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1. Introduction

Palynology - “The study of pollen grains and other spores, especially as found in archaeological or

geological deposits. Pollen extracted from such deposits may be used for radiocarbon dating and for

studying past climates and environments by identifying plants then growing.” [1]

Over 20% of all the world’s plants are already at the edge of becoming extinct [2]. Saving

earth’s biodiversity for future generations is an important global task [3] and as many methods

as available must be combined to achieve this goal. This involves mapping plants distribution

by collecting pollen and identifying them in a laboratory environment.

Pollen grain classification has been an expensive qualitative process, involving observation

and discrimination of features by a highly qualified palynologist. It is still the most accurate

and effective method. But it certainly limits research progress, taking considerable amounts

of time and resources [4].

Automatic recognition of pollen grains can overcome these problems, producing purely

objective results faster. Such a tool would provide invaluable in the studies of flora.

This advantages were obvious for Flenley [5] [6], who proposed the implementation of an

automatic pollen grain classification system in 1968. However, the idea was intractable at that

time. Mainly, because of technology restrictions. Nowadays, technology is not a barrier any

more, and the discussed system is a reality thanks to computer vision.

This chapter presents the latest results obtained by the authors in the field of automatic pollen

grain classification. This will be done by introducing a developed system, paying special

attention to the phases of preprocessing (section 3.1) and feature extraction (section 4). Results

for a 17 pollen species database obtained with the commented system will also be shown

(section 6).
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terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original
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2. Related work

The begins of automatic pollen identification were based on scanning electron microscope

(SEM) images. Langford applied statistical classifiers on texture parameters on 1988, reporting

a 94.30% of accuracy on a six pollen class database [7]. Later, artificial neural networks (ANN)

were used on the classification task, achieving a success rate of 100% with 3 classes [8].

However, SEM images are expensive and difficult to produce and the use of light microscope

(LM) images were explored in 1998 [9]. Again, first attempts were not fruitful due to the low

quality images provided by the technology of the time. But recent works has demonstrated

that the use of LMs images is, in fact, possible.

For example, [10] reported a 100% of success with a small database containing 4 classes.

Moreover, it was one of the first works using artificial neural networks for the classification

phase, along with texture parameters. Again, [11] used artificial neural networks for

classification. This time, brightness and shape descriptors were extracted as pollen features.

A 90% of accuracy with a 3 class database was reported.

[12] and [13] presented a more complex work, combining shape and ornamentation of

the grains; using simple geometric measures, and concurrence matrices applied for the

measurement of texture. Again, artificial neural networks were used for classification. These

works reported a 87.7% recognition rate for a 5 classes database and a 97.7% for a three class

database respectively.

[14] describes an automatic optical recognition and classification of pollen grains system. This

is able to locate pollen grains on slides, focus and photograph them before identify the species

applying a trained neural network. The system achieved a 90% of recognition rate with a 3

class database.

Other works use more sophisticate capture methods, achieving 3 dimensional representations

of the pollen grains. [15] presented a combination of statistical reasoning, feature learning

and expertise knowledge. A feature extraction algorithm was applied alternating 2D and 3D

representations. Iterative refinement of hypotheses was used during the classification process.

This work reported a 77% of accurate rate in a database with 30 classes and 97% when only 4

classes were used. An other example, [16], which used a confocal laser microscope to create

the 3D models, achieved a 90% recognition rate with 3 classes database.

3. Pollen extraction

At the actual development stage of the system, the detection of pollen grain is highly but not

fully automatic. This should not be of any surprise, as the task of pollen location inside sample

images is itself a different problem, which is as much complicated as the problem studied in

this chapter.

Thus, users should first select and area with a pollen grain inside. Preferably, an area, as small

as possible, where an isolated pollen grain is located. This user selected region of interest

(ROI) is then automatically preprocessed to detect the contour of the grain (see figure 1).
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Figure 1. An example of a pollen grain manually selected by the user.

3.1. Preprocessing

This section introduces the automatic preprocessing algorithm used for pollen extraction and

preparation. It is important to remind that this process is applied to the image area manually

selected by the user, like that showed on figure 1. The preprocessing steps are (see figure 2):

Decorrelation

Stretching
Saturation

Histogram

Equalization

BinarizationMask

Figure 2. Automatic preprocessing steps for pollen extraction.

