, Bougle D. 
Sensitivity of Beta-Casein Phosphopeptide-Iron Complex to Digestive Enzymes in 
Ligated Segment of Rat Duodenum. The Journal of Nutritional Biochemistry 1999;10(12) 
723-727. 

[107] Pérès JM, Bouhallab S, Bureau P, Neuville D, Maubois JL, Devroede G, Arhan P, 
Bouglé D. Mechanisms of Absorption of Caseinophosphopeptide Bound Iron. The 
Journal of Nutritional Biochemistry 1999;10(4) 215-222. 

[108] Adamson NJ, Reynolds EC. Characterization of Multiply Phosphorylated Peptides 
Selectively Precipitated from a Pancreatic Casein Digest. Journal of Dairy Science 
1995;78(12) 2653-2659. 

[109] Klaver FAM, Kingma F, Weerkamp AH. Growth and Survival of Bifidobacteria in 
Milk. Netherlands Milk Dairy Journal 1993;47(3-4) 151-164. 

[110] Roudot-Algaron F, Le Bars D, Kerhoas L, Einhorn J, Gripon JC. Phosphopeptides  
from Comté Cheese. Nature and Origin. Journal of Food Science 1994; 59(3) 544- 
547. 

[111] Ferranti P, Barone F, Chianese L, Addeo F, Scaloni A, Pellegrino L, Resmini P. 
Phosphopeptides from Grana Padano: Nature, Origin and Changes during Ripening. 
Journal of Dairy Research 1997;64(4) 601-615.  

[112] Lund M, Ardö Y. Purification and Identification of Water Soluble Phosphopeptides 
from Cheese using Fe(III) Affinity Chromatography and Mass Spectrometry. Journal of 
Agricultural and Food Chemistry 2004;52(21) 6616-6622. 

[113] Pellegrino L, Battelli G, Resmini P, Ferranti P, Barane F, Addeo F. Effects of Heat Load 
Gradient Occurring in Moulding on Characterization and Ripening of Grana Padano. 
Lait 1997;77(2) 217-228. 

[114] Walstra P, Jenness R. Dairy Chemistry and Physics. New York: John Wiley and Sons; 
1984.  



 
Milk Protein 42 

[115] Pirisi A, Pinna G, Addis M, Piredda G, Mauriello R, De Pascale S, Addeo F, Chianese 
L. Relationship Between the Enzymatic Composition of Lamb Paste Rennet and 
Proteolytic and Lypolitic Pattern and Texture of PDO Fiore Sardo Cheese. International 
Dairy Journal 2007;17(2) 143-156. 

[116] Battistotti B, Corradini C. Italian Cheese. In: Fox PF. (ed.) Cheese: Chemistry, Physics 
and Microbiology. Volume II. Major Cheese Groups. London: Elsevier Applied Science; 
1993. p221-243. 

[117] Voigt DD, Chevalier F, Qian MC, Kelly AL. Effect of High-Pressure Treatment on 
Microbiology, Proteolysis, Lipolysis and Levels of Flavour Compounds in Mature Blue-
Veined Cheese. Innovative Food Science & Emerging Technologies 2010;11(1) 68- 
77. 

[118] Mykkanen HM, Wasserman RH. Enhanced Absorption of Calcium by Casein 
Phosphopeptides in Rachitic and Normal Chicks. Journal of Nutrition 1980;110(11) 
2141-2148. 

[119] Meisel H. Overview on Milk Protein-Derived Peptides. International Dairy Journal 
1998;8(5-6) 363-373. 

[120] Reynolds EC, Johnson IH. Effect of Milk on Caries Incidence and Bacterial 
Composition of Dental Plaque in the Rat. Archives of Oral Biology 1981;26 (5) 445-451. 

[121] Rosen S, Min DB, Harper DS, Harper WJ, Beck EX, Beck FM. Effect of Cheese with and 
without Sucrose, on Dental Caries and Recovery of Streptococcus mutans in Rats. Journal 
of Dental Research 1984;63(6) 894-896. 

