
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 3

Electronic Properties of Deformed Graphene
Nanoribbons

Guo-Ping Tong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51348

1. Introduction

As early as 1947, the tight-binding electronic energy spectrum of a graphene sheet had been in‐
vestigated by Wallace (Wallace, 1947). The work of Wallace showed that the electronic proper‐
ties of a graphene sheet were metallic. A better tight-binding description of graphene was given
by Saito et al. (Saito et al., 1998). To understand the different levels of approximation, Reich et al.
started from the most general form of the secular equation, the tight binding Hamiltonian, and
the overlap matrix to calculate the band structure (Reich et al., 2002). In 2009, a work including
the non-nearest-neighbor hopping integrals was given by Jin et al. (Jin et al., 2009).

It is common knowledge that a perfect grphene sheet is a zero-gap semiconductor (semime‐
tal) that exhibits extraordinarily high electron mobility and shows considerable promise for
applications in electronic and optical devices, high sensitivity gas detection, ultracapacitors
and biodevices. How to open the gap of graphene has become a focus of the study. Early in
1996, Fujita et al. started to study the electronic structure of graphene ribbons (Fujita et al.,
1996; Nakada et al., 1996) by the numerical method. The armchair shaped edge ribbons can
be either semiconducting (n=3m and n=3m+1, where m is an integer) or metallic (n=3m+2) de‐
pending on their widths, i. e., on their topological properties. First-principles calculations
showed that the origin of the gaps for the armchair edge nanoribbons arises from both quan‐
tum confinement and the deformation caused by edge dangling bonds (Son et al., 2006;
Rozhkov et al., 2009). This result implies that the energy gap can be changed by deforma‐
tion. In 1997, Heyd et al. studied the effects of compressive and tensile, unaxial stress on the
density of states and the band gap of carbon nanotubes (Heyd et al., 1997). Applying me‐
chanical force (e.g., nanoindentation) on the graphene can lead to a strain of about 10%(Lee
et al., 2008). Xiong et al. found that engineering the strain on the graphene planes forming a
channel can drastically change the interfacial friction of water transport through it (Xiong et
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al., 2011). Density functional perturbation theory is a well-tested ab initio method for accu‐
rate phonon calculations. Liu et al. (Liu et al., 2007) studied the phonon spectra of graphene
as a function of uniaxial tension by using this theory. Edge stresses and edge energies of the
armchair and zigzag edges in graphene also were studied by means of the theory (Jun,
2008). Jun found that both edges are under compression along the edge and the magnitude
of compressive edge stress of armchair edge is larger than that of zigzag edge. By simula‐
tions of planar graphene undergoing in-plane deformations, Chung (Chung, 2006) found
that crystal structures are different from the usual hexagonal configuration. The thermody‐
namic or kinetic character of the rearrangement was found to depend on the macroscopic
straining direction. Neek-Amal et al. (Neek-Amal et al., 2010) simulated the bending of rec‐
tangular graphene nanoribbons subjected to axial stress both for free boundary and support‐
ed boundary conditions. Can et al. (Can et al., 2010) applied density-functional theory to
calculate the equilibrium shape of graphene sheets as a function of temperature and hydro‐
gen partial pressure. Their results showed that the edge stress for all edge orientations is
compressive. Shenoy et al. (Shenoy et al., 2008) pointed out that edge stresses introduce in‐
trinsic ripples in freestanding graphene sheets even in the absence of any thermal effects.
Compressive edge stresses along zigzag and armchair edges of the sheet cause out-of-plane
warping to attain several degenerate mode shapes and edge stresses can lead to twisting
and scrolling of nanoribbons as seen in experiments. Marianetti et al. (Marianetti et al., 2010)
reveals the mechanisms of mechanical failure of pure graphene under a generic state of ten‐
sion at zero temperature. Their results indicated that finite wave vector soft modes can be
the key factor in limiting the strength of monolayer materials. In the chemical activity of gra‐
phene, de Andres et al. (de Andres et al., 2008) studied how tensile stress affects σand π
bonds and pointed out that stress affects more stronglyπbonds that can become chemically
active and bind to adsorbed species more strongly. Kang et al. (Kang et al., 2010) performed
a simulation study on strained armchair graphene nanoribbons. By comparison, those with
strained wide archair nanoribbons can achieve better device performance. By combining
continuum elasticity theory and tight-binding atomistic simulations, Cadelano et al. (Cade‐
lano et al., 2009) worked out the constitutive nonlinear stress-strain relation for graphene
stretching elasticity and calculated all the corresponding nonlinear elastic moduli. Gui et al.
(Gui et al., 2008) found that graphene with a symmetrical strain distribution is always a zero
band-gap semiconductor and its pseudogap decreases linearly with the strain strength in
the elastic regime. For asymmetrical strain distributions the band gaps were opened at the
Fermi level. This is because small number of k points is chosen (Farjam et al., 2009). We also
investigated the energy spectrum and gap of wider graphene ribbons under a tensile force
(Wei et al., 2009) and found that the tensile force can have the gap of the ribbon opened.

