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1. Introduction 

Today’s hyper-competitive worldwide market, turbulent environment, demanding 

customers, and diverse technological advancements force any corporations who develop 

new products to look into all the possible areas of improvement in the entire product 

lifecycle management process. One of the areas facing both practitioners and scholars that 

have been overlooked in the past is Engineering Change Management (ECM).  

On the one hand, even though the demand has increased for more effective ECM as an 

important competitive advantage of product development companies, the existing ECM 

literature focuses mainly on the following topics: i) administrative evaluation that supports 

the formal EC approval, implementation, and documentation process, ii) ECM in product 

structure and material resource planning, and iii) change propagation and knowledge 

management. In addition, with a few exceptions [1, 2, 4, 12, 18, 19, 20, 26], almost all the 

previous research or empirical studies were qualitatively discussed in a descriptive nature.  

On the other hand, despite of a rich body of concurrent engineering literature that emphasizes 

the iterative nature of New Product Development (NPD) process, “these models see iterations 

as exogenous and probabilistic, and do not consider the source of iteration” [23], which causes the 

identified rework too general, and therefore not sufficient for an effective ECM study. As a 

result, there is a lack of research–based analytical models to enhance the understanding of 

complex interrelationships between NPD and ECM, especially from a systems perspective.  

The vision behind this chapter is to ultimately bridge this gap between these two bodies of 

literature by recognizing the main characteristics of both New Product Development (NPD) 

and ECM processes, quantifying the interrelated connections among these process features 

in a Discrete Event Simulation (DES) model (Arena), experimenting with the model under 

different parameter settings and coordination policies, and finally, drawing decision-making 

suggestions considering EC impacts from an overall organizational viewpoint. 
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2. Background 

2.1. Problem definition 

ECM refers to a collection of procedures, tools, and guidelines for handling modifications 

and changes to released product design specifications or locked product scope [4, 6, 22, 35]. 

ECs can be classified into two main categories [4, 5, 11, 13, 27]: 

 Emergent EC (EEC) originates from the problems or errors detected from activity 

outcomes (i.e., design data and information) that have already been frozen and formally 

released to the downstream phase. EECs are assumed to occur according to a certain 

probability determined by the conceptualized solution uncertainty,  

 Initiated EC (IEC) requested by sources outside the project’s control such as changing 

market conditions, arising customer requirements, new legislation, or emerging 

technology advances any point along the NPD process in response to the 

conceptualized environmental uncertainty. 

Under this classification scheme, design iterations within an NPD process and problem–

induced EECs are very similar, but occur in different situations. Both of them aim at 

correcting mistakes or solving problems through repetitively achieving unmet goals that 

have been set initially. EECs are requested rework to prior activities whose outcomes have 

already been finalized and released to the next phase. However, NPD iterations take place 

before any design information is formally released to downstream phases, and therefore it 

generally takes less time to handle iterations due to both a smaller rework scope and a 

shorter approval processing time. For simplicity, term “rework” will be used to refer to both 

iterations and EECs, unless specific distinction is required. From another standpoint, 

opportunity–driven IECs arise from new needs and requirements, which result in the adding 

of functionality to a product [10], or enlargement of the original design solution scope. A 

formal assessment and approval process is desirable in handling both types of ECs due to 

the associated complexity and potential risks [13, 35]. 

2.2. Context 

ECM problems cannot be studied in isolation. But rather, they need to be addressed within a 

broader context, including the following three principle facets: i) complex systems, ii) 

current engineering and uncertainty, and iii) rework and change propagation. 

2.2.1. Complexity 

A new product is designed and developed via an NPD process through the efforts from a 

group of specialists under dynamic internal and external environment. This DES model 

brings together the four main elements of complexity associated with design and product 

development [10], namely, product, process, team (/designer), and environment (/user), on 

the decision of how iterations and ECs emerge and thus impact NPD project performance, 

and how should they be effectively managed by applying different coordination policies. 
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Highly engineered product is a complex assembly of interacting components [21, 25]. In 

automobile industry, a fairly typical modern vehicle is composed of more than ten thousand 

manufactured component pieces, supplied by thousands of outside suppliers. In the face of 

such great quantities of components, complex products are impossible to be built all at once. 

They are decomposed into minimally coupled major systems, and then further broken into 

smaller sub–systems of manageable size and complexity, and finally down to separate 

components or parts for individual detailed engineering design. On the other hand, the 

integration of interdependent decompositions within and across system(s) into the final 

overall solution as well adds up to the level of complexity and requires substantial 

coordination efforts [31].  

Similarly, a large complex Product Development (PD) process, through which all the stages 

of a product’s lifecycle occur, is itself a complex system involving hundreds or thousands of 

interrelated or interacting activities which transforms inputs into outputs. As shown in the 

PD literature, tremendous research effort has been devoted into exploring the complexity of 

PD processes, especially in studying both of the advantages and disadvantages of parallel 

development process (also known as concurrent engineering) or spiral development process 

(which is applied more often in software industry) as compared with the traditional staged 

(also known as waterfall or sequential) development process. Some prior research 

particularly stressed structuring and managing the process through efforts in minimizing 

the interdependencies among tasks via process sequencing optimization [8, 9, 34]. 

Also, multi–disciplinary teams participating in an NPD project are typically composed of 

numerous decision makers from different functional areas (e.g., marketing, engineering, 

manufacturing, purchasing, quality assurance, etc.) with varied skill sets (e.g., degree of 

specialization, depth of knowledge, qualifications, work experience, etc.), responsibilities, 

and authorities working together and contributing to the achievement of the final product 

solution. These teams exhibit another set of complex and non–linear organizational 

behaviors in communication, collaboration, and integration when considering local task 

decisions as well as task interactions in determining aggregate system performance [28].  

Last but not least, an NPD project interacts with its internal (e.g., simultaneous concurrent 

development of other products within the same organization) and external (e.g., 

customers/market, competitors, suppliers, and other socio–economic factors such as 

government regulations, etc.) environments throughout the project cycle. The dynamic and 

sometimes even chaotic competitive environmental factors also contribute significantly to 

the complexity in the coordination of NPD projects.  

2.2. Concurrency and uncertainty 

The concept of concurrent engineering is characterized by i) the execution of PD tasks 

concurrently and iteratively, and ii) the cross–functional integration through improved 

coordination and incremental information sharing among participating groups. It has been 

widely embraced by both academia and industry for the well documented advantages of 

NPD cycle acceleration, risk minimization by the detections of design errors in early stages, 



 
Discrete Event Simulations – Development and Applications 172 

and overall quality improvement (e.g., [3, 17, 27]). It is one of the process features that are 

captured and thoroughly analyzed by the DES model proposed here.  

Complexity drives uncertainty. Uncertainty is an inherent nature of NPD projects stemming 

from all aspects of complexity associated with efforts creating a new product as discussed 

above. The presence of inherent uncertainty in NPD processes is much greater and, 

interestingly, much more complicated than those in processes of other kinds (e.g., business 

or manufacturing processes), even though the latter also possess certain degree of inherent 

unpredictability. Types of uncertainty in engineering design include subjective uncertainty 

derived from incomplete information, and objective uncertainty associated with environment 

[37]. Moreover, concurrent processing of NPD activities will further increase the uncertainty 

of an NPD project by starting activities with incomplete or missing input information. In 

this model uncertainty is explicitly differentiated into three types: i) low–level activity 

uncertainty represented by the stochastic activity duration, ii) medium–level solution 

uncertainty that dynamically calculates rework probability, and iii) high–level environmental 

uncertainty captured by the arrival frequency and magnitude of IECs.  

2.3. Rework and change propagation 

Evidences show clearly that excessive project budget and schedule overruns typically 

involve significant effort on rework [14, 15, 16, 26, 29, 30, 32]. Moreover, it is claimed by 

Reichelt and Lyneis [32] that “these phenomena are not caused by late scope growth or a 

sudden drop in productivity, but rather by the late discovery and correction of rework 

created earlier in the project.” In this study, primary characteristics of NPD projects will be 

transformed into a DES model to study their relative impacts on the stochastic arrivals of 

rework (i.e., iterations or EECs).  