[122] Harper DS, Osborne JC, Hefferren JJ, Clayton R. Cariostatic Evaluation of Cheeses 
with Diverse Physical and Compositional Characteristics. Caries Research 1986;20 (2) 
123-130. 

[123] Walker GD, Cai F, Shen P, Adams GG, Reynolds C, Reynolds EC. Casein 
Phosphopeptide Amorphous Calcium Phosphate Incorporated into Sugar Confections 
Inhibits the Progression of Enamel Subsurface Lesions in Situ. Caries Research 
2010;44(1) 3-40. 

[124] Shaw L, Murray JJ, Burchell CK, Best JS. Calcium and Phosphorus Contents of Plaque 
and Saliva in Relation to Dental Caries. Caries Research 1983;17 (6) 543-548. 

[125] Margolis HC, Moreno EC. Composition of Pooled Plaque Fluid from Caries-Free and 
Caries-Positve Individuals Following Sucrose Exposure. Journal of Dental Research 
1992;71(11) 1776-1784.  

[126] Reynolds EC. Remineralization of Enamel Subsurface Lesions by Casein 
Phosphopeptide-Stabilized Calcium Phosphate Solutions. Journal of Dental Research 
1997;76(9) 1587-1595. 

[127] Reynolds EC. Anticariogenic Phosphopeptides. US Patent 5015628.  
[128] Rose RK, Turner SJ. Fluoride-Induced Enhancement of Diffusion in Streptococcal 

Model Plaque Biofilms. Caries Research 1998; 32(3) 227-232. 
[129] Rose RK, Dibdin GH. Calcium and Water Diffusion in Streptococcal Model Plaques. 

Archives of Oral Biology 1995;40(5) 385-391. 



 
Bioactive Casein Phosphopeptides in Dairy Products as Nutraceuticals for Functional Foods 43 

[130] Rose RK, Turner SJ, Dibdin GH. Effect of pH and Calcium Concentration on Calcium 
Diffusion in Streptococcal Model Plaque Biofilms. Archives of Oral Biology 1997;42(12) 
795-800. 

[131] Shaw JH, Ensfield BJ, Wollman DH. Studies on the Relation of Dairy Products to 
Dental Caries in Caries-Susceptible Rats. Journal of Nutrition 1959;67(2) 253-273. 

[132] Papas AS, Joshi A, Belanger AJ, Kent RL, Palmer CA, De Paola PF. Dietary Models for 
Root Caries. American Journal of Clinical Nutrition 1995;61(2) 417S-422S. 

[133] Ferrazzano GF, Cantile T, Quarto M, Ingenito A, Chianese L, Addeo F. Protective 
Effect of Yogurt Extract on Dental Enamel Demineralization in Vitro. Australian Dental 
Journal 2008;53(4) 314-319. 

[134] Reynolds EC, Riley PF, Adamson N. A Selective Precipitation Purification Procedure 
for Multiple Phosphoseryl-Containing Peptides and Methods for their Indentification. 
Analytical Biochemistry 1994;217(2) 277-284. 

[135] Tirelli A, De Noni I, Resmini P. Bioactive Peptides in Milk Products. Italian Journal of 
Food Science 1997;9(2) 91-98. 

[136] Meisel H, Andersson HB, Buhl K, Erbersdobler HF, Schlimme E. Heat-Induced 
Changes in Casein-Derived Phosphopeptides. Zeitschrift Fur Ernahrungswissenschaft 
1991;30(3) 227-232. 

[137] Ferranti P, Lilla S, Chianese L, Addeo F. Alternative Nonallelic Deletion is Constitutive 
of Ruminant αs1-Casein. Journal of Protein Chemistry 1999;18(5) 595-602. 

[138] Juillerat MA, Baechler R, Berrocal R, Chanton S, Scherz JC, Jost R. Tryptic 
Phosphopeptides from Whole Casein. I. Preparation and Analysis by Fast Protein 
Liquid Chromatography. Journal of Dairy Research 1989;56(4) 603-611.  

[139] Adamson NJ, Reynolds EC. Characterization of Tryptic Casein Phosphopeptides 
Prepared under Industrially Relevant Conditions. Biotechnology and Bioengineering 
1995;45(3) 196-204. 

