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1. Introduction 

Cerebral ischaemia (stroke) describes a condition wherein blood flow to the brain is reduced 

such that neurological function is disrupted, and neural cell death becomes possible. For 

several decades, stroke has remained a leading international cause of death and disability, 

which is the reason considerable effort has been applied to improve understanding of its 

pathogenesis; however, only a modest comprehension of the complex cellular processes 

underlying ischaemia-mediated cell death can currently be claimed. Our limited knowledge 

regarding how the brain is changed by an ischaemic event is part of the explanation for the 

absence of a successful clinical intervention, despite the examination of more than a 

thousand potential pharmacotherapies during the past fifty years [61, 69, 169].  

Phosphorylation is the most broadly examined post-translational modification within the 

central nervous system [125, 222, 244]. Physiological shifts in neuronal activity, such as those 

that occur during memory formation, can lead to changes in protein phosphorylation; in a 

similar fashion, pathological changes in brain activity, such as those that occur during 

cerebral ischaemia, can also affect phosphorylation status. One principal means whereby the 

pattern of phosphorylation, especially at tyrosine residues [45, 80], can affect brain function 

is by regulating the activity of ionotropic receptors, which mediate the vast majority of rapid 

signal transmission. While the phosphoregulation of many ionotropic receptors has been 

examined, the NMDA sub-type of receptors that respond to the excitatory neurotransmitter 

glutamate has been the subject of a disproportionate level of attention due to its key role in 

neuronal communication.  

To contribute to ongoing efforts directed at developing improved pharmacotherapies for 

stroke, the present review will provide a reflection on the manner in which ischaemic injury 

may alter neuronal physiology through changes in the tyrosine phosphorylation of the 

NMDA receptor; in particular, three goals will aim to be accomplished: (a) providing a 
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general review of the primary upstream changes initiated by cerebral ischaemia, and, in so 

doing, highlighting the importance of the NMDA receptor (b) offering a summary of the 

structure and function of the NMDA receptor, and the evidence that establishes how the 

receptor’s function and cellular distribution are altered by tyrosine phosphorylation (c) 

outlining what is known about how ischaemia may set in motion cellular changes leading to 

the aberrant, potentially harmful, and possibly self-amplifying over-activation of the NMDA 

receptor.  

2. Cerebral ischaemia 

2.1. Definition, prevalence, and risk factors 

Insufficient cerebral blood supply may result from either the collapse of systemic circulation 

(leading to global ischaemia), or from the occlusion of a vessel that supplies a discrete region 

of the brain (leading to focal ischaemia). Although there are several possible causes of focal 

occlusions, they are predominantly the result of a foreign substance travelling within the 

cerebral circulation until the lumen becomes too narrow to permit further movement 

(embolism) [240]; the principal source of emboli is believed to be atherosclerotic plaques [187]. 

While uncontrolled bleeding from a vessel (haemorrhage) can also cause ischaemia of a focal 

nature, occlusion is thought to account for approximately 80% of focal events [198, 230]. 

For several decades, stroke has consistently been recognised as one of the leading causes of 

death worldwide, and one of the major causes of severe disability. Globally, over 15 million 

people per year are diagnosed with stroke, and a third of those afflicted die from 

complications relating to the injury [255]. In addition to significant medical consequences for 

affected individuals, cerebral ischaemia also presents enormous socioeconomic costs; for 

example, recent estimates place the direct and indirect annual costs associated with stroke in 

the United States at approximately 65 billion USD [47], while similarly constructed 

European estimates place the annual costs at approximately 77 billion USD [172]. Given that 

those who survive an ischaemic attack must cope with a variety of significant cognitive 

deficits (including aphasia, hemiparesis, and memory problems) that often lack treatment, 

the social costs of stroke are as enduring as they are significant. 

Understanding the underlying causes of cerebral ischaemia requires an appreciation for the 

numerous genetic and environmental factors that contribute to its development, and that its 

determinants may be divided into non-modifiable and modifiable categories. The primary, 

and most significant, non-modifiable risk factor is age. The incidence of stroke rises 

exponentially with age, and the majority of strokes are seen within individuals who are 

older than 65 years of age [83, 203]. Gender is also an important consideration, for stroke 

incidence among men has consistently been shown to be approximately one-third greater 

than among women [203]. In addition, numerous American studies have indicated that the 

occurrence of stroke among multiple non-white demographic groups is greater than among 

white individuals, even when socioeconomic factors are considered [95, 202]. The principal 

modifiable risk factor for cerebral ischaemia is hypertension, and a large body of work has 
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illustrated that the likelihood of stroke rises proportionately with increasing blood pressure 

[210, 256]. As well, cardiac disease, notably atrial fibrillation and coronary artery disease 

[203, 257], and metabolic disease, particularly type II diabetes and dyslipidaemia [189, 256], 

are also associated with elevated stroke risk. Finally, several lifestyle factors, including 

physical activity levels, cigarette smoking, alcohol consumption, and diet, have been shown 

to independently affect the potential for stroke development [13, 92, 93, 251].  

2.2. Pathogenesis 

Despite comprising only about 2% of total body weight, the brain receives 15% of cardiac 

output and consumes about 20% of the oxygen utilised by the body [28]. The brain’s 

disproportionate circulatory demands are attributable to a high metabolic rate based almost 

exclusively upon cellular respiration; in addition, unlike most other organs, glucose stores in 

the brain are sufficient to cover energy requirements for only about one minute [83]. In a 

relatively quick manner, reduction of blood flow beyond a critical threshold results in the 

inability of neurones to fire action potentials, and, if sufficiently extensive, may lead to the 

failure of oxidative phosphorylation, which is the principal method of cellular energy 

production [5]. To avert the cellular energy crisis that rapidly follows reduced blood supply, 

cells in an affected area rely increasingly upon glycolysis; consequently, tissue 

concentrations of lactate and hydrogen ions increase dramatically, causing acidosis [214]. 

However, the comparatively meagre amount of energy provided by anaerobic metabolism 

provides limited compensation, and, in a short period of time, the lack of high-energy 

phosphate, combined with decreased pH, precipitates a multifactorial increase of membrane 

permeability.  

A number of ionic gradients exist across the neuronal membrane (high intracellular [K+] and 

low intracellular [Na+], [Cl-], and [Ca2+]), and these are quickly disrupted by the collapse of 

various energy-dependent pumps and transporters. Of particular note is Na+/K+-ATPase 

pump failure, which allows Na+ to move into the cell causing neuronal depolarisation 

accompanied by the passive diffusion of Cl- and water [126, 230]. In combination, the 

normalisation of ions across the cellular membrane and the concomitant movement of water 

lead to intracellular swelling that causes osmolysis (cytotoxic oedema), which significantly 

contributes to acute neuronal cell death [60].  

Disrupted ionic homeostasis also leads to a dramatic and unregulated increase in the fusion 

of neurotransmitter storage vesicles with pre-synaptic membranes, which causes a massive 

release of vesicular content. Of the transmitters that flood the synapse following ischaemia, 

the most intensely studied has been the amino acid glutamate, which is the principal 

mediator of excitatory neurotransmission within the mammalian brain. The harm that might 

result from excessive glutamate was first observed in studies that found its systemic 

administration caused pronounced retinal degeneration [142, 173], a phenomenon described 

as “excitotoxicity”. A substantial body of subsequent work has established that glutamate is 

a key element of neurodegeneration in general, and of ischaemic cell death in particular 

[119, 133, 199]. For example, glutamate efflux precedes widespread injury to cellular 
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membranes and enzyme systems [2], the extracellular concentration of glutamate rises 

dramatically during ischaemia [63, 84], glutamate release is correlated with insult severity 

[29, 224], and glutamate receptor antagonists provide significant protection against 

ischaemic brain damage [119, 155, 215]. 