Rework probability, if included in previous PD process models, is typically assigned a fixed 

number and remains statically along the process [4, 8, 9, 15, 26]. In reality, however, it is not 

always the case. Rework probability will be calculated in the proposed DES model by 

dynamic, evolving solution uncertainty influenced by important feedback effects from other 

interrelated system variables such as design solutions scope, resource availability, etc. And 

also, any type of rework is usually discussed on an aggregate level, instead of being 

categorized into iterations, EECs, and IECs as discussed in this study.  

A change rarely occurs alone and multiple changes can have interacting effects on the 

complex change networks [13]. Change propagation is included by considering both of 

dependent product items and interrelated NPD activities. A complex product usually 

consists of several interrelated major systems, and each further contains interconnected 

subsystems, components, and elements. The interactions, in terms of spatial, energy, 

information, and material [31], that occur between the functional and physical items will 

cause EC of one product item propagate to the others. Besides highly dependent product 

configuration, product development activities are also coupled. An EC may propagate to its 

later activities within the current phase or after. For example, an EC that solves a design 

fault may trigger further changes to downstream activities in design or production phase. 
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3. Causal framework 

Before the actural construction of a computer simulation model that is quantitatively 

augmented by algebraic relationships among interrelated variables, causal loop diagrams 

are first constructed to study how external factors and internal system structure (the 

interacting variables comprising the system and the cause-and-effect relationships among 

them) contribute qualitatively to specific behavioral patterns.  

 

Figure 1. Feedback Loops of EEC Occurrence 

Four feedback loops of various lengths (i.e., the number of variables contained within the loop) 

that drive EEC occurrence are illustrated in Fig. 1 for purpose of demonstration. Five 

interdependent variables1 are considered to form these loops: i) EEC size, ii) solution 

completeness, iii) solution uncertainty, iv) Learning Curve Effects (LCE), and v) resource availability. 

3.1. Balancing (negative) loops 

Balancing Loop 1 (# of EECs  Solution Completeness  Solution Uncertainty  # of 

EECs) depicts the reduction in the number of incoming EECs as a result of handling EECs. 

This phenomenon is due to the fact that processing of more EECs leads to an increase in 

solution completeness of the NPD project; and thus solution uncertainty decreases. Given 

the assuption that EEC probability is exponentially decreasing as the project’s solution 

uncertainty decreases, the influence is along the same direction, and therefore number of 

EEC occurrence decreases.  

The reasoning behind Balancing Loop 2 (# of EECs  Learning Curve Effects  EEC Size 

 Resource availability  Solution Completeness  Solution Uncertainty  # of EECs) 

is that an increase in occurrence of EECs leads to a reduction in later EEC durations 

compared with the original level (i.e., the basework duration of that particular activity) 

because of increasing LCE. As a result, resource availability increases since less time is taken 

                                                                 
1 See Subsection 4.3.3 for detailed mathematical definition of variables ii) and iii). 
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for completing EECs, which in turn accelerates the rate of solution completeness and thus 

leads to the decreasing occurrence of EECs. 

3.2. Reinforcing (positive) loops 

While the explanation of Balancing Loop 2 is based upon the indirect positive impact of EEC 

occurrence on resource availability through the reduction of later EEC durations owing to 

learning curve effects, Reinforcing Loop 3 (# of EECs  Resource availability  Solution 

Completeness  Solution Uncertainty  # of EECs) can be interpreted by the direct 

negative influence of EEC occurrence on resource availability: the more EECs occur, the 

more resource will be allocated to process them. As opposed to Loop 2, a decrease in 

resource availability decelerates the rate of solution completeness, and thus causes an 

increasing occurrence of EECs.  

Despite the indirect effects of EEC size reduction on an accelerating solution completeness 

rate that results in an increase in the resource availability, a decrease in EEC size also has a 

direct negative impact on solution completeness because of less contribution to close the 

information deficiency towards the final design solution, which is shown in Reinforcing 

Loop 4 (# of EECs  Learning Curve Effects  EEC Size  Solution Completeness  

Solution Uncertainty  # of EECs). 

3.3. Summary 

The above four closed feedback loops depict how the initial occurrence of EECs will lead to 

the subsequent modification of occurrence frequency by taking into account other 

interrelated variables and presenting simple cause–and–effect relationships between them. 

A combination of both positive and negative feedback loops indicates that the complex and 

dynamic interrelationships among variables make the prediction of occurring patterns of 

iterations/EECs not so straightforward. This phenomenon points out the necessity of 

constructing a simulation model that can help further quantitative analyses.  

4. Model description 

4.1. General assumptions  

This model has two constituent sections: NPD Section with Reworks and IEC Section. Primary 

model assumptions underlying are listed below. 

1. The overall structure of NPD process can be systematically planned beforehand in an 

activity–based representation according to historical data from previously 

accomplished projects of similar products and teams’ expertise as well. All NPD phases 

and activities, their expected durations and units of resource required, and 

interdependencies relationships among them are obtainable and remain stable as the 

NPD project evolves. Therefore, optimization of process sequencing and scheduling is 

not pursued by this study. 
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2. There is no overlapping between activities within a same phase. An NPD activity only 

receives finalized information from its upstream activity within one phase, but 

downstream action can start with information in a preliminary form before all activities 

in upstream phase are completed. In addition, there is no information exchange in the 

middle of an activity.  

3. Demand on resource for NPD activity is assumed to be deterministic fixed. However, 

the activity duration varies stochastically subject to activity uncertainty and LCE which 

vary depending on the number of attempts to that particular activity. 

4. The dynamic progress of an NPD entity is reflected in the work flow within and among 

NPD phases. Workflow routing is probabilistically altered by either intra–phase 

iterations or inter–phase EECs according to the dynamically updated rework 

probabilities, which are calculated based on the current value of solution uncertainty.  

5. Each IEC is initially associated with a directly affected NPD activity (and a directly 

affected product item when product structure is modeled), and may further propagate 

to any downstream activities based on randomly assigned probabilities. IECs are 

modeled within a parallel co–flow structure similar to its NPD counterpart. The IEC 

work flow is restricted by the precedence constraints. 

4.2. Notations 

Based upon these general assumptions made, notations of important model parameters and 

variables which will be later used in mathematical formulation are introduced.  

4.2.1. Model parameters 

 number of NPD phases :ܫ -

݅ ௜: number of NPD activities within phase ݅ (forܬ - ൌ 1, 2,… ,  (ܫ
  number of participating departments :ܯ -

- ܴ௠: total number of resources available from department ݉ (for ݉ ൌ 1, 2,…  (ܯ,

݆ ௜௝௠: units of resource required from department ݉ to complete activity ݆ (forݎ - ൌ1, 2, … ,   ݅ ௜) in phaseܬ
- ݀௜௝: 2 time expected to complete activity ݆ in phase ݅ when resource requirement is met 

௜௝ܦ ,௜௝: mean value of ݀௜௝ܦ - ൌ  ݇ߚ

4.2.2. Model variables 

- ݅௧/݆௧: the latest–finished activity basework ݆௧ in phase ݅௧ at time ݐ 
- ݊௧: number of reworks finished at time ݐ 
  ଵݔ ଵ in phaseݕ ଵ: the first rework for activityݕ/ଵݔ -

 ݐ ௡೟ at timeݔ ௡೟ in phaseݕ ௡೟: the latest–finished rework for activityݕ/௡೟ݔ -
- ሺܴ௠ሻ௧:3 the cumulative functional effort of the ongoing rework(s) at time ݐ 
                                                                 