In this Chapter, we focus on the effects of deformed graphene sheets and nanoribbons under
unaxial stress on the electronic energy spectra and gaps based on the elasticity theory.
Meanwhile, the energy spectrum of the curved graphene nanoribbons with the tubular
warping is studied by the tight-binding approach. The energy spectrum of deformed gra‐
phene sheets subjected to unaxial stress is given in Section 2. In Section 3, we discuss the
electronic properties of graphene nanoribbons under unaxial stress. The tubular warping
deformation of graphene nanoribbons is presented in last Section.
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2. Graphene under uniaxial stress

2.1. Elasticity theory

Since graphene is a monolayer structure of carbon atoms, when a force is exerted on it paral‐
lel to its plane, the positions of the atoms will change with respect to some origin in space.
Let the x-axis be in the direction of the armchair edge of graphene and the y-axis in that of
the zigzag edge, as shown in Fig. 1. Let R and R ′ denote the positions of a carbon atom be‐
fore and after deformation, respectively. According to the theory of elasticity, the relation
between the positions can be written in the form
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whereδ1 = + δ(or−δ) is the tensile (or compression) stress along the x-direction andδ2is the
stress in the y-direction and small compared toδ1, approximately equal toδ1 / 6. When the de‐
formation of graphene occurs, the bond length between the carbon atoms changes and
which leads to the change of electronic hopping energies.

Figure 1. Graphene sheet subjected to the tensile stress in the x-direction. Symbols A and B denote sublattices with
two kinds of different carbon atoms, respectively. l ′and l ″denote the bond lengths between tow adjacent carbon
atoms after deformation, respectively.

According to Harrison’s formula (Harrison, 1980), the hopping energy after deformation is
expressed as follows
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wherel0andt0denote the bond length and the hopping energy before deformation, respec‐

tively. l ′andt ′are the bond length and the hopping energy after deformation, respectively.
From Fig. 1 and Eq. (1), the bond lengths between atoms A and B can be obtained
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The nearest neighbour hopping integrals associated with the bond lengths are
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If graphene is subject to a tensile force in the y-direction, the hopping energies are given by

0
2

0

2

1
6

17 1091
12 144

t
t

t
t

d

d d

¢ =
æ ö-ç ÷
è ø

¢¢ =
æ ö+ +ç ÷
è ø

(5)

2.2. The tight-binding energy spectrum

Let us now consider the band structure from the viewpoint of the tight-binding approxima‐
tion. The structure of graphene is composed of two types of sublattices A and B as shown in
Fig. 1. If φ(r)is the normalized orbital 2p z wave function for an isolated carbon atom, then
the wave function of graphene has the form

A A B BC Cy y y= + (6)

where

|ψA = 1

N
∑
A

e ik ⋅RA |φ(r −RA)

and

1 ( )Bi
B B

B
e

N
y j×= -å k R r R (7)
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The first sum is taken over A and all the lattice points generated from it by primitive lattice
translation; the second sum is similarly over the points generated from B. HereCAandCB are
coefficients to be determined, RAandRBare the positions of atoms A and B, respectively, and
N is the number of the unit cell in graphene. Substituting Eq. (6) in

H Ey y= (8)

we obtain the secular equation
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For the tensile stress in the x-direction, the solution to Eq.(9) is
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where t ′and t ″are the nearest-neighbour hopping integrals after deformation, given by Eq.(4).