1. Decorrelation stretching: This process aims to reduce the autocorrelation of the information

contained in the image [17]. This is done as a three steps process:

(a) The original bands are transformed to their principal components.

(b) The principal components are then stretched separately.

(c) The resulting data is transformed back to the original space applying the inverse of the

principal component transformation.

The results is a linear transformation of the spectral bands, resulting in uncorrelated

variables with unit variance, and enhancing displays. The result can be seen in figure

3.
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2. Saturation:The saturation channel of the image represents the amount of colour used at

each pixel, i.e. the lower the saturation is the greyer the pixel is. This channel is actually

extracted from the HSV image representation [18].

In particular, the saturation channel is computed as:

S =

{

0, if MAX = 0

1 − MIN
MAX otherwise

(1)

The result of computing the saturation channel of the docorrelation stretched image is

shown on figure 3. The simplification of the task of differentiating pollen and background

is obvious.

3. Histogram equalization: Equalizing the histogram of an image aims to obtain a uniform

distribution of the pixel values. This maximizes the contrast without loosing structural

information, i.e., conserving the entropy [19].

4. Binarization: The binarization of an image consist of transform each pixel’s value to ’0’ or

’1’ depending on whether it has a value lower or higher (respectively) than a set threshold.

This results on a simple image containing pure geometric information.

5. Mask: Finally, in a bid to obtain a clear mask of the pollen grain, several image

processing functions are applied such as “imfill” and “bwareaopen” provided by the

Image Processing Toolbox of Matlab [20].

The resulting mask can be either used for feature extraction or to remove the background of

the pollen grain image. The result of applying each preprocessing step can be seen on figure 3

4. Feature extraction

Pollen images by their own does not prove to be a high quality information for the task of

automatic pollen grain classification. Although they contain the necessary information, this

information is hidden and diffused around the image and behind other unimportant data. In

order to extract the relevant information from raw samples, they need to be further processed

by the feature extractor.

A total of 50 features are extracted from the pollen images. I.e. the output of the feature

extraction block is a vector with length 50. These 50 features corresponds to 24 geometric

parameters carrying information regarding size and basic shape, and 26 texture parameters

with information about how pixel intensities are distributed on the image. A detailed view of

each of these features will be given here.

Certainly, colour may be an attractive source of information. However, since the preparation

of pollen grain samples imply the use of a stain, it is not recommended to use it. Moreover,

the stain effects is not constant along time and the colour of the same sample may change.

4.1. Geometric parameters

Geometric parameters contain information about the size and the basic shape of the pollen

grains. The 24 geometric parameters extracted in the systems presented in this chapter are:
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Decorrelation

Stretching
Saturation

Histogram

Equalization

Binarization
"im ll"

"bwareaopen"

Figure 3. The result of applying each preprocessing step to a pollen grain image. Note that the sequence
followed is the same as in figure 2.

• Area: Refers to the amount of pixels with level ’1’ in the pollen mask.

• BoundingBox: Smallest rectangle enclosing the pollen. In particular, parameters width and

hight are used as:

BoundingBox(1) = width

BoundingBox(2) = hight (2)

• Centroide: Refers to the mass centre of the pollen grain. Coordinates (x, y).

• MajorAxisLength: Length of the major axis of the ellipse with the same second order

normalized central moment of the object.

• MinorAxisLength: Length of the minor axis of the ellipse with the same second order

normalized central moment of the object.

• ConvexArea: Area of the smallest convex shape enclosing the object.

• EquivDiameter: Diameter of the circle with the same area as the object.
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EquivDiameter =

√

4 × Area

π
(3)

• Solidity: Portion of the area of the convex region contained in the pollen.

Solidity =
Area

ConvexArea
(4)

• Perimeter: Length of the perimeter of the mask image.

• Extent: Portion of the area of the bounding box contained in the pollen.

Extent =
Area

AreaBoundingBox
(5)

• Eccentricity: Relation between the distance of the focus of the ellipse and the length of the

principal axis.