2 The Erlang distribution ܩܰܣܮܴܧ	ሺߚ, ݇ሻ is used as a description of NPD activity duration 
3 An aggregate term consists of ongoing rework(s)/rework propagations each one corresponding to its current 

stochastic functional effort value 
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 ݐ ௧: number of IECs finished at timeܮ -
- ݃௟భ: the activity in which IEC ݈ is initiated 

- ݃௟ಸ೗ : number of activities IEC ݈ propagates to (ܩ௟ ൑ ܫ ൈ  ௜ሻܬ
݈ ௟௚௠: resources required from department ݉ to complete IEC ݈ (forݏ - ൌ 1, 2, … ,  ௧) toܮ

activity ݃ (for ݃ ൌ ݃௟భ , ݃௟మ , … , ݃௟ಸ೗)  
:௟௚ݓ - 4 time expected to complete IEC ݈ to activity ݃  

- ሺܫ௠ሻ௧:5 the cumulative functional effort of the ongoing IEC(s) at time ݐ 
4.3. Design solution scope 

Design Solution Scope (DSS) is defined as the overall extent of an NPD project in terms of 

total effort required (person–days), by completing of which the entire set of product goals 

will be met. It depends not only on the number of constituent activities, but also the 

expected duration and units of resources needed to produce the desired outputs of each 

activity. In a sense, design solution scope indicates one facet of the NPD project complexity 

with regards to its content (as a function of activity duration ݀௜௝ and demand for resource ݎ௜௝௠). Of course, project complexity can also be reflected from the perspective of its 

architecture (i.e., the coupling among product components or the process precedence 

constraints), which will be discussed more in later sections on the topics of overlapping and 

rework probabilities.  

The estimated functional effort to complete the whole NPD project is obtained as follows:  

௠ܰܧ  ൌ ∑ ∑ ݁௜௝௠௃௝ୀଵூ௜ୀଵ ൌ ∑ ∑ ሺݎ௜௝௠ ൈ ݀௜௝௃௝ୀଵூ௜ୀଵ ሻ  (1) 

Let’s assume that ܮ௧ is the total number of incoming IECs that are finished at time ݐ, ݃௟భis the 

activity to which a randomly occurring IEC ݈ (for ݈ ൌ 1, 2, … , ௧ሻ is directly related, and ݃௟ಸ೗ܮ  is 

the last activity along the IEC propagation loop. Through the estimation of IEC duration ݓ௟௚ 

and ݏ௟௚௠ number of resource required from department ݉, the functional effort needed to 

process IEC ݈ to activity ݃ (for ݃ ൌ ݃௟భ , ݃௟మ , … , ݃௟ಸ೗) is ݁௟௚௠ ൌ ௟௚௠ݏ ൈ  ௟௚. By a doubleݓ

summation over both ݈ (of the entire set of completed IECs) and ݃ (including the original 

incoming IEC and a sequence of its propagations), the cumulative functional IEC effort at 

time ݐ can be represented as  

 ሺܫܧ௠ሻ௧ ൌ ∑ ∑ ݁௟௚௠௚೗ಸ೗௚ୀ௚೗భ௅೟௟ୀଵ ൅ ሺܫ௠ሻ௧ ൌ ∑ ∑ ሺݏ௟௚௠ ൈ ௟௚ሻ௚೗ಸ೗௚ୀ௚೗భ௅೟௟ୀଵݓ ൅ ሺܫ௠ሻ௧ (2) 

Note that besides the first term ∑ ∑ ݁௟௚௠௚೗ಸ೗௚ୀ௚೗భ௅೟௟ୀଵ  which describes the total functional effort 

spent on those already completed IECs, another aggregate term ሺܫ௠ሻ௧, which represents the 

cumulative functional effort of the ongoing IEC(s) at time ݐ, is used to avoid the inherently 

tedious expression of such stochastic, probabilistic, and discrete events in a mathematical 

formula. The difficulties encountered here in translating such occurrences into a precise 

math equation, again, confirm the advantages of using computer simulation as the research 

methodology in studying the interrelated and dynamic ECM problems.  

                                                                 
4 The Triangular distribution ܴܴܶܣܮܷܩܰܣܫ	ሺݔܽܯ,݁݀݋ܯ,݊݅ܯሻ is used as a description of IEC duration 
5 An aggregate term consists of ongoing probabilistically dependent IEC(s)/IEC propagations each one corresponding 

to its current stochastic functional effort value. 
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Based on ܰܧ௠ and ሺܫܧ௠ሻ௧, a dynamic NPD property, functional design solution scope ሺܵ௠ሻ௧, 
can be obtained as appeared in Eq. (3) by making the following assumptions:  

 ሺܵ௠ሻ௧ ൌ ௠ܰܧ ൅ ሺܫܧ௠ሻ௧ (3) 

1. DSS of an NPD project reflects the amount of effort needed to meet the entire set of 

product goals, including both original pre–defined goals when the project is initiated 

and those additional ones determined as the project evolves. 

2. Both iterations and EECs are mandatory error–correction oriented to achieve the same 

pre–defined goals, and thus there is no overall resultant increase in DSS. However, they 

will be taken into account when calculating the actual cumulative functional effort. 

3. IECs are carried out to accomplish additional product goals in response to outside 

requirements such as altering market demands, growing customer needs, new 

legislations, or rapid advances in technology. IEC arrivals cause increase in DSS.   

4.4. NPD framework with iterations and EECs 

From an “information processing” view, the generic activity network proposed in [3, 4] is 

adopted as the fundamental modeling structure. By doing so, the NPD process can be 

decomposed into ܫ numbers of Phase ௜ܲ 	ሺ݅ ൌ 1, 2, … ,  .ሻ with certain degrees of overlappingܫ

Each phase is further made up of ܬ௜ sequentially numbered Activities ௜ܲܣ௝ 	ሺ݆ ൌ 1, 2,… ,  ௜ሻ toܬ

represent several chronological stages in design and development process. The present 

study assumes that there is no overlapping among activities within each phase. That is, 

within a single phase an NPD activity begins only after the completion of its predecessor. 

However, NPD phases can be overlapped by letting the successor phase begin with only 

preliminary information before activities in the upstream phase are all finished.  

The completion of an NPD activity for the first time is called NPD basework. Any later 

attempt, no matter in the form of intra–phase iteration or inter–phase EEC, is referred as 

rework. When work flow is routed back by probability, it is assumed that some of the 

previously completed activities have encountered errors and the farthest upstream one will 

be identified as the “starting point” of rework loop. All downstream activities are supposed 

to be “corrupted” and have to be reattempted before moving on. Fig. 2 illustrates this ܫ–
phase and ܬ௜–activity NPD framework.  

 

Figure 2.  ܫ–phase & ܬ௜–activity NPD framework 
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4.4.1. NPD activity duration and learning curve effects 

Low–level activity uncertainty is represented by random variation of activity duration 

around its estimate. For each NPD activity, its duration ݀௜௝ is sampled from a pre–

determined probability distribution. The Erlang distribution ܩܰܣܮܴܧ	ሺߚ, ݇ሻ is used as a 

description of the activity duration. Employment of the Erlang distribution to represent 

activity interval is based on the hypothesis that each NPD activity consists of ݇ number of 

random tasks, everyone individually having an identical exponentially distributed 

processing time with mean ߚ. These mutually independent tasks can be considered as the 

lowest un–decomposable unit of the NPD process. Number of tasks ݇ comprising each 

activity and the anticipated task duration ߚ should be estimated by process participants and 

provided as model inputs.  