Fig. 2 shows the electronic energy spectra of deformed graphene sheets for some high sym‐
metric pointsΓ, M, and K under uniaxial stress. Because of uniaxial stress, the hexagonal lat‐
tice is distorted and the shape of the first Brillouin zone changes accordingly as the stress
upon the lattice. Six “saddle” points on the boundary in the first Brillouin zone can be divid‐
ed into two groups: M and M’. At the same time, Dirac point K will drift towards the saddle
point M and is accompanied by a small angle. For the convenience of comparison, we give
the spectrum of undeformed graphene in Fig. 2(a). From Fig. 2 (c) and (d), we see that ten‐
sion along the armchair shape edge can reduce the band width at point Γand increase the
bandwidth at point M, and the result of compression is just opposite to that of tension. Fig.
2(e) tells us that tension along the zigzag shape edge can not only narrow the bandwidth at
Γpoint but decrease the bandwidth at M point as well. On the contrary, compression can si‐
multaneously increase the bandwidth atΓand M. Moreover, it may be seen from Fig. 2 that
whether the tensile stress or compressive stress, the result of the high symmetric point M’ is
always opposite to that of the point M and the energy gap cannot be opened at Dirac point
(K). On the other hand, we see yet that the energy band curves between M and M’ for the
graphene without stress are a straight line, but for the graphene with stress the curves are
not. It appears to graphene that the uniaxial stress does not open the energy gap at Dirac
point. When graphene is compressed along the armchair shape edge or extended along the
zigzag shape edge a small energy gap is opened at K point, which is approximately equal to
0.1eV as the stress parameter takes to be 12%. From this reason, the graphene under uniaxial
stress still is a semiconductor with the zero-energy gaps.
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Figure 2. Electronic energy spectra of graphene under uniaxial tress for some high symmetric points.

3. Graphene nanoribbon under uniaxial stress

As mentioned in Section 2, for a graphene sheet subject to uniaxial stress there are no energy
gaps at Dirac point. How to open the energy gaps of graphene? Studies showed that we can
realize this goal by deducing the size of graphene, i.e., changing its toplogical propertiy(Son
et al., 2006). On the other hand, the band gaps of graphene nanoribbons can be mamipulated
by changing the bond lengths between carbon atoms, i.e., changing the hopping integrals,
by exerting a strain force (Sun et al., 2008). The nearest-neighbor energy spectrum of an arm‐
chair nanoribbon was given by the tight-binding approach and using the hard-wall aboun‐
dary condition (Zheng et al., 2007). In the non-nearest-neighbor band structure of the
nanoribbon was given by Jin et al (Jin et al., 2009). In this section we use the tight-binding
approach to study the energy spectrum and gap of the nanoribbon under uniaxial stress
along the length direction, i.e., x-direction, of the nanoribbon, as shown in Fig. 3.

New Progress on Graphene Research86



Figure 3. Structure of an armchair graphene nanoribbon with sublattices A and B. The tension is exerted on the nano‐
ribbon along the x-axis. Symbol n denotes the width of the nanoribbon. There are n sublatices A or B in a unit cell.

Since the unit cell of the nanoribbon has the translational symmetry in the x-direction, we
can choose the plane-wave basis in the x-direction and take the stationary wave in the y-di‐
rection. For the armchair nanoribbon there are two kinds of sublattices A and B in a unit cell.
Therefor, the wave functions of A and B sublattices in hard-wall conditions can be written as
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where NAandNBare the normalized coefficients,q =1,2,...,n is the quantum number associat‐
ed with the wave vector ky, which denotes the discrete wave vector in the y-direction. When
a graphene nanoribbon is subject to uniaxial stress, Eq.(11) still is available. For a nanorib‐
bon, as long as the wave vectorkyin Eq.(10) is replaced by the discrete wave vectorky(q), we
can obtain the energy dispersion relation of the form
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(12)