The widespread release of glutamate and the excessive stimulation of its high-affinity post-

synaptic receptors are thought to act as critical elements that permit a profound rise of the 

intracellular calcium ion concentration. Calcium ions are involved in an array of neuronal 

functions, and their intracellular concentration is rigourously maintained at a level 

approximately 104 times lower than their extracellular concentration [143] by a combination 

of specialised binding proteins [8], sequestration within organelles [77], and extrusion [232]. 

One of the first studies to recognise the importance of calcium ions in cell death found that 

degeneration following axonal amputation occurred only when calcium ions were present 

in the bathing medium [208]. Subsequently, the essential role played by Ca2+ in glutamate-

mediated cell death became established by studies that used mouse neocortical cultures [36, 

88], rat hippocampal cultures [115, 190], and rat brain slices [57, 137]. Furthermore, work 

with culture [37, 67, 207], slice [276], and in vivo [15] models of ischaemia went on to reveal 

that a specific sub-type of glutamate receptor - the ionotropic NMDA receptor (section 3) - 

accounts for the majority of Ca2+ entry during and immediately after an ischaemic insult. 

The dysregulation of intracellular Ca2+ has become recognised as a central branch point 

within the ischaemic cascade [11, 133, 213, 223], and serves as an important link between 

upstream activation of glutamate receptors and downstream stimulation of cell death 

mediators; for example, catalytic enzymes and free radicals. Several cytodestructive 

enzymes appear to be activated by cerebral ischaemia [119, 133, 185, 192], including 

proteases, phospholipases, and endonucleases. One set of enzymes that has received 

significant attention is the calpains, which are cytosolic cysteine proteases with variable 

Ca2+-binding domains [217]. Calpains are ubiquitously expressed in the CNS, and a clear rise 

in their levels has been observed in models of both transient focal and global ischaemia [272, 

280]. As well, activated calpains have been associated with damage to a variety of proteins 

[10, 241, 254], and calpain inhibitors have been found to provide a measure of protection in 

both culture [10] and in vivo models of ischaemia [12].  

Free radicals have emerged as important players in the development of ischaemia-induced 

neuronal damage [3, 111, 133, 139]. The detection of free radical production following 

excitotoxicity caused by NMDA receptor stimulation has been clearly demonstrated in a 

variety of cultured rodent neurones [50, 76, 117, 194], and various groups have shown 

neuroprotection against excitotoxicity using antioxidant compounds [119]. As well, the 

mechanism of excitotoxicity-induced free radical production has been linked to Ca2+ by a 

report that demonstrated exposing isolated mitochondria to increasing calcium and sodium 

concentrations elevated free radical production [52], and another that showed removing 

extracellular calcium attenuated free radical production following NMDA application [50]. 

In addition to mitochondrial impairment, increased levels of reactive oxygen and nitrogen 

species are likely due to a combination of suppressed free radical scavengers and the 
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elevation of formative enzymes, such as xanthine oxidase, cyclooxygenase, and nitrogen 

oxide synthases. Collectively, the cellular changes caused by increased free radical activity 

are extensive, and include lipid peroxidation, protein denaturation, and nucleic acid 

modification.  

Slight changes in cerebral blood supply can be effectively managed by autoregulatory 

mechanisms that govern blood flow and oxygen extraction; however, decreases beyond this 

primary threshold initiate numerous cellular changes that become more severe in direct 

relation to the extent of the disturbance. The critical stages of stroke pathogenesis (figure 1) 

develop following a rapid and sustained drop of neuronal energy supply, and are generally 

thought to include a loss of ionic homeostasis, the unregulated release of the excitatory 

transmitter glutamate, the profound over-activation of glutamate receptors (particularly, the 

NMDA receptor), the dysregulation of intracellular Ca2+ levels, and the activation of a 

number of calcium-mediated internal changes that broadly affect cellular structure and 

function. While the exact manner and time course of ischaemia-mediated changes can be 

varied, and is influenced by factors such as insult severity, neuronal maturation, phenotype, 

and connectivity, the one thing held in common is the ultimate development of extensive 

neuronal cell death.   

 

Figure 1. Summary of major elements in the early stages of ischaemic pathogenesis. 

3. The NMDA receptor 

3.1. Historical overview 

Glutamate receptors (GluRs) mediate the majority of excitatory transmission in the 

vertebrate CNS, and participate in a number of physiological processes, including the 
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formation of neuronal networks during development [43, 110], the pattern of ongoing 

synaptic communication [236], and the cellular plasticity believed to underlie learning and 

memory [21, 146]. In addition to an intimate involvement with the brain’s physiology, 

glutamate responsive receptors are also of central importance in several neuropsychiatric 

conditions. For example, the GluRs have been implicated in neurodevelopmental disorders 

(e.g., schizophrenia) [59], mood disorders (e.g., depression) [149], chronic 

neurodegeneration (e.g., Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral 

sclerosis) [1, 22, 100], and pain transmission [20], in addition to brain injury (e.g., head 

trauma and stroke).   

The broad influence of glutamate-mediated signalling upon synaptic function and 

dysfunction is attributable to the broad anatomical and cellular distribution of GluRs, and 

that they exist in two functionally and pharmacologically distinct varieties: metabotropic 

(mGluRs) and ionotropic (iGluRs). The metabotropic receptors are coupled to G-proteins, 

and, while structurally related to one another, do vary appreciably in their distribution and 

signal transduction mechanisms [175, 193]. The ionotropic receptors are non-specific cation 

channels that possess a common general structure, but vary considerably in both 

distribution and function [153, 175, 236]. As well, the iGluRs have been divided into three 

sub-types based upon relative selectivity to three exogenous agonists: N-methyl-D-aspartate 

(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate.  

Important preliminary evidence for diversity within excitatory neurotransmission was 

found in the early 1960s when the synthetic GluR agonist NMDA was shown to potently 

excite neurones [44]. Subsequent work in the 1970s, using radioligand binding and specific 

antagonists, established the existence of a specific NMDA subtype of iGluR (NMDAR) [154]. 

Following the advent of molecular cloning technology in the 1980s, a receptor complex 

possessing the functional characteristics ascribed to the NMDAR was characterised [158], 

which confirmed the existence of this particular iGluR sub-type, and helped to foment 

investigation into its physiopathological roles. 

3.2. Subunit structure and assembly 

The NMDA receptor is thought to be a heteromeric complex formed from a combination of 

four subunits: GluN1, GluN2 (with four known sub-types, labelled A-D), and GluN3 (with 

two identified sub-types, labelled A and B); notably, the nomenclature for GluR subunits 

has recently changed [42]. The GluN1 subunit has been shown to be essential to the 

formation of functional receptors [55], while the GluN2 and GluN3 subunits are believed to 

impart distinct gating and ion conductance properties [236]. Although the stoichiometry of 

subunits remains to be definitively resolved, endogenous NMDA receptors are thought to 

require the assembly of two GluN1 subunits with either two GluN2 subunits, or a 

combination of GluN2 and GluN3 subunits [19, 236]. Regardless of their ultimate 

arrangement, similar to other iGluRs, NMDARs are thought to be held within the 

endoplasmic reticulum until they assemble in a manner sufficient to permit counteraction of 

a retention signal [183].  
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One important limitation to improved understanding of NMDAR composition is the 

significant degree of developmental and anatomical heterogeneity that exists within subunit 

expression. The GluN1 subunit displays a peak degree of expression late in embryonic life 

before slightly declining to a relatively stable level of post-natal expression, while the GluN2 

subunits vary considerably in their expression across the lifespan [53, 252]. For example, the 

GluN2A and GluN2C subunits are found post-natally, the GluN2B is expressed both before 

and after birth, although expression levels decline considerably between the early post-natal 

period and adulthood, and the GluN2D subunit is overwhelmingly restricted to embryonic 

development. As well, the GluN1 subunit is found in all central neurones, but a significant 

degree of anatomical heterogeneity exists among GluN2 subunits; in particular, the GluN2A 

and GluN2B subunits are found throughout the forebrain, the GluN2C subunit is limited to 

the cerebellum, and the GluN2D subunit is found predominantly within the midbrain [53, 

156, 252, 253]. 

