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1. Introduction 

Clostridium perfringens (C. perfringens) is a toxin-producing anaerobic Gram-positive 

bacterium, which is well known for its role in human tissue infections and food poisoning. It 

is readily isolated from soil and a component of normal human intestinal and vaginal flora 

in many individuals. Apart from the classic clostridial myonecrosis of gas gangrene, C. 

perfringens can be responsible for a range of other clinical scenarios including sepsis, 

aspiration pneumonia, brain abscess, and enteritis necroticans. The potent exotoxins 

produced by various strains of C. perfringens are central to their effectiveness as pathogens, 

and include four major toxins used in strain classification: a phospholipase C (alpha-toxin, 

PLC), two pore-forming toxins (beta and epsilon toxins); and an ADP-ribosylation toxin 

(iota toxin). C. perfringens gas gangrene is one of the most fulminant necrotizing infections 

affecting humans. The infection can become well established in traumatized tissues in as 

little as 6-8 h and the destruction of adjacent healthy muscle can progress several inches per 

hour despite appropriate antibiotic coverage. Shock and organ failure occur in 50% of 

patients, and 40% of these individuals die. Even with modern medical advances and 

intensive care regimens, the centuries-old practice of radical amputation on an emergent 

basis remains the single best treatment. Histologically, this infection is characterized by 

widespread destruction of muscle and the absence of polymorphonuclear leukocytes at the 

site of infection. Instead, leukocytes accumulate within adjacent vessels. 

C. perfringens alpha-toxin is the major virulence factor in gas gangrene with inflammatory 

myopathies (Williamson and Titball 1993, Awad et al. 1995). The toxin, which exhibits 

phospholipase C (PLC) and sphingomyelinase activities, causes hemolysis, necrosis, and 

death, and the activation of neutrophils and release of cytokines (Sakurai, Nagahama and 

Oda 2004). Bryant reported that the intramuscular injection of alpha-toxin caused a rapid 
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and irreversible decline in skeletal muscle blood flow due to toxin-induced intravascular 

aggregates of plates, leukocytes and fibrin (Bryant et al. 2000a, Bryant et al. 2000b). 

Neutrophils in these aggregates often bordered the endothelium but all remained 

intravascular (Bryant et al. 2000a). These findings suggested that the large heterotypic 

aggregates of platelets and leukocytes generated by alpha-toxin also contributed to 

impairment of the tissue inflammatory response. We have reported that alpha-toxin-

induced activation of endogenous PLC and sphingomyelinase via a pertussis toxin (PT)-

sensitive GTP-binding protein (Gi) plays an important role in the hemolysis of rabbit and 

sheep erythrocytes, respectively (Ochi et al. 1996, Ochi et al. 2004, Oda et al. 2008). 

Recently, we revealed that the tyrosine kinase A (TrkA) receptor plays an important role in 

the release of superoxides and cytokines (Oda et al. 2006, Oda et al. 2008). This review will 

present findings about the signal transduction via TrkA receptor induced by alpha-toxin 

and summarize information about its likely role in inflammatory disease, especially septic 

shock.  

2. Role of TrkA on a inflammation induced by alpha-toxin 

2.1. Signal transduction via TrkA receptor 

The TrkA receptor is a 140-kDa transmembrane protein encoded by a proto-oncogene 

located on chromosome 1 (Martin-Zanca, Hughes and Barbacid 1986). The family of Trk 

receptor tyrosine kinases consists of TrkA, TrkB and TrkC. While these family members 

have highly conserved sequences, they are activated by different neurotrophins: TrkA by 

nerve growth factor (NGF), TrkB by Brain-derived neurotrophic factor (BDNF) or 

neurotrophin 4 (NT4), and TrkC by NT3. TrkA regulates proliferation and is important for 

development and maturation of the nervous system (Pierotti and Greco 2006). This receptor 

comprises a tyrosine-kinase domain in its intra-cytoplasmic region and five extracellular 

domains, including two immunoglobulin-like domains involved in NGF binding and 

responsible for the specific selectivity to bind NGF (Wiesmann et al. 1999). In humans, the 

TrkA receptor is expressed on cells throughout the nervous system (Muragaki et al. 1995) as 

well as on structural cells and other non-neuronal cells in the immune and neuroendocrine 

systems (Levi-Montalcini et al. 1995, Aloe et al. 1997, Bonini et al. 2002, Levi-Montalcini 

1987). When NGF binds to the TrkA receptor, it induces receptor homodimerization, which 

initiates kinase activation and transphosphorylation (Kaplan et al. 1991). This kinase 

activation involves small G proteins (Ras, Rac, Rap-1), PLCγ, protein kinase C (PKC) and 

phosphatidylinositol-3 kinase (PI3K) in neural cells (Obermeier et al. 1993b, Obermeier et al. 