According to the learning curve theory, the more often an activity is performed, the less 

time it requires to complete it and thus the lower will be the cost. This well recognized 

phenomenon is included as a process characteristic to improve the comprehensiveness of 

this DES model. Following the assumptions made in [9], LCE is modeled in the form of a 

linearly diminishing fraction (0 ൏ ௙ܮ ൏ 1) of the original duration whenever an activity is 

repeated until the minimum fraction (0 ൏ ௠௜௡ܮ ൏ ௙ܮ ൏ 1) is hit and the rework processing 

time remains unchanged afterward. That is to say, learning curve improves through each 

round of rework until it reaches the minimum fraction of basework duration which is 

indispensible for activity execution. Let ݊ be the number of times an activity is attempted, 

LCE can be expressed as:  

ܧܥܮ  ൌ max ቀ൫ܮ௙൯ே೔ೕିଵ,  ௠௜௡ቁ (4)ܮ

Therefore, the processing time of a rework to an NPD activity depends on two variables: the 

stochastic basework duration ݀௜௝ of the activity and the number of times ௜ܰ௝ it is attempted. 

Any types of NPD rework, no matter intra–phase iterations or inter–phase EECs, are 

assumed to be subject to the same LEC.  

4.4.2. Overlapping and cross–functional interactions 

Overlapping is defined as the partial or full parallel execution of nominally sequential 

development activities [25]. The underlying risk of overlapping raised by Krishnan that “the 

duration of the downstream activity may be altered in converting the sequential process into 

an overlapped process” [24] is addressed here in a slightly different way from directly 

increasing downstream duration and effort by a certain calculated value (e.g., [33]). The 

more number of activities start with information in a preliminary form or even missing 

information, the less is the design solution completeness, which will in turn affect rework 

probabilities as discussed in detail in the next section.  

The concept of cross–functional integration among different functional areas during an NPD 

process is defined as Departmental Interaction (DI). One of the ݉ departments takes major 

responsibility for the phase in its own area with specialized knowledge, and is called major 
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department during that phase. However, the other ݉െ 1 departments, defined as minor 

departments, also need to participate but with less resource requirements. Cross–functional 

integration enables a decentralized NPD process by facilitated communications among 

involving departments. Recourse consumption in the form of departmental interaction is, 

again, an estimate from process participants. Resources can represent staffs, computers 

/machines, documentations, or any other individual servers. It’s assumed that each resource 

is qualified to handle all the NPD activities within all phases.  

4.4.3. Solution uncertainty 

In the process modeling literature, NPD is often considered as a system of interrelated 

activities that aims to increase knowledge or reduce uncertainty of the final design solution 

[7, 24, 37]. This DES model assumes that any knowledge or experience accumulation 

through an NPD activity, no matter accepted to be transferred to the next activity/activities 

or rejected and requested for a rework, will contribute to the common knowledge base of 

the NPD project towards its final design solution. No development effort is ever wasted. In 

this context, knowledge/experience accumulation is simply measured by the cumulative 

effort that has been committed to the project in terms of person–days.  

Functional solution completeness is defined as a criterion to reflect the effort gap between 

the actual cumulative functional effort accomplished to date and the evolving functional 

design solution scope ሺܵ௠ሻ௧. The exact expression for ሺܥ௜௝௠ሻ௧ is determined by the amount of 

overlap between NPD activities. The more concurrency a process holds, the more 

complicated the expression will be. Eq. (5) is an illustration of solution completeness at time ݐ for the easiest case: a sequential process. ሺܥ௜௝௠ሻ௧ is improved by knowledge or experience 

accumulation through performing NPD basework (indicated by the first term in Eq. (5)) and 

rework (the second term), and handling IECs (the third term). Again, a generalized abstract 

term ሺܴ௠ሻ௧ is used here to represent the cumulative functional effort of the ongoing 

rework(s) at time ݐ. 
 ൫ܥ௜௝௠൯௧ ൌ ቀ∑ ∑ ௘೔ೕ೘಻ೕసభ೔೟షభ೔సభ ା∑ ௘೔೟ೕ೘ೕ೟ೕసభ ቁାቀ∑ ቀ∑ ∑ ௘೔ೕ೘ೕ೟ೕసభ೔೟೔సೣశభ ା∑ ∑ ௘೔ೕ೘ೕ೟ೕస೤಺೔సೣ ቁೣసೣ೙೟,೤స೤೙೟ೣసೣభ,೤స೤భ ାሺோ೘ሻ೟ቁାሺாூ೘ሻ೟ሺௌ೘ሻ೟  (5) 

On the contrary, functional solution uncertainty ሺ ௜ܷ௝௠ሻ௧ reflects the degree of functional 

effort absence towards the design solution scope. Therefore, the solution uncertainty of 

activity ݆ in phase ݅ at time ݐ is ሺ ௜ܷ௝௠ሻ௧ ൌ 100% െ ሺܥ௜௝௠ሻ௧ .  
4.4.4. Rework probability 

After each activity, there is a rework review decision point that decides whether the activity 

output is acceptable and the NPD project entity gets through or it needs to flow back for a 

rework according to a weighted rework probability determined by the latest levels of 

functional solution uncertainty. A critical assumption we made is that the iteration probability 

of an activity is negatively proportional to the NPD project’s latest level of solution 

uncertainty. That is, chance of an activity gets to iterate before it is released to the next phase 
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will increase as the project unfolds with more information available and its solution 

uncertainty decreases. Two arguments are presented to backup this assumption:  

1. As the project unfolds, more information will be available to justify further iteratively 

refinement of the design solution for each component [37]. 

2. Since a product architecture often consists of multiple conflicting targets that may be 

difficult to meet simultaneously and thus requires further trade–offs, “design 

oscillations” on a system level may occur due to the interdependencies among local 

components and subsystems even after the achievement of individual optimum [10, 28].  

The functional iteration probability is formulated by a negative exponential function of 

uncertainty as appeared in Eq. (6), where 0 ൏ ߙ ൏ 1 is a process–specific Iteration 

Probability Constant (IPC) that should be determined beforehand as a model input. 

 ሺܲܫ௜௝௠ሻ௧ ൌ  ሺ௎೔ೕ೘ሻ೟ାଵ (6)ߙ

Since NPD activities are decentralized through cross–functional integration among 

participating departments, so is the decision making process of carrying out rework. The 

overall iteration probability of activity ݆ in phase ݅ is the weighted mean by the number of 

resources each department commits to the activity.  

 ሺܲܫ௜௝ሻ௧ ൌ ∑ ሺ௥೔ೕ೘ൈሺ௉ூ೔ೕ೘ሻ೟ሻಾ೘సభ∑ ௥೔ೕ೘ಾ೘సభ  (7) 

Similarly, EEC probability is characterized by an EEC Probability Constant (EPC) 0 ൏ ߛ ൏ 1. 

However, as opposed to iteration probability, it is assumed to be exponentially decreasing 

as the project’s solution uncertainty decreases. That is to say, the chance of revisiting NPD 

activities, whose outputs have already been frozen and released to their successor phase, is 

the highest after the first activity of the second phase and continuously reduces according to 

the continually increasing design solution completeness.  

 ሺܲܧ௜௝௠ሻ௧ ൌ ሺ஼೔ೕ೘ሻ೟ାଵߛ ൌ  ଶିሺ௎೔ೕ೘ሻ೟ (8)ߛ

 ሺܲܧ௜௝ሻ௧ ൌ ∑ ሺ௥೔ೕ೘ൈሺ௉ா೔ೕ೘ሻ೟ሻ೙ೖసభ ∑ ௥೔ೕ೘೙ೖసభ  (9) 

Given the overall rework probability, the next step is to identify which upstream activity 

generates the design error disclosed by rework review and therefore becomes the starting 

point of rework loop. For simplicity, it is assumed that each upstream activity gets an equal 

chance of initiating an intra–phase iteration loop or an inter–phase EEC loop.  