 

Figure 2. (A) Diagram of the structure for a typical NMDA receptor subunit. (B) Schematic illustrating 

one possible heterotetrameric combination of GluN subunits, along with identification of those GluN2 

C-terminal tyrosine residues believed most relevant to phosphorylation-mediated changes in receptor 

gating and surface expression.   

Despite being variably expressed, each NMDA receptor subunit shares a similar general 

architecture: a large extracellular region that consists of the amino-terminal and ligand 

binding domains, a pore-forming transmembrane region, and an intracellular region 

containing the carboxy-terminal domain [19, 56, 236] (figure 2). The N-terminal domain, at 

least in certain GluN2 subunits, is believed to allow receptor activity to be non-

competitively inhibited by ligands such as zinc [177], although this may be an artifact of 

heterologous expression [261]. The adjacent ligand-binding domain is elegantly formed by 

two, non-contiguous segments that are separated by a portion of the polypeptide sequence 

thought to weave its way through most of the transmembrane region; as a result, 

conformational changes within the ligand-binding domain are thought to influence opening 
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of the channel pore [56]. Four hydrophobic domains are believed to form the 

transmembrane region: the M1, M3, and M4 are predicted to cross the membrane as helices, 

while the M2, which lines the lumen of the pore, is expected to be a re-entrant loop that 

connects M1 and M3 [14, 19].  

Among the NMDAR subunits, the C-terminal domain (CTD) is regarded as the most 

divergent region of the protein sequence [201], and can vary between 80-600 amino acids 

[56]. In addition to accounting for almost half the length of certain subunits (e.g., GluN2A 

and GluN2B), the CTD appears to be particularly important for intracellular signalling, 

trafficking, and localisation of the receptors due to the presence of multiple protein motifs 

that permit interaction with a variety of enzymes and scaffolding molecules. In particular, 

the intracellular region contains multiple locations for post-translational modifications, such 

as tyrosine phosphorylation [31, 125, 205, 236].  

While the comparatively short CTD of the GluN1 does possess a tyrosine residue (Y837) 

[204], the subunit does not appear to experience tyrosine phosphorylation [121]; in contrast, 

each CTD of the GluN2 subunit contains 25 tyrosine residues, although not all of these 

residues will accept a phosphate group. On the GluN2A subunit, Y1292, Y1325, and Y1387 

are thought to be the primary tyrosine residues subject to phosphoregulation [114]. On the 

GluN2B subunit, phosphorylation of Y1252, Y1336, and Y1472 has been reported [163]. 

Despite comprising a relatively small number of sites within the extensive CTD, tyrosine 

residues have become regarded as crucial points of convergence for signalling pathways 

that modulate NMDAR activity [170, 204, 205, 237].  

3.3. Receptor function and cellular distribution 

The basic pattern of excitatory signal transmission between the overwhelming majority of 

central neurones in the mammalian brain involves the pre-synaptic release of glutamate, its 

passage across the synaptic cleft, and its interaction with post-synaptically positioned 

GluRs. While basal synaptic transmission tends to be mediated by the AMPA sub-type of 

iGluR, periods of higher frequency synaptic activation (such as those that would tend to be 

present during an ischaemic event) recruit the NMDAR; the primary reason for the distinct 

activation profiles rests with a unique characteristic of the receptor. During basal 

transmission, the NMDAR’s endogenous agonist (i.e., glutamate, which binds to an 

extracellular segment of GluN2 or GluN3 subunits) and its co-agonist (i.e., glycine, which 

binds to an extracellular segment of the GluN1 subunit) are present, yet the receptor 

remains functionally silent (i.e., ion conductance does not occur). The lack of basal NMDAR 

activity is attributable to a voltage-dependent blockade of the channel pore. At resting 

membrane potentials, external magnesium ions (which experience a significant inward 

driving force due to their high external concentration) enter the NMDAR pore, and bind in a 

manner that prevents further ion passage; however, membrane depolarisation of a sufficient 

magnitude and duration leads to the expulsion of Mg2+ from the pore, which permits the 

subsequent movement of cations [168].  
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Upon activation, glutamate receptors become permeable to both monovalent and, in some 

cases, divalent cations; however, the nature and degree of ion flux is not equivalent across 

iGluRs, and the NMDA sub-type has become acknowledged as the primary mediator of Ca2+ 

passage [57, 152, 236]. The ability to permit the entry of calcium ions is a primary reason that 

NMDARs make substantial contributions to both physiological and pathological 

phenomena [223, 236], although their pattern of cellular distribution also plays a role in their 

wide functional reach. Similar to many other ion channels, NMDARs are recognised as 

being widely dispersed across the cellular surface, however, information regarding the 

manner in which membrane bound receptors are distributed has only recently begun to be 

gathered. The available evidence indicates that NMDARs are not uniformly distributed at 

the plasma membrane, but can be divided into three spatially defined categories: synaptic, 

peri-synaptic and extra-synaptic [70].  

The post-synaptic population exhibits the greatest density, relative to the other sub-regions, 

and responds directly to pre-synaptically released glutamate [70]. Peri-synaptic NMDARs 

have been operationally defined as those located within a 300 nm range of the post-synaptic 

terminal [70, 184, 275], and are believed to be activated by glutamate released from the pre-

synaptic terminal following strong stimulation. Approximately half of all surface NMDARs, 

depending upon the developmental stage, are located extra-synaptically; however, relative 

to synaptic receptors, this compartment has a low density given the much broader area [72, 

233]. Under physiological conditions, extra-synaptic NMDARs are unlikely to be activated 

by pre-synaptically released glutamate; however, they could be stimulated by glutamate 

released either from other sources [104, 128], or following the spillover of synaptic 

glutamate caused by ischaemia. 

4. Regulation of NMDA receptors by tyrosine phosphorylation 

4.1. Phosphorylation as a key determinant of ligand-gated ion channel function 

Proteins exist as part of a complex system of elements that interact with one another to allow 

a cell to respond, directly or indirectly, to changes in its environment. Over several decades, 

the cellular distribution and molecular interactions of many proteins have been shown to be 

fundamentally regulated by post-translational modification in the form of phosphorylation 

[178, 238]. In essence, phosphorylation involves the protein kinase-mediated transfer of the 

γ-phosphate from adenosine triphosphate to a serine, threonine, or tyrosine residue of a 

substrate (although other amino acids may also be modified [40]), and is a process 

counteracted by protein phosphatases, which catalyse dephosphorylation.  

Near the end of the 1980s, phosphorylation began to emerge as an important determinant in 

the function of a class of proteins essential for most neuronal communication – ligand-gated 

ion channels (LGICs). The first study to illustrate that LGICs could be regulated by 

phosphorylation revealed that NMDA currents recorded from cultured hippocampal 

neurones gradually declined during dialysis with an intracellular solution, but that the loss 

of receptor activity could be prevented by the addition of an ATP regenerating solution to 
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the dialysate [148]. In the mid-1990s, further work not only confirmed that the NMDA 

receptor was indeed regulated by phosphorylation, but also that a critical site for the 

modification was at tyrosine residues [249]. Subsequent reports established that a variety of 

other LGICs, such as the inhibitory GABA-A receptor [159] and the nicotinic acetylcholine 

receptor [246], were also regulated by the activities of tyrosine kinases and phosphatases, 

and helped to establish the importance of phosphorylation in the control of synaptic 

function. 

4.2. Regulation of NMDA receptors by tyrosine phosphorylation 

Electrophysiological studies have established that NMDAR function is regulated by a 

balance between phosphorylation and dephosphorylation of tyrosine residues [31, 204, 205]. 