1993a, Melamed et al. 1999, York et al. 2000, Wu, Lai and Mobley 2001). Phosphorylation at 

Tyr490 is required for association with Shc and activation of the Ras-MAP kinase cascade. 

Residues Tyr674/675 lie within the catalytic domain, and phosphorylation at this site reflects 

TrkA kinase activity (Segal and Greenberg 1996, Stephens et al. 1994, Obermeier et al. 1993a, 

Obermeier et al. 1993b, Yao and Cooper 1995). Point mutations, deletions and chromosomal 

rearrangements (chimeras) cause ligand-independent receptor dimerization and activation 

of TrkA. 
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The mitogen-activated protein kinase (MAPK) pathways are activated next: extracellular-

regulated protein kinase (ERK) by the small G proteins; ERK, p38 and JUN-N-terminal 

kinase (JNK) MAPK by PKC; and p38 and JNK by PI3K (Kaplan and Miller 1997). PI3K in 

turn induces activation of protein kinase B (PKB or Akt) and PKCξ (York et al. 2000)(Fig. 1). 

 

Figure 1. Signal transduction pathways of the TrkA receptor 

2.2. Mechanism for the superoxide generation induced by alpha-toxin 

The generation of superoxide in neutrophils has been reported to be stimulated by zymosan, 

12-O-tetradecanoylphorbol 13-acetate (TPA), Ca2+ ionophores, and bacterial chemotatic 

peptides (Babior 1999). The signal transduction process leading to the stimulation has been 

studied extensively using N-formyl-methionyl-leucyl-phenylalanine (fMLP) (Kusunoki et al. 

1992), platelet-activating factor (Yasaka, Boxer and Baehner 1982), and TPA (Nick et al. 1997, 

Pongracz and Lord 1998). It has been reported that these stimuli activated MAPK or PI3K in 

neutrophils (Shenoy, Gleich and Thomas 2003, Yamamori et al. 2004). Furthermore, these 

studies have demonstrated that the interaction of the ligands with receptors on neutrophils 

activates endogenous PLC with the formation of diacylglycerol (DG), which activates PKC, 

and inositol 1, 4, 5-trisphosphate (IP3), inducing the release of Ca2+ from the endoreticulum, 

and that these products act synergistically to generate superoxide. Several studies also 

reported that phosphorylation of tyrosine kinases and activation of phospholipase D (PLD) 

were closely related to the generation of superoxide in neutrophils stimulated with agonists 
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(Garland 1992, Mitsuyama, Takeshige and Minakami 1993) and that activation of PLD 

resulted in the formation of PA, which was linked to the activation of NADPH oxidase 

(Bellavite et al. 1988, Olson, Tyagi and Lambeth 1990). We revealed that alpha-toxin-induced 

generation of superoxide is closely related to the activation of endogenous PKCθ via a 

combination of two events: production of DG on activation of PLC through a PT-sensitive 

GTP-binding protein and activation of phosphatidylinositide kinase 1 (PDK1) through the 

TrkA receptor (Oda et al. 2006). 

There are three classes of PKC isotypes: classical PKC isotypes (PKCα, -β, and -γ) which 

have a C1 and C2 domain, bind DG, 1-oleoyl-2-acetyl-3-phosphoglycerol (OAG) and TPA, 

and are regulated by DG and Ca2+; novel PKC isotypes (PKCδ, -ε, -η, and -θ), which have a 

C1 domain and novel C2 domain and are regulated by DG but not Ca2+; and atypical 

isotypes (ζ/λ), which do not bind DG and are not regulated by these classical ligands (Le 

Good et al. 1998). Alpha-toxin induced phosphorylation of PKCθ and PKCζ/λ, and the 

generation of superoxide induced by the toxin was inhibited by rottlerin and calphostin C, 

an inhibitor of PKCθ. We reported that the formation of DG induced by alpha-toxin in 

rabbit neutrophils plays an important role in the generation of superoxide (Ochi et al. 2002). 