Since the electronic energy spectrum of the perfect armchair nanoribbon depends strongly
on the width of the nanoribbon, the different width has the different spectrum. For instance,
the nanoribbon with widths n=3m+2 (m is an integer) is metallic and others are insulating.
When we exert a tensile (or compressive) force on the nanoribbon along the x-axis, the metal
nanoribbon is converted into an insulator or semiconductor.
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Figure 4. Band structures of armchair graphene nanoribbons under unaxial stress with widths n=6, 7, 8. The stress
parameterδis taken to be - 0.1, 0, and 0.1 respectively.

Fig. 4 shows the energy spectra of three kinds of the nanoribbons under uniaxial stress, and in
which the next-nearest neighbor hopping integrals are taken into account. In order to facilitate
comparison, the energy spectrum of the undeformed nanoribbon is given in Fig. 4. When
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width n=6, the tensile stress can make the energy gap increase and the bandwidth decrease
slightly. On the contrary, the compressive stress can decrease the gap and make the bandwidth
widen. It is obvious that the energy band corresponding to quantum number q=n–1=5 plays an
important role in the change of the band gap. When n=7, the tensile stress can make the gap
narrow and the compressive stress has larger influence on the energy bandwidth, but not obvi‐
ous on the gap. It can be seen that the energy band with quantum number q=n-1=6 contributes
to the gap under compressive stress and which is clearly different from the tensile situation,
where q=n-2=5. As for n=8, whether it is tensile or compression can open the gap and the energy
band contributing to the gap belongs to quantum number q=n-2=6. It fallows from this that ei‐
ther tension or compression can change the gap and the bandwidth. Therefore, the electronic
properties of armchair nanoribbons can be controlled by uniaxial stress.

Figure 5. Energy gaps of deformed armchair nanoribbons as a function of the width n (m). SymbolΔdenotes the ener‐
gy gap. The stress parameterδis taken to be -0.1, 0, and 0.1.
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When the stress is constant, three graphs of the energy gaps with the width of the nanorib‐
bon changes are shown in Fig. 5, where (a) the width n is equal to 3m, (b) n=3m+1, and (c)
n=3m+2. The results shown in Fig. 5 are inclusive of the nearest-neighbor hopping integrals.
We see from Fig. 5(a) that the compressive stress can make an inflection point of the band
gap minimum for the 3m-type nanoribbon and the width corresponding with the inflection
point is about 12, and the tensile stress can not make a minimum value of the gap. For the
3m+1-type nanoribbon, the result shown in Fig. 5(b) tells us that the tensile stress also can
produce the minimum value of the gap and the corresponding width is 19. In the case of the
3m+2-type nanoribbon, tensile or compression does not change the energy gap (see Fig. 5(c)).
Furthermore, we found by calculations that with the inclusion of the next-nearest neighbor
and the third neighbor respectively, the minimum point of the gap moves toward the direc‐
tion of the origin of coordinates (zero width), i.e., the width of the non-nearest-neighbor
hopping is less than that of the nearest neighbor.

On the other hand, in order to make certain of the relationship between the gap and the
stress, the curves of the gap versus the stress are given in Fig. 6. As shown in Fig. 6, the gap
increases as the stress increases for the 3m- and 3m+1-type nanoribbons and changes in the
V-shaped curve for the 3m+2-type nanoribbon.

Figure 6. Energy gaps of deformed armchair nanoribbons as a function of stressδ. SymbolΔdenotes the energy gap.
Solid, dashed, and dotted lines denote widths n=6, n=7, and n=8, respectively.

Figure 7. A curved armchair graphene nanoribbon with the tubular shape. θis the central angle and r is the curved
radius of the nanoribbon.
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4. The tubular warping graphene nanoribbon

4.1. Theoretical Model

In this section we choose an armchair ribbon as an example and which is bent into the tubu‐
lar shape (cylindrical shape), as shown in Fig. 7. This tubular ribbon still has the periodicity
in its length direction, but its dimensionality has changed. The consequence of such a di‐
mension change is to lead to the change of the electronic energy dispersion relation. This is
because the sp2 hybridization of a flat ribbon turns into the sp3 hybridization of a curved rib‐
bon, i.e., the curvature of graphene nanoribbons will result in a significant rehybridization
of theπorbitals (Kleiner et al., 2001). From this reason, the s-orbital component must be taken
into account in calculating electronic energy bands.