Within mammalian neurones, introducing an exogenous protein tyrosine kinase (PTK), or 

inhibiting endogenous protein tyrosine phosphatase (PTP) activity enhances NMDAR 

currents [249]; in contrast, inhibiting PTK activity [249, 250], or introducing an exogenous 

PTP [250] suppresses NMDAR currents. In addition, exogenous PTKs have been shown to 

potentiate currents mediated by recombinant NMDARs [32, 108]. During the past twenty 

years, members of the Src family of PTKs have emerged as the predominant tyrosine kinases 

responsible for mediating activity of the NMDA receptor. 

4.2.1. Src Family Kinases (SFKs) and the brain: An introduction 

The Src family of non-receptor, protein tyrosine kinases (SFKs) consists of several lower 

molecular weight proteins (52 to 62 kDa) that share a common domain organisation, which 

includes a catalytic region (the Src homology 1 or SH1 domain) and two regions that guide 

protein-protein interactions (the SH2 and SH3 domains) [170, 204]. Given that Src, the 

prototypical SFK, was initially identified as a proto-oncogene [218], SFKs in the brain were 

originally believed to influence only those processes related to the regulation of neuronal 

proliferation and differentiation [102, 116]. However, SFKs were subsequently shown to be 

expressed in differentiated, post-mitotic neurones, which suggested that these kinases might 

participate in neural activity past the point of early development [86, 220]. Notably, 

significant changes in neuronal plasticity and behaviour have been observed in adult mice 

lacking certain SFKs [68, 239], while the expression and activity of Src was shown to increase 

during spatial learning [278]. 

Within the mammalian nervous system, the expression of five members of the SFKs has 

been established; of these, Src [101], Fyn [221], and Yes [105] have been found within the 

post-synaptic density (PSD), which is a specialised region of the post-synaptic terminal 

thought to provide a molecular scaffold that helps regulate proper protein placement. In 

addition, Src [270], Fyn [267], and Yes [105] have been shown to be components of a large 

complex in the PSD that includes the NMDA receptor. Considered together, the biochemical 

analyses reveal that several SFKs have a spatial distribution appropriate to permit 

regulation of NMDAR function. 
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4.2.2. Evidence to support SFKs as modulators of NMDAR channel gating 

When activated, ion channels, such as the NMDAR, passively conduct charged particles 

(i.e., they permit current flow) across the plasma membrane in a direction influenced by 

electrostatic forces and the ionic concentration gradient. The transition of a channel between 

closed and open states (i.e., from non-conducting to conducting) is referred to as gating, and 

requires a dramatic, albeit temporary, change in the channel’s structure. The first evidence 

that SFKs might affect NMDAR function through alterations in channel gating was 

provided by a study that recorded channel currents from dissociated neurones [270]. A 

specific, high-affinity activator of SFKs [134] increased synaptic NMDAR-mediated currents, 

while an antibody that inhibited SFKs (anti-cst1; [195]), but not other protein tyrosine 

kinases, depressed NMDAR channel gating. A subsequent report, which recorded activity 

within neurones from acutely prepared brain slices, confirmed that the phosphopeptide SFK 

activator was able to significantly enhance NMDAR gating [141]. 

Additional support for the ability of SFKs to mediate NMDAR function was provided by a 

study that found protein tyrosine phosphatase alpha (PTPα) enhanced NMDAR-mediated 

synaptic currents in both cultured neurones and brain slices, while reducing PTPα activity 

with an inhibitory peptide reduced NMDAR currents [127]. Although the findings appear 

superficially paradoxical, PTPα is thought to activate SFKs by selectively dephosphorylating 

a residue in their regulatory domain, and thereby interfering with an intramolecular 

interaction that maintains the kinases in an inactive state [176]. In support of the proposed 

mechanism of action, PTPα has been shown to activate several different SFK members 

within cell lines [17, 87, 279], and SFK activity is substantially reduced in PTPα deficient 

mice [186]. As well, in cells lacking SFKs, or in which SFK activity is inhibited, PTPα has no 

effect on NMDAR currents [127]. 

While little doubt can exist that SFKs are involved in regulating NMDAR activity, the 

identities of the family members that might contribute to the process are not definitively 

known; however, considerable evidence has drawn attention to at least two kinases. The 

first candidate to be examined was Src, which was implicated by experiments illustrating 

that application of Src-specific inhibitors (the antibody anti-src1, and the peptide Src(40-58), 

which was the immunogen used to create the antibody) significantly decreased synaptic 

NMDAR-mediated currents and NMDAR channel gating [270]. As well, the Src-specific 

inhibitors were found to prevent the increased channel activity produced by application of a 

high-affinity SFK-activating peptide, which suggested that endogenous Src is required for 

SFK-mediated upregulation of NMDAR activity. To provide a structural complement to the 

functional studies, recent work with GluN2A subunits expressed in a heterologous 

expression system has found that Src directly interacts with segments in the C-terminus [75]. 

The second SFK member considered to have a role in NMDAR activity is Fyn, which was 

initially implicated by experiments wherein exogenous Fyn was shown to modulate 

glutamate-evoked currents mediated by recombinant NMDARs expressed in HEK293 cells 

[108]. Subsequently, co-expression of a constitutively active form of Fyn with GluN1 and 

GluN2B subunits in cerebellar granule cells was found to cause a significant increase in the 
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amplitude of NMDA miniature excitatory post-synaptic currents [188]. In addition, several 

groups have reported that Fyn is able to phosphorylate both GluN2A and GluN2B within 

post-synaptic densities of the rodent forebrain [237].  

Along with a direct effect upon NMDARs, SFKs may influence channel activity by 

phosphorylating proteins that associate with the receptor. For example, the post-synaptic 

density contains several proteins that are both tyrosine phosphorylated and potentially 

connected with NMDAR function, such as the scaffold protein PSD-93 [161, 206]. As well, 

phosphorylation of GluN2B may recruit signalling proteins, such as phosphatidylinositol 3-

kinase, which has been shown to associate with the subunit [94, 182]. In addition, tyrosine 

phosphorylation of GluN2 subunits may prevent the loss of signalling molecules from the 

NMDA receptor by limiting degradation caused by calpain [18, 197], one of the principal 

proteases activated following ischaemia (section 2.2). Taken together, the variety of evidence 

suggests that SFKs may indirectly influence NMDAR function by altering the manner in 

which scaffolding and signalling proteins interact with GluN subunits. 

4.2.3. Evidence to support SFKs as modulators of NMDAR trafficking 

Rapid synaptic communication was traditionally believed to be altered by structural 

changes in ligand-gated ion channels that affected gating properties, such as mean open 

time and open probability. However, during the past fifteen years, cellular trafficking 

events, which modify the surface density of ion channels, have attracted considerable 

attention as an additional means whereby synaptic transmission can be regulated [41]. 

Although the inhibitory GABA-A receptor was the first LGIC found to undergo changes in 

cell surface expression in response to extracellular signals [245], the trafficking of other 

receptors, notably the NMDAR, has been the subject of growing interest over the past 

decade [70, 120, 183]. In particular, a number of studies have revealed that NMDARs are 

quite mobile, and undergo regulated trafficking between intracellular organelles and the 

plasma membrane [51, 64, 74, 124, 188, 191] and between extra-synaptic and synaptic sites 

[65, 71, 234]. 

The earliest evidence that NMDAR trafficking could be influenced through tyrosine 

phosphorylation was provided by a study wherein the repeated application of glutamate to 

heterologously expressed GluN1 and GluN2A subunits lead to an increase in receptor 

internalisation that could be prevented by application of Src [242]; using site-directed 

mutagenesis, the authors found that agonist-mediated dephosphorylation of a single 

tyrosine residue in the C-terminus of the GluN2A subunit was responsible for the reduced 

surface expression of functional channels. Subsequent studies wherein tyrosine phosphatase 

activity was reduced have demonstrated that phosphorylation of the NMDAR is positively 

associated with its surface expression. For example, brief treatment of cultured striatal 

neurones with a general inhibitor of tyrosine phosphatases increased the level of GluN2 

subunit tyrosine phosphorylation and their surface expression [85]. As well, treatment of 

cultured cortical cells with a short interfering RNA to reduce the expression of a tyrosine 
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phosphatase known to interact with the NMDAR lead to both an increase in its surface 

expression and the level of Ca2+ influx after agonist stimulation [24]. 