4.4.5. Rework criteria and rigidity of rework review 

According to the rationale explained in previous subsections and causal loop diagrams 

created, the occurrences of both iterations and EECs are governed by a combination of 

balancing and reinforcing loops. Take Loop 3 as an example, less resource availability 

resulted from increasing EEC arrivals will decelerates the rate of solution completeness, and 

further increase the occurrence of EECs.  
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To avoid the dominance of such reinforcing loops which will eventually lead to a net effect 

of overall divergence with no termination condition, rework criteria are established as the 

first step of rework review after the completion of an activity to check whether the 

cumulative functional effort committed to the deliverable is high enough to provide a 

satisfying outcome, and therefore let the NPD entity pass rework evaluation. If the 

cumulative devoted effort fails to meet the pre–determined criteria (i.e., the cumulative 

effort is less than the expected amount), the entity will be evaluated at the rework decision–

point and go for iteration or EEC according to the rework probability calculated by solution 

completeness. If the committed effort is higher than the pre–set amount, the NPD entity will 

conditionally pass rework evaluation and continue executing next activity/activities.   

Unger and Eppinger [36] define rigidity by the degree to which deliverables are held to 

previously–established criteria as metrics to characterize design reviews. By putting it in a 

slightly different way, rigidity of rework review is considered in this DES model as the 

strictness of pre–defined rework criteria with respect to the amount of cumulative effort 

committed to a particular NPD activity.  

4.5. IEC framework 

Unlike iterations and EECs, IECs are studied through a different DES model section other 

than the NPD framework. The IEC framework explores how IECs emerging from outside 

sources after the NPD process begins are handled and how an initiating IEC to a specific 

activity of a product item will cause further change propagation in its downstream activities 

and other dependent product items.  

4.5.1. IEC processing rules 

IECs affecting activities in different NPD phases are assumed to arrive in randomly after the 

NPD project starts. A checkpoint is inserted before the processing of an IEC to verify 

whether the directly affected NPD activity has started yet. The incoming IEC will be hold 

until the beginning of processing of that particular activity.  

During NPD rework reviews, the upcoming NPD activity will also be hold from getting 

processed if there are IECs currently being handled with respect to any of its upstream 

activities until new information from these IECs becomes available (i.e., the completion of 

IECs). Purpose of such an inspection is to avoid unnecessary rework as a result of expected 

new information and updates. However, the NPD activity will not pause in middle of its 

process due to the occurrence of IECs to any of its upstream activities.  

Fig. 3 summaries the entire rework review process after the completion of each activity that 

includes three major steps as discussed before: 

1. Check if there are currently any IECs being handled with regards to any of its upstream 

activities. If the condition is true, wait until new information from all of these IECs 

becomes available; if condition is false, go to the next step;  
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2. Compare the cumulative devoted functional effort so far to the pre–determined rework 

criteria. If the condition is true, the work flow conditionally pass the rework review and 

directly proceeds to next activity/activities; if the condition is false, go to the next step; 

3. As a result of cross–functional negotiation and integration, calculate rework probability 

according to the current levels of functional solution uncertainty. NPD project entity 

either flows back to the identified activity that contains design errors for rework or 

proceeds to the activity/activities by probability.  

 

Figure 3. 3-Step NPD Rework Review Process 

4.5.2. Frequency and resource consumption of IEC 

Compared with NPDs that are much more likely to adhere to a planned schedule, IECs can 

occur without any plans. Therefore, the Exponential distribution is used to represent IECs’ 

arrival interval. IEC’s processing time is assumed to follow the Triangular distribution, 

where there is a most–likely time with some variation on two sides, represented by the most 

likely (Mode), minimum (Min), and maximum (Max) values respectively. The Triangular 

distribution is widely used in project management tools to estimate activity duration (e.g., 

Project Evaluation and Review Technique, Critical Path Method, etc.). The amount of 

resources required for an IEC to be processed is IEC effort. When there are not enough 

resources available for both processes, resource using priority needs to be assigned to either 

NPD or ECM to seize necessary resource first.  

4.5.3. IEC propagation  

Change Propagation (CP) is assumed to be rooted in both interrelated activities of a PD 

process and closely dependent constituent product items. That is, modifications to an 

initiating activity of one product item are highly likely to propagate to other activities within 

the same or different stages along the PD process, and may require further changes across to 

other items that are interconnected through design features and product attributes [23].  
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This phenomenon is simulated by two layers of IEC propagation loop. Firstly, CP review 

decisions are performed after the completion of an IEC and then propagate to one of its 

downstream activities by predefined probabilities. We assume uni–directional change 

propagation based on process structure. That is, an IEC to one NPD activity will propagate 

only to its successor activities within the current or next phase. For example, an IEC to 

enhance a particular design feature may result in substantial alterations in prototyping and 

manufacturing. On the other hand, innovations in manufacturing process will only cause 

modifications within production phase but not changes in design.  

Secondly, the first–level activity IEC propagation loop is then nested within an outer loop 

determined by particular dependency properties of the product configuration. Once an IEC 

to one product item and its CPs to affected downstream activities are completed, it will 

further propagate to item(s) that is/are directly linked to it.  

5. Numerical application 

A numerical example is presented in this section to illustrate how this DES model can 

actually be applied to facilitate ECM policy analysis. A combination of different process, 

product, team, and environment characteristics are tested through design of experiments. 

NPD project lead time, cost (or engineering effort in some cases), and quality are generated 

by the model as the three key performance measurements of the project under study to 

evaluate overall product development efforts.  

5.1. NPD section 

The NPD section is demonstrated by a simple application of three representational phases of 

an NPD process: i) concept design and development (Concept), ii) detailed product design 

(Design), and iii) production ramp up (Production). Each phase consists of three 

sequentially numbered and chronologically related activities. The information flow between 

every two activities is indicated by solid arrows as shown in Fig. 4.  

 

Figure 4. NPD Framework with Iterations and EECs 

Through this 3–phase and 3–activity framework, various overlapping ratios of an NPD 

process: 0%, 33%, 66%, or mixed (e.g., 0% overlap between Concept and Design and 33% 
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overlap between Design and Production), can be constructed by connecting intra–phase 

activities via different combinations of dashed arrows. 

5.2. Overlapping strategy 

An NPD process with 0% overlapping is also called a sequential process, in which the 

downstream phase is allowed to start only after receiving the output information from the 

upstream phase in its finalized form. That is, different phases comprising an NPD process 

are connected in a completely linear fashion.  

Besides its capability of representing a sequential process, this framework can also be 

assembled into concurrent processes by allowing the parallelization of upstream and 

downstream activities. For a 33% overlapped process, the first activity of downstream phase 

begins simultaneously with the last activity of upstream phase. For a 66% overlapped NPD 

process, the first activity of the following phase starts simultaneously with the second 

activity of the preceding phase.  

 

 

Figure 5. NPD Framework with Iterations and EECs 

Obviously, as compared to its counterpart in a sequential process, the solution uncertainty 

of downstream activity increases due to the fact that it begins before the completion of all 

upstream activities using only preliminary output information, while the solution 

uncertainty of the upstream activity remains unchanged. That is, only the solution 

uncertainty of overlapped activities in succeeding phases will be affected under the current 

model assumptions. 
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5.3. NPD process parameter 

When considering the activity duration estimates, it is further assumed that the mutually 

independent and exponentially distributed duration has a mean of ߚ ൌ 2 days for activities 

in all three phases. Furthermore, the number of tasks that compose activities within one 

phase remains the same, but increases from phase to phase to represent the increasing 

content and complexity of design and development activities as the NPD project unfolds: ݇ ൌ 4 for activities in Concept phase; ݇ ൌ 6 for Design phase; and ݇ ൌ 10 for Production 

phase. Note that when LCE are taken into account, random variables described by the 

Erlang distribution ܩܰܣܮܴܧሺߚ, ݇ሻ only represent processing intervals of NPD basework. 