Because of the curl of the ribbon, the wavefunction of πelectrons should be composed of the
s- and p-orbital components. The wavefunctions of sublattices A and B in cylindrical coordi‐
nates are written then
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wherecis the s-orbital component of electrons, given by (Huang et al., 2006; 2007)
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Hereβis a small inclined angle (Kleiner et al., 2001) between thepzorbital and the normal di‐
rection of the cylindrical surface, ris the radius of the cylindrical surface, andais the distance
between two adjacent carbon atoms.

4.2. Results and Discussion

To clearly understand the effect of curvature, we choose the width n=6, 7, and 8 respectively
as examples to show the characteristics of their electronic energy spectra. On the other hand,
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in order to compare with the ideal flat nanoribbon, the results of the ideal ribbon along with
the tubular warping ribbon are also given in Fig. 8, where black lines denote the ideal ribbon
and red lines are the tubular warping ribbon.

Figure 8. Band structures of the curved armchair nanoribbons with widths n = 6, n = 7, and n = 8, respectively. Black
lines are the energy band of a perfect nanoribbon and red lines denote the band of a curved nanoribbon with the
tubular shape.

By comparison, we found that the energy bandwidths become narrowed obviously for the
widths n=6, 7, 8 and then this bending does not nearly influence on the energy gaps. This is be‐
cause the localization of electrons is enhanced from two-dimensional plane to three-dimen‐
sional curved surface. When n=6, the increment of the gap with respect to the flat ribbon is
equal to 0.074eV. When n=7, the change of the gap is 0.065eV. As for n=8, its metallic behavior
does not change as the ribbon is rolled up. Fig. 9 illustrates the density of states of the warping
ribbons with widths n=6, 7, 8. The meaning of the black and red lines in Fig. 9 is the same as in
Fig. 8. From Fig. 9, we see that the tubular warping is responsible for the energy bandwidth
narrowing. The density of states of both the top of the valence band and the bottom of the con‐
duction band does not nearly change. It follows that this warping ribbon still keeps all the char‐
acteristics of the flat ribbon, especially for n=7. This means that the change of this dimension
does not affect the electronic structure seriously. This is why we usually use a graphene sheet
to study the electronic structure of a carbon nanotube. In addition, in order to show the effect of
the curvature on the energy gap, a graph of the gap varying with the central angle is plotted in
Fig. 10. It is apparent that for a fixed width the gap has a maximum value as the increasing of
the central angle. When n=6, the central angle corresponding to the maximum value is between
5π / 4and3π / 2. When n=7, this angle approximately equals3π / 2. As the central angle is equal
to zero, the warping ribbon becomes a flat ribbon and as the central angle goes to2π, the warp‐
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ing ribbon becomes a carbon nanotube. Fig. 10 also shows such a fact that when a graphene
nanoribbon is bent into a nanotube, its energy gap is increased.

Figure 9. Density of states of tubular warping armchair nanoribbons. Black and red lines are the flat and warping
nanoribbons, respectively.

Figure 10. Energy gaps as a function of the central angle (or curvature).
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5. Graphene nanoribbon modulated by sine regime

A free standing graphene nanoribbon could have out-of-plane warping because of the edge
stress (Shenoy et al., 2008). This warping will bring about a very small change of the elec‐
tronic energy spectrum. An ideal graphene nanoribbon only has periodicity in the direction
of its length and there is no periodicity in the y-direction. To show the periodic effect in the
y-direction, we modulate it with the aid of a sine periodic function

sin( )z A fy= (17)

where A is the modulation amplitude and f denotes the modulation frequency, i.e., modulat‐
ed number per unit length. The modulated graph of an armchair graphene nanoribbon is
shown in Fig. 11.