While enhanced surface expression of a receptor would reasonably be expected to increase 

its activity, the possibility that such a change will have a functional outcome is greater if the 

insertion occurs at synaptic membranes. In acutely prepared striatal slices from adult 

animals, a tyrosine phosphatase inhibitor was observed to increase the phosphorylation 

state of GluN2 subunits and increase their association with synaptosomal membranes; 

notably, treatment with a tyrosine kinase inhibitor had effects in the opposite direction [51]. 

An ensuing study that used tissue slices from the adult hippocampus and a separate set of 

tyrosine kinase and phosphatase inhibitors found the same general pattern tying together 

changes in GluN2 subunit phosphorylation status with synaptosomal membrane density 

[64]. Intriguingly, a further report revealed that the surface location to which GluN2 

subunits are trafficked may be differentially affected by changes in tyrosine 

phosphorylation [65]. In particular, increasing the phosphorylation level of GluN2B 

subunits through the application of a tyrosine phosphatase inhibitor tended to increase the 

extra-synaptic expression of the NMDAR more greatly than its synaptic expression. 

4.2.4. Balancing of SFK activity by tyrosine dephosphorylation 

The level of NMDAR tyrosine phosphorylation is currently understood to be regulated by a 

balance between the activity of SFKs and protein tyrosine phosphatases [170, 204, 205] 

(figure 3). The PTPs are a large, structurally diverse family of enzymes [247] that play a 

number of important roles in the CNS, including contributing to the regulation of neural 

development [162, 219]. The striatal enriched phosphatase (STEP) is a brain-specific, non-

receptor PTP that was originally found to be highly expressed within the adult rodent 

striatum [66, 138], and has subsequently been identified in other regions, such as the 

hippocampus [23]. While STEP immunoreactivity can be observed throughout the soma and 

processes of neurons [23], its presence at the post-synaptic density [174], a prominent 

structure at excitatory synapses, and its direct interaction with NMDARs [181], strongly 

suggest that the phosphatase contributes to signal transduction. 

The ability of broad PTP inhibition to increase, and broad PTP activation to decrease, 

NMDAR gating in spinal cord neurones provided the initial evidence that the receptor was 

modulated by a phosphatase [250]. However, the identification of STEP as the putative 

candidate was not proposed until a report using the same experimental preparation showed 

that recombinant STEP reduced NMDAR activity, while the intracellular application of a 

function-blocking STEP antibody increased synaptic NMDAR-mediated currents [181]. 

Furthermore, within hippocampal slices, inhibition of STEP was shown to increase NMDAR 

activity, while recombinant STEP was able to occlude the development of a form of 

NMDAR-dependent synaptic plasticity. 

The modulation of NMDA receptor function by STEP has become associated with its ability 

to affect the level of phosphorylation at a single tyrosine residue (Y1472) located in the distal 
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portion of the GluN2B C-terminus [123, 196]. When dephosphorylated, the unique residue, 

which is part of a short motif (YXXφ, where X is any amino acid and φ = a bulky 

hydrophobic amino acid), promotes endocytosis by allowing the development of 

hydrophobic interactions between cargo molecules and clathrin adaptor proteins, such as 

AP-2 [235]. Notably, the phosphorylation of Y1472 and the association of GluN2B with 

adaptor proteins are inversely associated [164], and the overexpression of a Y1472 mutant 

unable to interact with AP-2 leads to a significant increase in the number of NMDA 

receptors at the synapse [188]. As well, STEP co-immunoprecipitates with the GluN1 

subunit [181], directly dephosphorylates Y1472 [216], and, when deleted from the mouse 

genome, causes hyperphosphorylation of Y1472 in synaptosomal membranes prepared from 

the hippocampus [277]. Along with a direct effect upon Y1472, STEP may also act indirectly 

by dephosphorylating regulatory residues in the catalytic domains of Fyn, which is the 

principal SFK acting at Y1472 [165], and proline-rich tyrosine kinase 2 (Pyk2), which is an 

upstream activator of SFKs [262]. 

 

Figure 3. A simplified illustration of the key elements that regulate tyrosine phosphorylation of the 

NMDA receptor at the post-synaptic terminal. 

5. Ischaemia-related changes in tyrosine phosphorylation of the NMDA 

receptor 

5.1. Effects of ischaemia upon NMDA receptor subunit expression 

Ischaemia causes a dramatic change in gene expression, which is largely attributable to a 

broad reduction in gene transcription and/or the inhibition of protein translation [109, 112]. 

While the general pattern of change suggests the level of most genes (and their protein 

products) will be reduced after ischaemia, several genes do show an increased level of 

expression; for example, certain ones associated with neuronal survival, such as members of 

the heat shock family of proteins. The first study to examine the effect of transient global 

ischaemia upon GluN2 subunits found that mRNA of both the GluN2A and GluN2B 

subunit declined in a progressive manner over 24 h of reperfusion, and that the 

transcriptional change was reflected in a pronounced loss of the proteins over the same time 
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period [274]; notably, the study employed an antibody that detected an epitope shared 

between the subunits, so the relative nature of the protein loss was not apparent. A 

subsequent study that used subunit specific antibodies revealed that the pattern of reduced 

protein expression may not be equal, for the loss of the GluN2A subunit was greater [228]. 

In agreement with the possibility that GluN2 subunits may be differentially affected by 

ischaemic insult, hypoxia-ischaemia applied to rats at post-natal day seven caused a 

reduction of GluN2A protein levels within one hour of reperfusion, while a reduction in the 

GluN2B subunit was not observed; in contrast, similar experiments performed with animals 

at post-natal day 21 showed a significant reduction of only the GluN2B subunit [82].  

While evidence does exist that the expression of GluN2 subunit proteins may be decreased 

by ischaemia, a comparatively greater amount of work suggests that the level of the 

subunits is not altered. For example, no change in GluN2B immunolabelling was detected in 

hippocampal synaptosomes prepared six hours after a period of transient global ischaemia 

in gerbils [179]. As well, the level of GluN2A and GluN2B subunit proteins in either 

hippocampal homogenates [227], or forebrain post-synaptic densities [226] prepared six 

hours following global ischaemia in rats did not appear to differ from the levels seen in 

control samples [227]; in agreement, a large group of studies that employed the same 

experimental approach failed to find an effect of the insult upon hippocampal protein 

expression of the GluN2A subunit (the GluN2B subunit was not examined) [33, 98, 136, 144, 

248]. When the period of reperfusion was extended to 24 h, one study continued to find no 

change [97], while another found a slight, albeit significant, decline in GluN2A protein 

levels in whole hippocampal homogenates (again, the GluN2B subunit was not assessed) 

[135]. Collectively, the data strongly suggest that GluN2 subunit protein expression, 

particularly of the GluN2A variant, is not likely to be altered within the first 24 h after a 

brief period of global ischaemia in adult animals. 

5.2. Ischaemia and the general cellular pattern of tyrosine phosphorylation 

In the early 1990s, a brief stimulation of cultured hippocampal neurones with either 

glutamate, or NMDA was shown to cause a significant increase in tyrosine phosphorylation 

of mitogen activated protein kinase (MAPK, a class of kinases that respond to extracellular 

signals and mediate proliferation, differentiation, and cell survival) in a manner sensitive to 

blockade of the NMDA receptor [7]. Given the establishment of a connection between 

NMDA receptor activation and downstream tyrosine phosphorylation, subsequent reports 

sought to determine whether the excessive stimulation of the receptor that occurs during 

ischaemia would cause a similar pattern of change. Indeed, a brief period of bilateral carotid 

artery occlusion in gerbils (which would cause global ischaemia) was found to very quickly 

evoke a significant and transient increase in hippocampal MAPK phosphorylation that 

could be prevented through NMDAR antagonism [30, 107].  