Rework duration is also subject to ௜ܰ௝, the number of times that an activity is attempted, in 

the form of 

ܧܥܮ  ൌ ݔܽ݉ ൬ቀଵଶቁே೔ೕ , 0.1൰ 

To match the three major phases of the illustrated NPD process, it is assumed that there 

exist three different functional areas: marketing, engineering, and manufacturing, that 

participate in the overall NPD process through integrated DI. Based on the model 

assumption that each activity consumes a total number of 100 resources units to complete, 

DI is defined as follows: 60 units requested from major department and 20 units requested 

from each of the other two minor departments. To estimate the final project cost, the busy 

usage cost rates are set as $25/hour and idle cost as $10/hour for all resources.  

Different rigidities of rework review, which are represented by various rework criteria ratios 

(i.e., relationships between rework criteria and the evolving functional design solution scope ሺܵ௠ሻ௧) will be explored more in depth through “what–if” analysis.  

5.4. IEC section 

Fig. 5 gives an overview of the IEC model section applying 33% overlapping strategy. It is 

assumed that an IEC will propagate to one of its downstream activities in the current or next 

phase with equal chances, and this propagation will continue in the same manner until the 

end of IEC propagation loop when no more change is identified. For the purpose of 

demonstration, a full list of potential downstream change propagations of each IEC is 

provided on the right side of the IEC Propagation decision point. In the actual simulation 

model, verbal description is replaced by connectors between the IEC propagation decision 

point and the corresponding IEC process modules.  

Take the IEC to activity Concept1 as an example, change propagation will result in a 

maximum of six follow–up IECs (i.e., IECs to C2, C3/D1, D2, D3/P1, P2, and P3) and a 

minimum of two (i.e., IECs to C3/D1/D2 and D3/P1/P2/P3). For simplicity, it is also assumed 

that each IEC, no matter in which activity it is occurred, equally consumes 10 resource units 

from each of the three departments to get processed.  
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Figure 6. NPD Framework with Iterations and EECs 

5.6. Summary of model inputs and outputs 

Table 1 summarizes the complete list of model input parameters/variables and their 

corresponding values. There are altogether 14 model inputs that represent key NPD and 

ECM decision parameters, among which 7 are chosen as design factors or constraints 

(highlighted rows in gray) and their effects on the project performance measures (i.e., model 

outputs) will be tested at specific levels (highlighted text in bold), while others will be held 

constant when the design of experiment is conducted.6  

It is important to know that all these values are set in a way to facilitate relative comparison 

of project performance among various scenarios using “what–if” analysis instead of aiming 

to reproduce the real behavior patterns of an NPD project of any kind. To successfully 

implementation of the proposed simulation model for a specific use or situation, these 

inputs should be appropriately calibrated depending on different circumstances. 

At the end of each simulation run, Arena automatically generates a variety of both default 

and user specified model output statistics, which include time, cost, Work in Process (WIP), 

count, etc. Information is displayed under different categories (e.g., Entity, Process, Queue, 

Resource, and User Specified). Some of the key model responses are listed in the table below. 

                                                                 
6These held-constant factors, such as number of phases and activities comprising the process, number of involving 

departments, duration estimates of NPD activities and IECs, etc., are peculiar to specific development project as . For 

purposes of the present experiment these factors are not of interest. 
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Input Data Value

List of phases and activities 

comprising process 

ܫ ൌ 3 ሺݐ݌݁ܿ݊݋ܥ െ ݊݃݅ݏ݁ܦ െ ௜ܬ ;ሻ݊݋݅ݐܿݑ݀݋ݎܲ ൌ 3 ሺ݁. ݃. 1ݐ݌݁ܿ݊݋ܥ െ 2ݐ݌݁ܿ݊݋ܥ െ  3ሻݐ݌݁ܿ݊݋ܥ
List of involving departments ܯ ൌ 3 ሺ݃݊݅ݐ݁݇ݎܽܯ;  ሻ݃݊݅ݎݑݐ݂ܿܽݑ݊ܽܯ;݃݊݅ݎ݁݁݊݅݃݊ܧ
Overlapping Strategy (OS) ࢝࢕ࡸ: 0%; :࢓࢛࢏ࢊࢋࡹ :ࢎࢍ࢏ࡴ;33% 66% 

NPD Activity Duration (days) ݀ଵ௝ ൌ ,ሺ2ܩܰܣܮܴܧ 4ሻ, ଵ௝ܦ ൌ 8; ݀ଶ௝ ൌ ,ሺ2ܩܰܣܮܴܧ 6ሻ, ଶ௝ܦ ൌ12; ݀ଷ௝ ൌ ,ሺ2ܩܰܣܮܴܧ 10ሻ, ଷ௝ܦ ൌ 20; ݆ ൌ 1, 2, 3  

Learning Curve Effects (LCE) ࢕࢔ ࡱ࡯ࡸ ;ࡱ࡯ࡸ ൌ ݔܽ݉ ൬ቀଵଶቁே೔ೕ , 0.1൰ 

NPD Activity Functional 

Resource Consumption 

ଵ௝ଵݎ ൌ 60, ଵ௝ଶݎ ൌ ଵ௝ଷݎ ൌ 20; ଶ௝ଵݎ ൌ 20, ଶ௝ଶݎ ൌ 60, ଶ௝ଷݎ ൌ20; ଷ௝ଵݎ ൌ ଷ௝ଶݎ ൌ 20, ଷ௝ଷݎ ൌ 60; ݆ ൌ 1, 2, 3 

Functional Resources 

Constraints (FRC) 

࢓ࡾ ൌ 70, 80, … , 190, 200; ݉ ൌ 1, 2, 3 

Cost of Resource ݎݑ݋ܪ/ݕݏݑܤ ൌ $25; ݎݑ݋ܪ/݈݁݀ܫ ൌ $10 

Rework Likelihood (RL) ࢝࢕ࡸ: ߙ ൌ ߛ ൌ 0.3; :ࢎࢍ࢏ࡴ ߙ ൌ ߛ ൌ 0.45 

Rework Criteria (RC) Stepped Linear; Linear; Convex–Up; Concave–Up 

IEC Arrival Frequency (Inter–

arrival Times) (days) 

:࢝࢕ࡸ ݉݋ܴ݀݊ܽ ሺ݋݌ݔܧሻ20; :࢓࢛࢏ࢊࢋࡹ :ࢎࢍ࢏ࡴ		;ሻ10݋݌ݔܧሺ	݉݋ܴ݀݊ܽ ݉݋ܴ݀݊ܽ ሺ݋݌ݔܧሻ5 

IEC Duration Estimates (days) ݓ௟௚ ൌ ,ሺ1.6ܣܫܴܶ 2, 3.2ሻ, ݃ ൌ 1, 2, ௟௚ݓ ;3 ൌ ,ሺ2.4ܣܫܴܶ 3, 4.8ሻ, ݃ ൌ 4, 5, ௟௚ݓ ;6 ൌ ,ሺ4ܣܫܴܶ 5, 8ሻ, ݃ ൌ 7, 8, 9; ݈ ൌ 1, 2, … ,  ௧ܮ
IEC Functional Resource 

Consumption 

࢓ࢍ࢒࢙ ൌ 10 ܽ݊݀ 20, ݈ ൌ 1, 2, … , ;௧ܮ ݃ ൌ 1, 2, 3; 	݉ ൌ 1, 2, 3 

Table 1. Model Inputs 

 

Output Data Definition

NPD Project  

Lead Time 

The total time of an NPD entity accumulated in process activities and 

delays (time elapsed between start of Concept phase and end of 

Production phase). 

Project Cost The total of busy costs (i.e., costs while seize) for all staffing and 

resources for both NPD and IEC entities. 

Total Cost The total expenditure on both busy and idle (i.e., costs while scheduled, 

but not busy) resources for NPD and IEC entities. 

Cumulative 

Functional 

Effort 

The accumulated departmental workload (in units of person–days) 

accounted for both NPD and IEC entities. 

Cumulative  

Total Effort 

The accumulated total effort accounted for both NPD and IEC entities 

(i.e., the sum of all the cumulative functional efforts). 

Quality Ratio of the final design solution scope over the original design solution 

scope. 