Figure 11. Graphene nanoribbon modulated by sine regime in the direction of the width.

Figure 12. Energy spectra of graphene nanoribbons with width n=7 modulated by sine regime in the direction of the
width. f is the modulation frequency.
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By numerical calculations, we found that different modulation frequencies have different
electronic band structures, i.e., the energy band structures depend strongly on the modula‐
tion frequency f and the modulation amplitude A. We take the width n=7 as an example to
calculate the electronic energy spectrum. When the amplitude A is fixed, the energy band
structures with different frequencies are shown in Fig. 12. It may be seen from Fig. 12 that
this periodic modulation does not damage the Dirac cones, i.e., the topological property of
armchair graphene nanoribbons is not destroyed. On the other hand, Fig. 12 tells us that this
periodic modulation can change the energy band structure, i.e., both the bandwidth and
band gap can be controlled by the modulation frequency. The density of states of electrons
for an armchair graphene nanoribbon with n=7, modulated by using a sine function along
the width direction, is plotted in Fig. 13.

Figure 13. Density of states of graphene nanoribbons with width n=7 modulated by sine regime in the direction
of the width.

When the modulation amplitude, taken to be 0.1nm, is fixed, different modulation frequen‐
cies have slightly different densities of states of electrons. The main difference between the
frequencies 0.0nm-1, 5.0nm-1, and 10.0nm-1 is in the conduction band and the density of states
of the valence band is the same nearly. It follows that the modulation along the width direc‐
tion of the ribbon makes a notable impact for the density of states of the conduction band,
especially for the high energy band corresponding to the standing wave of the smaller quan‐
tum number. In order to reveal the effect of the modulation amplitude on the electronic
properties, the energy bands for the different amplitudes are calculated under certain fre‐
quency. Fig. 14 shows the band structures of the different amplitudes A=0.0nm, A=0.05nm,
and A=0.1nm for an armchair nanoribbon with n=7, where the frequency f is taken to be
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10nm-1. When the modulation amplitude A=0.1nm, the band gaps corresponding to frequen‐
cies f=0.0nm-1, 5nm-1, and 10nm-1 are 2.580eV, 2.600eV, and 2.666eV, respectively. It seems
that the band gaps linearly increase as the frequency increases. In fact, the inflection point of
the smallest gap appears at f=6.02nm-1, where the gap is equal to 2.571eV. There are other
inflection points of the gap as the frequency increases, but the gaps of these points are big
compared to that of the lowest inflection point (see Fig. 15(b)).

Figure 14. Energy spectra of graphene nanoribbons with width n=7 modulated by sine regime in the direction of the
width. The modulation frequency f is taken to be 10nm−1and A is the modulation amplitude.
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Figure 15. Energy gaps as a function of the modulation frequency f.
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6. Conclusion

We investigated the electronic energy spectra of graphene and its nanoribbon subject to un‐
axial stress within the tight-binding approach. The unaxial stress can not open the energy
gap of graphene at Dirac point K. But compression along the armchair shape edge or exten‐
sion along the zigzag shape edge will make a small energy gap opened at K point. From this
reason, the graphene subject to uniaxial stress still is a semiconductor with the zero-energy
gaps. The position of Dirac point will vary as the stress. For the armchair graphene nanorib‐
bon, the tensile or compressive stress not only can transfer the metallicity into the semicon‐
ductor, but also have the energy gap increased or decreased and the energy bandwidth
widened or narrowed. Therefore, we can use the unaxial stress to control the electronic
properties of armchair graphene nanoribbons. In addition, the tubular warping deformation
of armchair nanoribbons does not nearly influence on the energy gap, but it is obvious to
effect on the bandwidth. In addition, we also studied the periodic modulation of the shape
of armchair nanoribbons by sine regime. This modulation can change its electronic proper‐
ties. For the other modulation manner, we no longer discuss it here.

The advantage of the tight-binding method is that the physical picture is clearer and the cal‐
culating process is simpler compared to the first-principles calculations. This method is suit‐
able only for narrow energy bands. Because graphene nanoribbons are the system of wider
energy bands, this method has its limitation.
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