Once the association between ischaemia-mediated activation of the NMDA receptor and 

MAPK phosphorylation had been confirmed, a search for other proteins that might 

experience an induced change in tyrosine phosphorylation began in earnest. Within gerbils, 
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global ischaemia was clearly shown to cause a rapid and significant increase in the level of 

tyrosine phosphorylation of a number of hippocampal proteins, particularly those with a 

higher molecular weight [171, 179, 269]. Within rats, both transient forebrain [99, 209] and 

global [34, 225, 228] ischaemia were found to induce a sustained increase in tyrosine 

phosphorylation of higher molecular weight proteins in the hippocampus. In addition, 

acutely prepared hippocampal slices subjected to in vitro models of ischaemia (i.e., oxygen-

glucose deprivation) also displayed changes in the general level of tyrosine 

phosphorylation; however, while the magnitude of the effect was similar to that observed 

with the in vivo models, the direction of the effect was the opposite [6, 26]. 

Intriguingly, the post-ischaemic increase in tyrosine phosphorylation observed with in vivo 

injury did not appear uniformly throughout the hippocampus, which is composed of three 

major sub-fields: cornu ammonis (or CA) sector 1, CA3, and the dentate gyrus [54, 131]. 

Immunohistochemical labelling of hippocampal slices prepared at several time points 

following global ischaemia indicated that the CA3 and dentate gyrus appear to have the 

most intense initial increases in phosphorylation, but that, over several days, the CA1 region 

becomes more strongly labelled [269]. Immunoblotting revealed that the CA3 and dentate 

gyrus regions displayed greater tyrosine phosphorylation, particularly of higher molecular 

weight proteins, during the first two days after insult [228]. A disproportionate increase of 

tyrosine phosphorylation in the CA3-dentate gyrus was also observed in synaptosomes 

(sub-cellular fractions of pre-synaptic terminals that also include remnants of many post-

synaptic sites) during the first day after ischaemia [99].  

The elevated level of tyrosine phosphorylation routinely observed in various models of 

ischaemic brain injury would intuitively be attributable to increases in the activity of 

tyrosine kinases, decreases in the activity of tyrosine phosphatases, or a combination of the 

two. Within whole hippocampal homogenates, the level of Src was not found to change 

during a six hour period of reperfusion following either global ischaemia in adult animals 

[273], or hypoxia-ischaemia in pre-weanling animals [103]. In contrast, during the same 

length of time after global ischaemia the level of both Src and Fyn proteins were observed to 

experience about a twofold increase within the post-synaptic density [16, 34, 226].  

Autophosphorylation of Y416 in the catalytic domain of SFKs is necessary to permit enzyme 

activity [204, 211, 266]. Within several hours of reperfusion following global ischaemia, a 

general increase in the level of tyrosine phosphorylation at hippocampal Src was observed 

[135, 136]; as well, a specific increase in Y416 phosphorylation was found within the whole 

hippocampus [38, 79, 248, 258, 273], and the CA1 [130, 264, 273] and CA3-dentate gyrus [79] 

regions. The level of phosphorylated Y416 was also found to be increased in both 

synaptosomes [160] and post-synaptic densities [16, 35, 160] prepared from the rodent 

forebrain region after the return of blood supply to the insulted area. In agreement with the 

immunoblotting data, in vitro enzyme activity assays confirmed that Src function in either 

whole hippocampal homogenates [78], or hippocampal synaptosomes [180] was clearly 

greater several hours after a brief period of global ischaemia. 
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While understanding how ischaemia may alter tyrosine kinase activity has been the 

principal focus of many studies, a developing body of work has chosen to examine changes 

at the level of tyrosine phosphatases; in particular, attention has been drawn to STEP. 

Glutamate-mediated excitotoxicity within cultured cortical neurones lead to the cleavage of 

STEP (i.e., STEP61, a membrane-associated isoform localised to the endoplasmic reticulum 

and post-synaptic density) into a lower molecular weight isoform [66, 166, 263]. In 

agreement with the cell culture work, transient hypoxia-ischaemia in younger rats [81], brief 

focal ischaemia in adult rats [25], and global ischaemia in gerbils [89] caused the loss of 

STEP61, and a concomitant rise of lower molecular weight STEP in the affected brain areas. 

Quite likely, STEP degradation is mediated by Ca2+-activated proteases, such as calpain; for 

example, the in vitro incubation of isolated PSDs with calpain causes STEP61 breakdown [81, 

166], while treatment with a calpain inhibitor (calpeptin) prevents glutamate-activated 

STEP61 cleavage [263]. Ischaemia also appears to reduce STEP levels at the transcriptional 

level by causing a rapid and significant reduction in its mRNA expression [25]. In addition, 

the exposure of cultured neurones to oxidative stress, using a free radical that undergoes 

increased production after ischaemia [4], results in greater oligomerisation of STEP61, which 

causes a reduction in its activity level [46]. Considered together, the data indicate that 

ischaemia initiates a series of different processes that reduce STEP activity, and thereby 

contributes to enhanced levels of tyrosine phosphorylation. 

5.3. The NMDAR as a specific substrate of ischaemia-mediated tyrosine 

phosphorylation 

5.3.1. Evidence to illustrate ischaemic alteration of GluN2 phosphotyrosine status 

The knowledge that ischaemia can bring about changes in the broad pattern of tyrosine 

phosphorylation, particularly of a glycoprotein with a molecular weight of 180 kDa, began 

to acquire additional significance after the identification of the GluN2B subunit as the major 

tyrosine phosphorylated, higher molecular weight glycoprotein associated with the post-

synaptic density [157]. Shortly thereafter, came the first direct demonstration that ischaemia 

could specifically alter the tyrosine phosphorylation of NMDA receptor subunits; in 

particular, for several hours after a brief period of global ischaemia in adult rats, Takagi et 

al. [225] observed a rapid and dramatic rise in tyrosine phosphorylation of hippocampal 

GluN2A and GluN2B subunits. Although the modified phosphorylation pattern of the 

subunits was still clear 24 h after the insult, the GluN2A subunit consistently displayed a 

degree of change several times greater than that observed for the GluN2B subunit. As well, 

the magnitude of the effect was substantially greater in the hippocampus than either the 

cerebral cortex, or the striatum. The seminal report showed that ischaemia can cause a sharp 

and sustained rise in NMDAR tyrosine phosphorylation that differentially affects the 

receptor’s constituent subunits and develops in an anatomically heterogeneous manner; in 

addition, the findings helped to influence a number of studies that confirmed ischaemia 

initiates cellular changes that ultimately modify the degree of tyrosine phosphorylation at 

GluN2 subunits (Table 1). 
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As noted, one of the first details to emerge regarding the pathological modification of 

NMDAR phosphorylation was the swift manner in which the change developed. 

Subsequent work revealed that within twenty minutes of reperfusion following a brief 

period of global ischaemia, a substantial rise in tyrosine phosphorylation of the GluN2A 

subunit could be detected [33, 34, 135]. As well, the magnitude of the GluN2A subunit 

modification was shown to increase during at least the first six hours of reperfusion, and 

was seen to slowly return to basal levels over 2-3 days [135, 228]. Using a similar in vivo 

model of ischaemia coupled with immunoprecipitation-based experiments, several groups 

confirmed a significant rise in the tyrosine phosphorylation of GluN2A subunits in either 

whole hippocampal homogenates [98, 136, 144, 226, 248], or CA1 homogenates [264] 

prepared within six hours of reperfusion.  