It therefore appears that the toxin-induced generation of superoxide is dependent on the 

activation of PKCθ, through binding of PKCθ phosphorylated by PDK1 to DG (Parekh, 

Ziegler and Parker 2000, Toker and Newton 2000). PKCθ has been reported to play an 

important role in activation of the protein 1 and NF-κB signaling pathway in T cells, 

production of interleukin-2, and apoptosis (Altman, Isakov and Baier 2000, Fan et al. 2004, 

Villalba et al. 1999, Villunger et al. 1999). Our data may provide clues to the role of PKCθ in 

neutrophils. 

We reported that the alpha-toxin-stimulated generation of superoxide was related to the 

formation of DG through activation of endogenous PLC by a PT-sensitive GTP-binding 

protein in rabbit neutrophils (Ochi et al. 2002). U73122, an inhibitor of endogenous PLC, 

blocked the toxin-induced generation of superoxide and formation of DG in the cells, 

supporting that the toxin-induced increase in superoxide is dependent on the formation of 

DG by endogenous PLC. However, when the level of OAG incorporated into the cells was 

the same as the level of DG in the cells treated with 25 nM of the toxin, the level of OAG did 

not induce superoxide generation in the absence of the toxin but did in the presence of a 

near threshold dose (2.5 nM) of the toxin which did not induce production of DG. The result 

shows that the toxin-induced production of superoxide requires not only the formation of 

DG, but also the activation of other events. 

It has been reported that the PI3K signaling pathway has an important role in several 

effector functions including the generation of superoxide (Yamamori et al. 2004). PI3K is 

known to generate phosphatidylinositol 3, 4, 5-trisphosphate (PIP3), which is recognized by 

a pleckstrin homology domain identified as a specialized lipid-binding module (Le Good et 

al. 1998). Several papers have reported that PDK1 requires PIP3 as its activator for effective 

catalytic activity (Le Good et al. 1998). Le Good et al. reported that there is a cascade 

involving PI3K, PDK1, and various members of the PKC superfamily in signal transduction 

(Le Good et al. 1998). Furthermore, the function of PKC family members is reported to 
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depend on the phosphorylation of an activation loop by PDK1 (Le Good et al. 1998). 

LY294002 and wortmannin, both PI3K inhibitors, inhibited alpha-toxin-induced generation 

of superoxide and phosphorylation of PDK1 but did not affect the toxin-induced formation 

of DG. The result shows that the toxin-induced activation of PI3K occurs upstream of the 

phosphorylation of PDK1, which is an important step in the toxin-induced generation of 

superoxide. It is likely that the toxin-induced phosphorylation of PDK1 is a process 

independent of the toxin-induced formation of DG. 

Tyrosine phosphorylation is thought to be crucial to the regulation of effector functions in 

neutrophils (Rollet et al. 1994). It is known that stimuli that induce tyrosine kinase activity in 

cells evoke the generation of PIP1, PIP2, and PIP3. This tyrosine kinase activity is linked to 

the NGF receptors with intrinsic tyrosine kinase activity. Kannan et al. reported that NGF 

enhances the generation of superoxide induced by TPA in murine neutrophils (Kannan et al. 

1991). Ehrhard et al. reported that human monocytes express the trk proto-oncogene, 

encoding the signal-transducing receptor unit for NGF, and that the interaction of NGF with 

monocytes triggers respiratory burst activity (Ehrhard et al. 1993). NGF, which did not 

induce the generation of superoxide in rabbit neutrophils, potentiated the events triggered 

by the toxin and caused superoxide to form in the presence of OAG, suggesting that a 

combination of the production of DG and stimulation of the NGF receptor induces severe 

activity in the generation of superoxide. The TrkA receptor was detected in rabbit 

neutrophils and found to be phosphorylated when the cells were treated with the toxin. 

Furthermore, immunoprecipitation using the anti-TrkA receptor antibody revealed direct 

binding of the toxin to the TrkA receptor. In addition, the antibody inhibited the toxin-

induced generation of superoxide. These observations indicate that the interaction of alpha-

toxin with TrkA receptors is important to the production of superoxide. In rabbit 

neutrophils, K252a, a TrkA inhibitor, and LY294002 inhibited the toxin-induced generation 

of superoxide and phosphorylation of PDK1 within specific concentration ranges, but PP2, a 

Src inhibitor, and AG1478, a epidermal growth factor receptor inhibitor, did not, supporting 

the finding that the TrkA receptor is involved in the toxin-induced increase in superoxide. 