• WeightedCentroid: This is a centroid computing weighted by the pixel values of the

grey-scale image.

• Shape: Measures how circular is the pollen. Its values are in the range [0,1], where 1

corresponds to a perfect circle.

Shape =
4 × π × Area

Perimeter2
(6)

• Thickness: This is the number of times that the mask has to be eroded with a 3x3 square

filter, until it disappears, e.i. the image gets black.

• Box: These are the coordinates of an inner rectangle area computed from the BoundingBox

parameters as:

Box(1) =
BoundingBox(1)

4

Box(2) =
BoundingBox(2)

4

Box(3) =
BoundingBox(1)

2

Box(4) =
BoundingBox(2)

2
(7)

• Hight: Length of the largest line enclosed in the pollen.

• Width: Length of the largest line enclosed in the pollen and perpendicular to Hight.

4.2. Texture parameters

Texture parameters provide information regarding how pixels are distributed on the image,

such as contour changes or objects inside the pollen grain.
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Figure 4. Example of the inner rectangle area computing from the BoudingBox.

The first 4 of the 26 texture parameters introduced in this section are computed using the

grey level co-occurrence matrix (GLCM). This matrix gives information about the frequency

of pixel value pairs combinations. In particular, the value of GLCM(i,j) is the number of times

that a pixel with value ’j’ sits next and at the left of a pixel with value ’i’. Figure 5 shows and

example of this.

Figure 5. Example of a grey level co-occurrence matrix.

• Contrast: Mean intensity difference between a pixel and its neighbours. This value is

computed as:

Contrast = ∑
i,j

|i − j|2p(i, j) (8)

• Correlation: Measures how must correlated it a pixel with respect to its neighbours. This

value is computed as:

Correlation = ∑
i,j

(i − μi)(j − μj)p(i, j)

σiσj
(9)

• Energy: Sum of the squared elements of the GLCM. This is:

Energy = ∑
i,j

p(i, j) (10)
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• Homogeneity: Measures how close the distribution of objects of the GLCM are to the

diagonal of the GLCM. This is:

Homogeneity = ∑
i,j

p(i, j)

1 + |i − j|
(11)

• Entropy: This measure is applied to six different images derived from the original pollen

grain image. These images are the the outer and inner bounding box (BoundingBox and

Box) of the blue channel of the RGB representation, the saturation and the value channels

of the HSV representation. A representation can be seen in figure 6.

Figure 6. Images used to compute the entropy measures. They correspond to channels blue, saturation
and value (left-right) and outer and inner bounding box (up-down).

Entropies are are scalar values representing a statistical measure of the randomness of the

pixel values. Each value is computed as:

Entropy = ∑ p log2 p, (12)

where p is the histogram count of the corresponding image.

• Fourier Descriptors: These measures are based on the analysis of the pollen contour points,

and it provides information about the pollen shape. It is worth it to mention that a major

property of the fourier descriptors is its invariance to geometric transformations, such as

rotation, scale and sift.

To compute these parameters, the complex representation of the contour zi = xi + jyi is

used, where i = 0, 1, 2..., Nc − 1 with Nc the number of points of the contour. Moreover,

the contour is sampled every 2 degrees. Now, the discrete Fourier transform (DFT) of z is:

a(u) =
1

Nc

Nc−1

∑
i=0

zie
−j2πu/Nb u = 0, 1, 2, ..., Nb − 1 (13)

The resultant complex coefficients a(u) are transformer in a power spectrum |a(u)|2.

Finally, the discrete cosine transform (DCT) is applied to reduce the dimensionality of the

vector, ending up with a vector of length 5.
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• Relative areas: This is a 5 elements vector which values correspond to the number of active

pixels (pixels with value ’1’) after binarizing the pollen image with different thresholds. In

particular, the thresholds used are 0.3, 0.4, 0.5, 0.6 and 0.7. Figure 7 shows an example of

this.

Figure 7. Results of applying thresholds 0.3, 0.4, 0.5, 0.6 and 0.7 respectively to a pollen image.

• Relative objects: In this case the number of objects (group of connected pixels with value

’1’ and surrounded of pixels with value ’0’) contained inside the pollen grain are counted,

using an inverted and masked version of the binarized images computed the relative areas.