While an increase in tyrosine phosphorylation of the GluN2B subunit was also detected 

after ischaemia, those studies that examined both subunits tended to find that the effect 

upon the GluN2A subunit was more pronounced [16, 160, 225, 226, 228]. One exception, was 

a study that applied global ischaemia to gerbils; however, the variation may have been, in 

part, attributable to a species difference [271]. In contrast to adult animals, ischaemic 

injury in weanling rats (post-natal day 21) was found to affect tyrosine levels of the 

GluN2A and GluN2B subunits in a similar fashion, and was shown to have a significantly 

greater effect upon the GluN2B subunit in pre-weanling rats (post-natal day 7); as well, 

the change in phosphorylation appeared to be more transient, for the levels had returned 

to baseline within a day of reperfusion [82, 103]. While the effect of oxygen-glucose 

deprivation (OGD) upon cultured neurones tended to match well with the effect of in vivo 

ischaemia upon the GluN2A subunit [248], the application of OGD to acutely prepared 

hippocampal slices caused an apparent decrease in the level of tyrosine phosphorylation 

at both subunits [6, 26]; notably, Src protein levels have been shown to rise in 

hippocampal slices after OGD [9], which suggests that the unexpectedly reduced level of 

phosphorylation might be attributable to a comparatively greater elevation in the 

expression and/or activity of tyrosine phosphatases. 

In addition to an obvious effect upon GluN2 subunit phosphorylation at the cellular level 

(i.e., within whole homogenates of a brain region), several reports observed that 

ischaemia also clearly modified subunits located within synaptic compartments. For 

example, the immunoprecipitation of GluN2A and GluN2B subunits from post-synaptic 

densities after global ischaemia in the rat revealed a clear rise in tyrosine phosphorylation 

during the first six hours of reperfusion [34], while immunoblotting with antibodies 

directed against phosphotyrosine residues in the GluN2A (Y1387) and GluN2B (Y1472) 

subunits displayed a similar effect [16]. In agreement, several hours after transient 

restriction in blood supply to the rat cerebral cortex, tyrosine phosphorylation of both the 

GluN2A and GluN2B subunits was found to be increased in both post-synaptic densities 

and synaptosomes [160]. As well, the phosphotyrosine level of the GluN2B subunit in 

synaptosomes enriched from gerbil hippocampus was markedly increased within six 

hours of reperfusion after global ischaemia [179]. 
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Table 1. Studies examining GluN2 tyrosine phosphorylation following experimental ischaemia. 4VO, 

four vessel occlusion; BCAO, bilateral carotid artery occlusion; CCAO, common carotid artery 

occlusion; DIV, days in vitro; OGD, oxygen-glucose deprivation; PND, post-natal day; pY, 

phosphotyrosine; REP, reperfusion 
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5.3.2. Interaction of GluN2 with synaptic elements may influence its phosphorylation 

Along with changes in the synaptic concentration and/or activity of those tyrosine kinases 

and phosphatases that act upon the NMDA receptor, the increased degree of tyrosine 

phosphorylation observed at GluN2 subunits after an ischaemic insult may also be 

attributable to changes in how the receptor directly interacts with SFKs. In particular, there 

may be greater association between phosphotyrosine sequences within GluN2 subunits and 

the segment of SFKs containing SH2 domains, which are relatively short amino acid 

modules believed to be necessary to permit the interactions that underlie many tyrosine 

based signalling cascades [150, 243]. Notably, ischaemia-mediated tyrosine phosphorylation 

was found to increase, by approximately twofold, the association of Src and Fyn with both 

GluN2A and GluN2B during reperfusion [226]. In agreement, a number of subsequent 

studies also observed greater association of SFKs with GluN2A during the first six hours 

following global ischaemia in adult rats [97, 98, 135, 248, 273]. As well, hypoxia-ischaemia 

applied to neonatal rats [103] and OGD of cultured neurones prepared from late-stage 

embryonic animals [268] also lead to greater co-immunoprecipitation of SFKs and the 

GluN2A subunit. Despite being examined to a lesser degree, the interaction between 

GluN2B and SFKs has also been clearly demonstrated after neonatal hypoxia-ischaemia 

[103], following global ischaemia in adult rats [179], and in response to global ischaemia 

within adult gerbils [271].  

An additional component that may facilitate ischaemia-mediated changes in GluN2 

phosphorylation is its enhanced interaction with a prominent post-synaptic scaffolding 

protein. The post-synaptic density 95 kDa (PSD-95) protein is a member of the membrane-

associated guanylate kinase (MAGUK) family, and functions as an integral scaffolding 

protein in excitatory post-synaptic terminals [106, 265]. Like other MAGUK relatives, PSD-

95 displays a modular structure that consists of three N-terminal PDZ domains (PDZ 1-3), 

an SH3 domain, and C-terminal guanylate-kinase domain. Through the PDZ1/2 domains, in 

particular, PSD-95 has been shown to bind with a conserved ES(E/D)V amino acid sequence 

located in the distal portion of GluN2 C-termini [113, 167], which permits PSD-95 to 

influence gating and surface expression of the receptor [39, 132]. A series of studies that 

employed multiple co-immunoprecipitation experiments helped to establish that an 

enhanced association of PSD-95 with the GluN2A subunit develops during the first few 

hours of post-insult reperfusion [33, 97, 144, 248, 273]. As well, an increased degree of 

binding with PSD-95 has been displayed by GluN2A subunits after OGD with cultured 

neurones [268] and by hippocampal GluN2B subunits within a few hours after global 

ischaemia in the gerbil [271]. 

Ischaemia clearly enhanced the interaction of GluN2 subunits with both SFKs and PSD-95, 

and increased the level of interaction between SFKs and PSD-95 [33, 49, 97, 144], presumably 

at its SH3 domain. As well, SFK-mediated tyrosine phosphorylation of GluN2 fusion 

proteins augmented their binding to PSD-95 [197], and co-expressing PSD-95 with the 

GluN2A subunit improved its ability to be phosphorylated by SFKs [231]. Considered 

together, these data suggest that the post-ischaemic increase of GluN2 tyrosine 
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phosphorylation (section 5.3.1) is attributable to a pathologically heightened and, 

potentially, self-amplifying degree of interaction among GluN2 subunits, PSD-95, and SFKs. 

Our understanding of how the tripartite complex operates following ischaemia has been 

greatly aided by a set of elegant studies that used molecular level approaches to alter its 

assembly. Reducing by approximately one-third the hippocampal expression of PSD-95 

protein, through the repeated intracerebroventricular injection of antisense oligonucleotides, 

sharply attenuated both the post-ischaemic rise in GluN2A tyrosine phosphorylation and 

the elevated binding of SFKs with the GluN2A subunit [98]. In addition, adenoviral-

mediated overexpression of the PSD-95 PDZ1 domain was able to nearly eliminate 

ischaemia-mediated changes in GluN2A phosphorylation, and prevented the expected 

increased interactions between the GluN2A subunit, PSD-95, and Src [248]. 

5.4. Ischaemic changes that may contribute to increased SFK activation   

The elevation of tyrosine phosphorylation within neurones, in general, and at GluN2 

subunits, in particular, would seem to be a consistent feature in the array of changes that 

follows cerebral ischaemia. Proximally, the ischaemia-mediated interactions of a complex 

formed between GluN2 subunits, synaptic scaffolding proteins, and members of the SFKs 

provide at least one working explanation for the increased pattern of phosphorylation; 

however, the fashion in which these components begin to assemble is still unclear. A 

starting point in understanding, from a slightly more distal perspective, the reason for 

heightened GluN2 phosphotyrosine levels may be to focus on SFKs; specifically, to ask why 

might SFK activity rise after ischaemia? Fortunately, the answer to the question is beginning 

to take shape, and appears to involve the activity of two other, putatively interconnected, 

kinases. The first one is protein kinase C (PKC), which acts upon serine-threonine residues 

and exists in at least ten different isoforms, most of which are heterogeneously distributed 

within the brain [229]. While the various members of the PKC family have different 

mechanisms underlying their activation, many of them are stimulated by changes in Ca2+ 

dynamics and the generation of free radicals [27], which are key consequences following 

from the over-activation of NMDARs that characterises ischaemic injury (section 1). Also, 

the translocation of PKC to the post-synaptic density after ischaemia has been well 

established [35, 151]. 