Table 2. Model Outputs 
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6. Results 

Impacts of the following managerial strategies and coordination policies on the responses of 

interest are investigated, and the root causes behind the performance of measurement 

system are explored: 

a. Impact of NPD process characteristics such as LCE, Rework Likelihood (RL) and 

Overlapping Strategy (OS); 

b. Impact of rework review rigidity – Rework Review Strategy (RRS)7; 

c. Impact of IEC arrival frequency; 

d. Combined impact of IEC arrival frequency and size – IEC batching policy;  

e. Impact of functional resource constraints – resource assignment Strategy; 

f. Impact of change propagation due to interconnected product configuration. 

Due to space limit, only partial results of policy analysis a are presented to demonstrate how 

the proposed DES model can be used as a valuable tool for evaluating ECM decisions. 200 

replicates are generated under each combination of LCE, RL, and OS, and thus result in 

altogether 2400 simulation runs, each using separate input random numbers. Performance 

data generated by the model are then exported to a Excel worksheet, in which individual 

project performance measures are recorded and various data graphs are generated. 

Mean values of the experiment outcomes are displayed in Table 3. Columns (i) and (ii) 

record in an absolute sense the mean values of the observed lead time and project cost from 

200 replications of each scenario, while columns (I) and (II) show the percentage change of 

(i) and (ii) relative to the baseline case results (BL1), respectively.  

It is important to note that managerial suggestions are not made merely based on the final 

output performance measures obtained for each scenario. Rather, attention is focused on the 

comparison of these numbers to their corresponding baseline results, which helps to 

provide us intuitive understanding of the impacts of reworks on project performance under 

different process features and parameter settings. Through the interpretation of results 

presented in Table 3, several concluding observations can be issued: 

1. When rework is not involved, the project performance stays consistent: the higher the 

activity overlapping ratio, the less the lead time. It can be obtained by summing up the 

durations of activities along the critical path. At the same time, since total person–days 

effort required for completing the project remains unchanged no matter which OS is 

applied, final project cost for all levels of OS (i.e., (a), (b), and (c)) in the baseline case 

should be very much similar, which is confirmed by the running results. This can be 

considered as a simple model verification check8.  

2. Effects of LCE: by comparing the mean values of lead time and project cost of scenarios 

(A) with scenarios (B) under different combinations of RL and OS levels, it can be 

                                                                 
7 The first two strategies are analyzed with only the NPD section of the model. 
8 Model is continuously verified by the reading through and examining the outputs for reasonableness and justification 

under a variety of scenarios and settings of parameters. 
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concluded that the evaluation of learning curve effects unambiguously results in a 

remarkable decrease in both NPD lead time and cost.  

3. Effects of RL: by comparing (i) and (ii) of scenarios (1) with scenarios (2) under different 

combinations of LCE and OS levels, it can be concluded that a higher likelihood of 

rework in NPD activity undoubtedly causes an increase in both lead time and cost. 

4. Effects of OS w/o LCE: by comparing lead time and project cost of scenarios (A) in a 

relative sense, we find that an increasing overlapping ratio aggravates the impact of 

NPD rework on both responses. That is, when NPD rework is included in the model but 

no LCE is considered, the greater the overlapping ratio, the higher the percentages of 

increase in both lead time and project cost as compared to baseline case. In addition, we 

notice the time–cost tradeoffs between a sequential process and a 66% overlapped 

process from columns (i) and (ii). This observation agrees to the general 

acknowledgement that overlapping may save time but is more costly.  

5. Effects of OS w/ LCE: Situation is not that predictable when LCE is taken into account 

and formulated as LCE ൌ max ൬ቀଵଶቁ୒౟ౠିଵ , 0.1൰	in the model. Significant increase of both 

time and cost due to rework is alleviated by the evaluation of LCE. Under low RL 

circumstances (α ൌ γ ൌ 0.3), a highly overlapped process excels in both response 

variables in an absolute sense. However, there is not clear trend shown in the 

comparative values. Particularly, at high level of RL (α ൌ γ ൌ 0.45), we observe that a 

33% overlapped process leads to both absolute (compared with the results of 0% and 

66% in scenario (B)–(2)) and relative (compared with the 33% baseline results (BL1)–(b)) 

maximum values for lead time and project cost. 

6. By comparing columns (I) and (II), we observe a project behavioral pattern that the 

percentage increase of project cost is always higher than that of lead time at the 

occurrence of rework. That is to say, compared with lead time, project cost is more 

sensitive to rework. And the difference between the two percentages of increase is 

largest when a sequential NPD process is adopted. The only exception is scenario (B)–

(1)–(c) with the percentage increase of project cost 0.9% lower than that of lead time.  

After investigating project cost performance that reflects the overall effort devoted to the 

NPD project, how the amount of functional effort contributed by each participating 

department is affected by different LCE, RL, and OS levels is further examined.Three major 

conclusions can be drawn by breaking down the overall committed effort into functional 

effort contributed by each department: 

1. From Fig. 7-a, we observe that differences between the committed effort from the major 

department (i.e., Mfg Effort) of downstream phase (i.e., Production phase), and the 

efforts devoted by the other two departments (i.e., Mkt Effort & Eng Effort) drop 

dramatically from a sequential process (a) to concurrent processes (b) and (c) regardless 

of LCE or RL levels.  

2. Moreover, from a relative perspective (Fig. 7-b), the percentage increase of Mfg Effort 

versus baseline is higher than those of Mkt and Eng Efforts in all sequential processes 

but (A)–(2)–(a), in which Mfg Effort %Change = 72.5% and is slightly lower than Mkt 
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Effort %Change = 75.6%. However, in concurrent processes, an inverse relationship but 

of a much greater magnitude (especially at high RL level) is observed. That is, by 

starting downstream activities early with only preliminary information, concurrent 

engineering tends to alleviate the impacts of rework on activities in Production phase 

while intensifying those on activities in the two upstream phases. Although the concept 

of cross–functional integration has already been applied to the sequential process that 

allows engineers from Mfg Dept to be engaged early in both Concept and Design 

phases, which differentiates it from a traditional waterfall process, the impact of rework 

mostly occur in Mfg Dept. A concurrent process tends to shift rework risks and even 

out committed efforts among various functional areas owing to another critical 

characterization of concurrent engineering: parallelization of activities. 

3. Mkt Effort undergoes the highest percentage of increase from when RL changes from 

low to high regardless of LCE or OS levels. Then is the Eng Effort. Mft Effort has the 

least amount of fluctuation across different scenarios. 

 

 

LCE RL (ߙ,  OS (ߛ

(i) Lead 

Time 

(Days) 

(I) Time

%Change 

c/w BL1 

(ii) Project 

Cost ሺ$ ൈ 1000ሻ (II) PC 

%Change 

c/w BL1 

 

(BL1) Baseline 

 

No 

Rework 

(a) 0%  119  7,168  

(b) 33% 101  7,168  

(c) 66% 81  7,169  

 

(A)  ܰ݋	ܧܥܮ 

(1) Lowߙ ൌ ߛ ൌ0.3  

(a) 0%  158 32.0% 10,781 48.2% 

(b) 33% 160 58.9% 11,778 61.9% 

(c) 66% 131 62.6% 12,107  66.6% 

(2) High ߙ ൌ ߛ ൌ0.45  

(a) 0%  176  47.2% 11,948 64.2% 

(b) 33% 192  90.4% 14,542  99.8% 

(c) 66% 162 100.1% 14,927 105.4% 

 