The results obtained with the anti-TrkA antibody, LY294002, and K252a show that the 

activation of PI3K through direct binding of the toxin to the TrkA receptor results in 

production of PIP3, which activates PDK1. In addition, PT inhibited the alpha-toxin-induced 

generation of superoxide and formation of DG, but not phosphorylation of PDK1, 

suggesting that a PT-sensitive GTP-binding protein plays a crucial role in the coupling to 

endogenous PLC, but not phosphorylation of PDK1. These observations indicate that the 

toxin independently induces activation of both endogenous PLC via a PT-sensitive GTP-

binding protein and PDK1 via the TrkA receptor. 

NGF, which binds to the TrkA receptor, is reported to be required for the differentiation and 

survival of sympathetic and some sensory and cholinergic neuronal populations (Howe et 

al. 2001). Furthermore, it has been reported that NGF is involved in inflammatory responses, 

an increase in mast cells in neonatal rats (Woolf et al. 1996), the degranulation of rat 

peritoneal mast cells (Woolf et al. 1996), and the differentiation of specific granulocytes 

(Kannan et al. 1991). The injection of C. perfringens cells or alpha-toxin into tissues is known 
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to cause inflammation. Therefore, it is possible that the activation of the TrkA receptor by 

alpha-toxin is related to inflammation caused by C. perfringens in humans and animals. 

H148G induced phosphorylation of PKCθ, but not production of DG, suggesting that the 

enzymatic activity of the toxin is essential for activation of endogenous PLC, but not 

activation of the TrkA receptor. It has been reported that binding of the C-domain, which 

does not contain the enzymatic site, to erythrocytes is important for the hemolysis induced 

by the toxin (Nagahama et al. 2002). It therefore is possible that the C-domain, the binding 

domain of alpha-toxin, plays a role in the binding of the toxin to the TrkA receptor and in 

the activation of signal transduction via the TrkA receptor. 

Several studies have reported that the activation of PKC by various stimuli results in the 

generation of superoxide via the activation of MAPK systems (Coxon et al. 2003, Dewas et 

al. 2000, McLeish et al. 1998, Zu et al. 1998). K252a and U73122 inhibited the toxin-induced 

phosphorylation of PKCθ and ERK1/2 and generation of superoxide, suggesting that the 

toxin-induced production of superoxide is linked to the stimulation of the MAPK system via 

the activation of PKCθ. The toxin causes phosphorylation of ERK1/2, but not p38 and 

SAPK/JNK, implying that the process is dependent on a MAPK system containing MEK1/2 

and MAPK/ERK1/2, but not systems containing p38 and SAPK/JNK. 

It has been reported that PA directly or indirectly activated NADPH oxidase in a cell-free 

system of neutrophils (Erickson et al. 1999) and that PKCδ regulates phosphorylation of 

p67phox in human monocytes (Zhao et al. 2005). PKC also has been reported to activate 

directly NADPH oxidase (Johnson et al. 1998). However, PD98059 almost completely 

inhibited the toxin-induced production of superoxide near the inhibitory threshold dose of 

the inhibitor. Thus, it is unlikely that PA and PKC directly activate NADPH oxidase under 

the conditions used here. 

We have shown that alpha-toxin induces formation of DG through the activation of 

endogenous PLC by a PT-sensitive GTP-binding protein and phosphorylation of PDK1 via 

stimulation of the TrkA receptor, so that DG and PDK1 synergistically activate PKCθ, and 

that the activation of PKCθ stimulates generation of superoxide through MAPK-associated 

signaling events in rabbit neutrophils (Fig. 2). 

2.3. Mechanism for the cytokine release induced by alpha-toxin 

Cytokines are immunoregulatory peptides with a potent inflammatory action, mediating the 

immune/metabolic response to an external noxious stimulus and fueling the transition from 

sepsis to septic shock, multiple organ dysfunction syndromes, and/or multiple organ failure 

(Tracey et al. 1987, Dinarello 2004, Riedemann, Guo and Ward 2003). It is thought that 

synergistic interactions between cytokines can cause or attenuate tissue injury (Calandra, 

Bochud and Heumann 2002). TNF-α, which is released early from neutrophils and 

macrophages, is one of the important cytokines involved in the pathophysiology of sepsis 

(Tracey et al. 1987, Lum et al. 1999). TNF-α-induced tissue injury is largely mediated 

through neutrophils, that respond by producing elastase, superoxide ion, hydrogen  
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Figure 2. Signaling events involved in alpha-toxin-activated generation of superoxide 

peroxide, sPLA2, PAF, leukotriene B1, and thromboxane A2 (Aldridge 2002). IL-1 stimulates 

the synthesis and release of prostagrandins, elastases, and collagenases and transendothelial 

microvascular cells, which respond by releasing the powerful neutrophil-stimulating agents, 

PAF and IL-8 (Leirisalo-Repo 1994). IL-1 and TNF-α are synergistic and share many 

biological effects in sepsis (Herbertson et al. 1995). 