The signalling cascade initiated by the stimulation of PKC is quite diverse, however, the 

ability of the activated enzyme to enhance NMDA receptor function [147, 260] and surface 

expression [118], is, to a large extent, attributable to its engagement of SFK activity. For 

example, the ability of PKC activators to potentiate NMDA-evoked currents in dissociated 

neurones was blocked by both tyrosine kinase inhibitors and Src-specific blocking peptides; 

as well, the PKC-dependent upregulation of the receptor was absent in neurones isolated 

from mice with a targeted deletion of the Src gene [140]. In addition, the stimulation of PKC 

activity in hippocampal slices was able to dramatically increase the level of phosphotyrosine 

detected within immunoprecipitated GluN2A and GluN2B subunits [73]. Direct support for 

the possibility that a PKC-dependent tyrosine kinase signalling cascade contributes to 
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ischaemic changes in GluN2 tyrosine phosphorylation was provided by a study wherein a 

PKC inhibitor administered immediately after an ischaemic challenge was able to reduce, by 

approximately half, Src Y416 phosphorylation, general GluN2A tyrosine phosphorylation, 

and GluN2B Y1472 phosphorylation [35]. 

The second kinase that may serve to regulate post-ischaemic SFK activity is the proline-rich 

tyrosine kinase 2, which is a member of the focal adhesion kinase family and highly 

expressed within the brain [62, 259]. Through mechanisms that are still being uncovered, 

Pyk2 stimulation (permitted by phosphorylation of its Y402 residue) can be initiated 

through either depolarisation-induced Ca2+ influx, or PKC activation [101, 129, 212]; notably, 

the level of total and phosphorylated Pyk2 in the post-synaptic density increases sharply 

less than an hour after post-ischaemic reperfusion has begun [34, 35]. Upon 

phosphorylation, Pyk2 has been observed to interact with the Src SH2 domain to form a 

complex that enhances Src function [48, 101, 122]. In addition, the degree of interaction 

between Pyk2 and GluN2A is quickly amplified in the hippocampus during reperfusion 

after global ischaemia in either rat [135, 145], or gerbil [271]. Together, the data strongly 

suggest that ischaemia actuates Pyk2 and enhances its interaction with GluN2 subunits, 

which, in turn, likely allows Pyk2 to bind and activate the SFKs that would also have been 

drawn into a complex with NMDA receptors (figure 4). 

 

Figure 4. Model summarising the proximal steps leading to the ischemia-mediated increase in tyrosine 

phosphorylation of the NMDA receptor, and the possible association of its post-translational 

modification with upstream processes leading to cell death. 

Direct support for Pyk2 as a critical component in the pathologic increase of GluN2 

phosphorylation has been provided by a set of elegant studies that used either 

pharmacologic, or genetic approaches to downregulate the kinase’s activity. The first study 

used lithium chloride (LiCl), which has been shown to protect neurones from ischaemic 
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injury [200]. The application of LiCl for several days to cultured cortical neurones was able 

to dramatically reduce the basal level of both activated Src and phosphorylation at Y1472 of 

GluN2B [90, 91]; more importantly, administration of LiCl to animals for several days prior 

to global ischaemia was able to reduce insult-mediated increases in tyrosine 

phosphorylation of GluN2A [144]. As well, pre-ischaemic LiCl was observed to reduce both 

the phosphorylation of Y402 of Pyk2 and Y416 of Src, and to diminish the association of both 

Pyk2 and Src with GluN2A that generally accompanies ischaemic reperfusion [145]. The 

second study involved the intracerebroventricular injection of Pyk2 antisense 

oligonucleotides, which lead to a reduction of nearly one-quarter in the enzyme’s protein 

expression within the hippocampus [136]. Animals in which Pyk2 levels had been 

downregulated displayed not only very little post-ischaemic change in the level of GluN2A 

tyrosine phosphorylation, but also very little change in the activity of Pyk2 and Src and their 

ability to be co-immunoprecipitated with GluN2A. 

6. Conclusions 

A short period of time after the circulation of blood to a region of the brain is substantially 

reduced, a series of escalating changes is initiated that can very quickly place neurones on a 

path leading to cell death. One of the principal elements in the pathologic cascade is the 

excessive stimulation of the excitatory NMDA receptor, which initiates a broad array of 

potentially cytodestructive changes; most germanely, a disruption in the usually strict 

regulation of the intracellular calcium ion concentration. One consequence of the elevated 

level of internal Ca2+ is the initiation of an enzyme cascade that involves either the direct, or 

indirect (through the serine-threonine PKC) stimulation of the tyrosine kinase Pyk2, 

followed by the subsequent activation of SFK members that go on to increase the tyrosine 

phosphorylation of GluN2 subunits. Notably, the post-translational modification of the 

GluN2 subunits is likely both a consequence, and, potentially, a cause of the post-ischaemic 

enhancement of the degree of interaction between the subunits and Pyk2, SFKs, and PSD-95. 

One important outcome of the ischaemia-mediated increase of GluN2 tyrosine 

phosphorylation that is quite likely concerns the enhancement of NMDA receptor gating 

properties and surface expression, which would serve as a form of signal amplification with 

the undesirable effect of contributing to increased cell death. 

Preliminary support for the possibility that elevated NMDA receptor phosphorylation may 

contribute to post-ischaemic neuronal loss is found in a collection of studies that have 

sought to manipulate the cellular level of tyrosine phosphorylation for a neuroprotective 

effect. The first report in the area revealed that the intracerebral injection of specific 

inhibitors of protein tyrosine kinases minutes prior to a brief period of global ischaemia was 

able to prevent the significant degree of neuronal loss that would normally have been seen 

within the CA1 sub-field of the gerbil hippocampus a week after the insult [107]. 

Subsequently, the intraperitoneal injection of a selective inhibitor of Src shortly after 

forebrain ischaemia was found to significantly reduce not only the usual increases in Src 

activity and general tyrosine phosphorylation, but also the level of cell death observed in the 
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hippocampus four days after the insult [171]. A group of successive studies observed that 

pretreatment of rats with PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-

d]pyrimidine), a selective SFK inhibitor, 0.5 h prior to global ischaemia was able to reduce 

by greater than half the usual increase in phosphorylated Src [130, 273] and GluN2A 

tyrosine phosphorylation [96, 273] seen after six hours of reperfusion; as well, cell density of 

the hippocampal CA1 sub-field five days after the insult was approximately 7-8 fold greater 

in the treated animals [96, 130, 273]. In addition, the injection of PP2 into neonatal mice 

shortly after hypoxia-ischaemia was able to reduce by about a third the degree of 

hippocampal cell loss observed several days after the insult [103]. 

By using tyrosine kinase inhibitors to control the level of GluN2 tyrosine phosphorylation 

after an ischaemic challenge, the excessive NMDA receptor activation that plays a critical 

upstream role in the resulting cell death may be, at least partially, addressed. As a result, a 

foundation may begin to be constructed that will serve as inspiration for the careful 

development of new approaches to address the discouraging absence of treatments for brain 

injury. Regardless of the outcome displayed by future studies that explore how 

understanding the causes and consequences of NMDA receptor tyrosine phosphorylation 

may be applied therapeutically, the activity will undoubtedly continue to add important 

details to our understanding of how the phosphorylation of brain proteins influences 

neuronal communication and synaptic dysfunction 
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