See figure 8 for an example.

Figure 8. Images used to compute the relative objects.

5. Classification

Several works such as [10], [22], [11] and [13] used artificial neural networks (ANNs) as

classifiers. These algorithms works as follow:

• Parameters are computed from a set of training samples.
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• The computed parameters are passed to the ANN so that it gets trained. This means

that the ANN automatically adjusts its parameters to solve the problem of classify the

parameters in different classes.

• After the training process, a new testing parameters vector can be passed to the ANN and

it will produce an output regarding the sample class.

An ANN is a mathematical model inspired in the structure and functional aspects of the

biological neural networks. It could be defined as a set of simple computational elements

massively interconnected following a hierarchical organization [21].

In this case, a multilayer perceptron architecture trained by a back propagation algorithm

(MLP-BP) is proposed. The principal characteristic of this algorithm is its ability to solve

non-lineal problems. Its architecture is composed of several layers. Each layer corresponds

to a set of neurons receiving data from the previous layer and transmit data to the next layer.

This layer can be divided in “input layer”, “hidden layer” and “output layer” as shown in

figure 9. In this case, the number of hidden layers is set to one.

Figure 9. Architecture of the multilayer perceptron.

It is important note that the training process of the ANN contain an aleatory factor which

determines the solution found. In other words, the training process does not avoid local

minimums. To overcome this limitation, the proposed classifier implements 11 individual

ANNs and sum their resulting scores to obtain a final response. The idea behind this fusion

is that the set of computed solutions complement each other, i.e. some solutions correct the

errors produced by others.

6. Experimentation methodology, results and discussion

A system were implemented in order to test the quality of the proposed approach. This system

uses all the techniques introduced in previous sections (preprocessing, feature extraction and
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classification). This section gives the details about the database used and the experimental

procedure, along with a detailed explanation of the obtained results.

6.1. Database

The database used for the experimentation contains 345 images of 17 different pollen grain

classes. Images has been captured with a 2 mega-pixels digital camera connected to a

microscope set to apply a 40 times zoom.

More precisely, these images correspond to 17 sub-genders and species of 11 different families

of tropical honey plants situated in Costa Rica (Central America). Table 1 shows the exact

information about family, gender and specie.

Class Family Gender Specie Samples

1 Asteraceae Baltimora Recta 24
2 Asteraceae Tridats Procumbels 47
3 Asteraceae Critonia Morifolia 21
4 Asteraceae Elephentopus Mollis 17
5 Bombacaceae Bombacptis Quinata 18
6 Caesalpinaceae Cassea Gradis 35
7 Combretaceae Combretum Fructicosum 25
8 Comvulvulaceae Ipomea Batatas 15
9 Fabaceae Aeschynomene Sensitiva 24

10 Fabaceae Cassia Fistula 36
11 Fabaceae Miroespermyn Frutesens 18
12 Fabaceae Enterolobium Cyclocarpun 18
13 Myrsinaceae Ardisia Revoluta 18
14 Malpighiaceae Bunchosin Cornifolia 36
15 Saphindaceae Cardioesperman Grandiflorus 20
16 Saphindaceae Melicocca Bijuga 26
17 Verbenaceae Lantana Camara 25

Table 1. The exact information about family, gender and specie of the 17 classes included in the DDBB
used. The last column expresses the number of samples of pollen grains extracted from the database.

Applying the pollen grain extraction algorithm introduced in section 3, a total of 423 pollen

images distributed on all species were obtained. The number of samples extracted for each

sample was greater than one. This was possible thanks to images such as that shown in figure

10 where more than one pollen grain could be extracted. Figure 11 shows a sample of each

pollen specie included in the DDBB.

6.2. Experiments

First, remember from section 5 that the design of the classifier include 30 ANNs fused at the

score level. Thus, the number of hidden units on the ANNs had to be specified. To do so,

a set of experiments with different configurations were executed to find the optimal value.

To obtain a valid measure of the performance of the system, 30 iterations of a hold 50% out

cross-validation procedure was executed. Results will be shown and discussed in sections 6.3
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Figure 10. Database image sample. Note that more than one pollen grain can be extracted from this

image.