Anti-TNF-α antibody inhibited the death of mice induced by alpha-toxin. Furthermore, 

TNF-α-deficient mice were resistant to alpha-toxin. These observations suggest that the 

lethal effect of alpha-toxin is closely related to the release of TNF-α into the bloodstream. 

Stevens et al. and Bunting et al. suggested that alpha-toxin contributes indirectly to shock by 

stimulating production of endogenous mediators such as TNF-α and platelet-activating 

factor (Bunting et al. 1997, Stevens and Bryant 1997). It therefore appears that TNF-α 

released by alpha-toxin is important in enhancing the toxic actions of alpha-toxin in vivo. 

Consequently, inhibitors for release and expression of TNF-α may be worth pursuing as a 

novel therapeutic approach to the treatment of gas gangrene and sepsis caused by C. 

perfringens. 

Cytokines such as the pro-inflammatory TNF-α, interleukin-1β (IL-1β) or transforming 

growth factor-β (TGF-β), increase the synthesis of NGF in airway structural cells. This 

stimulation has been evidenced in vitro in human pulmonary fibroblasts (Olgart and 

Frossard 2001, Micera et al. 2001), A549 epithelial cells (Pons et al. 2001) and bronchial 

smooth muscle cells (Freund et al. 2002). Studies also show that pro-inflammatory cytokines 

can act in concert to stimulate additional NGF secretion: TNF-α, for example, increases the 

secretion of NGF induced by IL-1β and interferon γ (IFN-γ) in fibroblasts (Hattori et al. 

1994) and by interleukin-4 (IL-4) in astrocytes (Brodie et al. 1998). NGF synthesis in 
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inflammatory conditions has also been demonstrated in vivo: elevated NGF concentrations 

are observed in cutaneous inflammation (Safieh-Garabedian et al. 1995) and in asthmatic 

airways (Olgart and Frossard 2001, Kassel, da Silva and Frossard 2001, Virchow et al. 1998). 

Taken together, these results suggest that pro-inflammatory cytokines, which are present at 

high levels in the airways of patients with asthma (Tillie-Leblond et al. 1999), might 

contribute to the elevated levels of NGF synthesis. 

Corticosteroids are well known for their anti-inflammatory properties, particularly in 

asthmatic airways. Numerous studies report that the glucocorticoids dexamethasone and 

budesonide affect NGF expression. They cause a significant reduction in the increased NGF 

expression induced by pro-inflammatory cytokines; in one study, this action was shown to 

result from the repression of NGF gene transcription in endoneural fibroblasts from the rat 

sciatic nerve (Lindholm et al. 1990). Olgart and Frossard have reported that glucocorticoid 

treatment decreases the NGF secretion that the pro-inflammatory cytokines IL-1β and TNF-

α stimulate in cultures of human pulmonary fibroblasts (Olgart and Frossard 2001) and in 

A549 epithelial cells (Pons et al. 2001). 

These results suggested that the initial release of pro-inflammatory cytokines induced by 

alpha-toxin in vivo leads to the production of NGF, and the NGF released synergistically 

causes systemic inflammation such as sepsis and shock via activation of the TrkA receptor 

(Fig. 3).  

 

Figure 3. Alpha-toxin-induced release of pro-inflammatory cytokines and NGF 



 
Role of Tyrosine Kinase A Receptor (TrkA) on Pathogenicity of Clostridium perfringens Alpha-Toxin 351 

3. Conclusion 

C. perfringens alpha-toxin, the main agent involved in the development of gas gangrene and 

septicemia, induces death, hemolysis, and the activation of macrophages and neutrophils. 

The toxin activated the MAPK-associated signal transduction from phospholipid 

metabolism and phosphorylation of TrkA. Penicillin is known to be highly effective in 

preventing the growth of microorganisms. In conclusion, treatment with TrkA inhibitors 

(tyrosine kinase inhibitors) and high doses of penicillin would be effective against diseases 

caused by C. perfringens. 
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