(B)  ܧܥܮ ൌ ݉ܽݔ ቆ൬12൰ே೔ೕିଵ , 0.1ቇ	
(1) Lowߙ ൌ ߛ ൌ0.3  

(a) 0%  141 17.6% 9,542 33.1% 

(b) 33% 129  28.1% 9,436  31.6% 

(c) 66% 106 31.0% 9,185 28.1% 

(2) High ߙ ൌ ߛ ൌ0.45  

(a) 0%  152 27.2% 10,370 44.7% 

(b) 33% 158  56.6% 12,044  68.0% 

(c) 66% 121 49.2% 11,037  54.0% 

Table 3. Project Performance under the Impact of OS, RL and LCE 

To better visualize the correlations between lead time and effort, scatter plots of 200 model 

replicates’ lead time and total effort outcomes under different levels of OS and RL are 

demonstrated in Fig. 8. Red lines in the plots indicate the lead time and total effort required 

for BL1 baseline cases (an “ideally executed” project without accounting for rework).  
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Figure 7. (a/b). Overall/ Percentage Change of Functional Effort Devoted  

 

 

Figure 8. (a/b). Scatter Plots of the RL Impact on Different OS 

We can clearly observe that a majority of replications exceed the lead time and effort of BL1 

by a considerable amount because of rework. Furthermore, as overlapping ratio and rework 

probability constants (α for IPC and γ for EPC) increase, there is also a notable increase in 

the number of replicates that are off the trend line. This phenomenon reveals that a high 

overlap ratio of upstream and downstream activities, combined with a high likelihood of 

unanticipated activity rework that requires additional resources will result in a strong 

tendency for NPD projects to behave in an unstable and unpredictable manner and lead to 

unforeseen departures from the predetermined baseline plan. Also note that, there exist 

possibilities where total effort or lead time or both are smaller than those required for the 

respective baseline cases, which is due to the stochastic nature of the model inputs (i.e., 

random inputs of activity duration, rework probabilities, etc.). 

7. Conclusion 

This research proposes a comprehensive discrete event simulation model that captures 

different aspects of PD project–related (i.e., product, process, team, and environment) 

complexity to investigate their resultant impacts on the occurrence and magnitude of 
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iterations and ECs that stochastically arise during the course of an NPD project, and how the 

multiple dimensions of project performance, including lead time, cost, and quality, are 

consequently affected. In addition to the integration of several critical characteristics of PD 

projects that have been previously developed and tested, (e.g., concurrent and collaborative 

development process, learning curve effects, resources constraints), this research introduces 

the following new features and dynamic structures that are explicitly modeled, verified, and 

validated for the first time: 

1. This DES model explicitly distinguishes between two different types of rework by the time of 

occurrence: intra–phase iterations and inter–phase EECs. Moreover, engineering changes 

are further categorized into two groups by their causes of occurrence, emergent ECs “that are 

necessary to reach an initially defined standard in the product” [13], and initiated ECs 

in response to new customer requirements or technology advances.  

2. Uncertainty is differentiated and conceptualized into three categories. Activity uncertainty is 

reflected in the stochastic activity duration using probability distributions, and 

environmental uncertainty is primarily modeled by the arrival frequency and 

magnitude of IECs. In particular, solution uncertainty is an important model variable 

that dynamically determines the rework probability which will be discussed next. 

3. This study provides presumably the first attempt to integrate cause–and–effect 

relationships among project variables into a DES model of PD projects. Traditional 

DES model deals with only static project features in “open–loop, single–link” causal 

relationship format [14] that remain constant as the model evolves. Rework probability 

is no longer pre–determined and remains fixed over the entire time frame of the NPD 

process as appeared in most of previous studies. Instead, it is calculated in real time 

by the model itself. That is to say, rework probability is now included in a feedback 

structure that changes over time in response to the project’s evolving uncertainty 

levels.  

4. The specific three–step rework review process structure, together with the rigidity of rework 

reviews, allows more explicit and detailed modeling of this critical aspect of ECM, which 

is not attempted by previous studies. Decision points are used with rules to 

conditionally process ECs. They also give the users flexibility to define one or more 

rules in priority evaluation order.  

5. The traditional restrictive assumption of a stable development process with no environmental 

disturbance is also relaxed by introducing the random occurrence of IECs, which will lead 

to an enlarged design solution scope of the final product and thus affecting the project 

solution uncertainty.  

Results show under different conditions of uncertainty, how we should apply various kinds 

of strategies and policies, including process overlapping, rework review, IEC batching, 

resource allocation, to not only achieve benefits but also recognize potential tradeoffs among 

lead time, cost and quality. The study concludes with the following observations or 

understandings that either have been identified previously in the existing literature or 

disclosed for the first time with the help of newly added and verified model features: 



 
Using Discrete Event Simulation for Evaluating Engineering Change Management Decisions 193 

1. Significant increase of both time and cost due to rework is alleviated by the evaluation 

of LCE. 

2. The percentage increase of project cost is always higher than that of lead time at the 

occurrence of rework and IECs. That is, compared with lead time, project cost is more 

sensitive to rework/IECs. 

3. By starting downstream activities early with only preliminary information, concurrent 

engineering tends to alleviate the impacts of rework on activities in downstream phases 

while intensifying those on activities in the upstream phases. It also tends to shift 

rework risks and even out committed efforts among various functional areas. In 

addition, departments that are majorly involved in upstream phases undergo higher 

fluctuation in effort.  

4. A high overlap ratio of upstream and downstream activities, combined with a high 

likelihood of unanticipated activity rework that requires additional resources will result 

in a strong tendency for NPD projects to behave in an unstable and unpredictable 

manner and lead to unforeseen departures from the predetermined baseline plan. 

5. Adopting a more restrictive RRS (Convex–Up) leads to a longer NPD lead time and 

higher project cost. There is no obvious distinction between Stepped Linear and Linear 

RRSs. Also, the evaluation of LCE reduces the impacts of RRS. 

6. When only the IEC process propagation among development activities is examined, 

high correlations between lead time, cost, and quality are observed. However, when the 

effects of IEC product propagation among dependent product components/systems, the 

correlation between lead time and project cost, and the one between lead time and 

quality drop significantly.  

7. Batching of IECs possesses a competitive advantage in lead time over handling IECs 

individually. This superiority is the greatest when a sequential PD process is adopted, 

and reduces as overlapping ratio increases. However, there is neither IEC policy shows 

“dominant” advantage in project cost or quality. 

8. Potential tradeoffs among NPD lead time and total cost are clearly identified when 

resource assignment decision is to be made. A higher level of OS leads to a shorter NPD 

lead time and less total cost given the same amount of functional resource allocation. 

However, the benefits of lead time reduction by assigning more resources are the most 

obvious in a sequential process, and activity overlap reduces the degree of obviousness 

the benefits have. The higher the OS, the less the benefits. 

9. Linearity between lead time and quality is observed in all three OS levels: the higher the 

functional resource availability, the shorter the lead time, and the lower the quality. The 

linearity slope increases as the OS increases. The percentage of decrease in quality 

versus baseline case is the largest in a sequential process and decreases as OS increases. 

10. The evaluation of IEC product propagation leads to a general increase of the multiple 

dimensions of NPD project performance from baseline case, except a counterintuitive 

decrease in NPD project lead time for a less coupled product configuration under a high 

environmental uncertainty and a high RL. 

Three possible main directions of future studies beyond the work presented here are 

summarized as follows: 
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1. Model features including: i) different relationships between solution uncertainty and 

rework probability, ii) more detailed modeling of dynamic rework review criteria (in 

replace of the current static one), and iii) parallel rework policy need to be tested to 

assess their impacts on project performance measures. 

2. The review of literature has indicated a lack of development process models that are 

capable to be extended and implemented into a multi–project environment while still 

keeping detailed aspects of project complexity. Building blocks of the model framework 

can be reconfigured and applied at various detail levels. From a single project level to 

the entire organizational level, it opens possibilities for further analyses of multi–project 

management, such as work force planning strategies, coordination policies of 

interdependent parallel projects, etc. 

3. This DES model can also be further extended across organizations. By relaxing the 

single organization restriction of the current model and including inter–organizational 

influences, how engineering changes propagate along supply chain and affect NPD 

project performance can be explored. 
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