[140] Goepfert A, Meisel H. Semi-Preparative Isolation of Phosphopeptides Derived from 
Bovine Casein and Dephosphorylation of Casein Phosphopeptides. Nahrung 1996;40(5) 
245-248. 

[141] Ellegard KH, Gammelgard-Larsen C, Sørensen ES, Fedosovc S. Process Scale 
Chromatographic Isolation, Characterization and Identification of Tryptic Bioactive 
Casein Phosphopeptides. International Dairy Journal 1999;9(9) 639-652. 

[142] Zhao L, Wang Z, Xu S. Preparation of Casein Phosphorylated Peptides and Casein 
non-Phosphorylated Peptides using Alcalase. European Food Research and Technology 
2007;225(3-4) 579-584. 

[143] Reynolds EC. Production of Phosphopeptides from Casein. US Patent 6448374. 
[144] Brule G, Roger L, Fauquant J, Piot M. Casein Phosphopeptide Salts. US Patent 5028589.  
[145] Naito H, Noguchi T, Sato R, Tsuji K, Hidaka H. Transparent Acid Drink Containing 

Acid-Soluble Casein Phosphopeptides. US Patent 5405756. 
[146] Ramalingam L, Messer LB, Reynolds EC. Adding Casein Phosphopeptide-Amorphous 

Calcium Phosphate to Sports Drinks to Eliminate in Vitro Erosion. Pediatric Dentistry 
2005;27(1) 61-67. 



 
Milk Protein 44 

[147] Tancredi D, Ming D, Holme S. Calcium Phosphate Complex in Acid Containing 
Chewing Gum. US Patent 8133475. 

[148] Walker G, Cai F, Shen P, Reynolds C, Ward B, Fone C, Honda S, Koganei M, Oda M, 
Reynolds E. Increased Remineralization of Tooth Enamel by Milk Containing Added 
Casein Phosphopeptide-Amorphous Calcium Phosphate. Journal of Dairy Research 
2006;73(1) 74-78. 

[149] Kostyra H, Kostyra E. Biologically Active Peptides Derived from Food Proteins. Polish 
Journal of Food and Nutrition Sciences 1992;1/42(4) 5-17. 

[150] Meisel H, Schlimme E. Milk Proteins: Precursors of Bioactive Peptides. Trends in Food 
Science and Technology 1990;1 41-43. 

[151] Rokka T, Syväoja EL, Tuominen J, Korhonen H. Release of Bioactive Peptides by 
Enzymatic Proteolysis of Lactobacillus GG Fermented UHT Milk. Milchwissensch 
1997;52 675-678. 

[152] Jarmolowska B, Kostyra E, Krawczuk S, Kostyra H. β-Casomorphin-7 Isolated from 
Brie Cheese. Journal of the Science of Food and Agriculture 1999;79(13) 1788-1792. 

[153] Muehlenkamp MR, Warthesen JJ. β-Casomorphins: Analysis in Cheese and 
Susceptibility to Proteolytic Enzymes from Lactococcus lactic ssp. cremoris. Journal of 
Dairy Science 1996;79(1) 20-26. 

[154] Smacchi E, Gobbetti M. Bioactive Peptides in Dairy Products: Synthesis and 
Interaction with Proteolytic Enzymes. Food Microbiology 2000;17(2) 129-141. 

[155] Ferranti P, Traisci MV, Picariello G, Nasi A, Boschi MS, Falconi C, Chianese L, Addeo 
F. Casein Proteolysis in Human Milk Tracing the Pattern of Casein Breakdown and the 
Formation of Potential Bioactive Peptides. Journal of Dairy Research 2004;71(1) 74-87. 

[156] Pihlanto-Leppälä A. Bioactive Peptides Derived from Bovine Whey Proteins: Opioid 
and Ace-Inhibitory Peptides. Trends in Food Science and Technology 2000;11(9-10) 347-
356. 

[157] Bitri L. Optimization Study for the Production of an Opioid-like Preparation from 
Bovine Casein by Mild Acidic Hydrolysis. International Dairy Journal 2004;14(6) 535-
539. 