Class    Sample       Nº Class    Sample        Nº Class    Sample         Nº

Figure 11. Samples of the 17 different pollen grain species.

and 6.4 respectively. For now, it is enough to note that the optimal value were found with a 30

neurons hidden layer.
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Thus, using this optimal configuration of the ANNs, further experiments were executed to

evaluate the performance of the designed system. In this case, 30 iterations of a K-folds

cross-validation procedure were applied with values of ’K’ equal 3, 5, 7 and 10.

Note that the set of all experimental procedures (hold-50%-out and 3, 5, 7 and 10 folds) are

based on divisions of the database in disjoint training and test sets. Moreover, this experiments

can be seen as using different proportions of the database of training, i.e. using a different

number of samples for training. In particular, the proportions of samples used for training are

1/2, 2/3, 4/5, 6/7 and 9/10 respectively.

6.3. Results

It is important to note that every experiment was repeated 30 times in order to obtain a valid

measure of the system’s performance. Therefore, results are given in terms of mean percentage

and standard deviation (mean % and std).

The first experiment tested different configurations of the ANNs. Figure 12 shows the progress

of the success rate when the number of units in the hidden layer increased from 10 to 150. A

highest rate of 90.54% of success rate were obtained with 30 units (see table 2).

Number of hidden units

P
e
rf

o
rm

a
n
c
e
 %

Figure 12. Performance progress for different number of units in the hidden layer of the ANN.

A second group of experiments aimed to measure the system’s performance with different

number of samples for training. Table 3 shows the results obtained for 3, 5, 7 and 10 folds.

Note that the success rate increased with the number of training samples (from 90.54% to

92.81%), while the std decreased (from 1.29 to 0.74).

6.4. Discussion

It can be argued that the number of hidden units of the ANNs could be further optimized

executing a finer search around the point found. However, based on the similar accuracy

measures obtained between 10 and 80 units and stds higher than the range of accuracy
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Neurons in the hidden unit Mean % ± std
10 89.29% ± 2.11
20 90.40% ± 1.69
30 90.54% ± 1.29
40 90.00% ± 1.66
50 90.05% ± 1.78
60 90.19% ± 1.33
70 90.38% ± 1.52
80 90.09% ± 1.37
90 89.92% ± 1.42
100 89.64% ± 1.49
110 89.90% ± 1.34
120 89.76% ± 1.55
130 89.87% ± 1.37
140 89.95% ± 1.42
150 89.72% ± 1.64

Table 2. Performance progress for different number of units in the hidden layer of the ANN.

Experiment Mean % ± std

Hold-50%-Out 90.54% ± 1.29
3 k-folds 91.40% ± 1.05
5 k-folds 92.38% ± 0.75
7 k-folds 92.43% ± 0.82

10 k-folds 92.81% ± 0.74

Table 3. Results for 30 iterations of different experiments.

percentages, paying the cost of running a finer search for a minimal increment of performance

was not worth it. Therefore, 30 units were chosen as the optimal point.

On the other hand, the results obtained for the second round of experiments show an

increasing in both system’s performance and stability. This seems to indicate that the

performance of the system may increase with a bigger training database.

7. Conclusions

This chapter has introduced the problem of automatic pollen grain classification, which is

vital for biologists and flora researches among others. As pointed out in section 3, the task

of automatically detecting the pollen grains from samples is a complex problem itself and fall

beyond the scope of this chapter. Thus, a semi-automatic algorithm for pollen extraction was

explored instead,

The chapter mainly focused its attention in giving a fair amount of both geometric and texture

parameters. Moreover, the extraction of this parameters relied on the good work performed

by the preprocessing block during the pollen’s perimeter definition.

Finally, these parameters were tested implementing a completed system. In particular, the

system used the semi-automatic pollen detection and preprocessing algorithms introduced,

along with the mentioned feature extraction techniques and a classifier based on the fusion of
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11 ANNs at the score level. The system was tested executing a number of experiments using

different hold-out and k-folds cross-validation procedures. The results showed success rates

between 90.54% and 92,81%, pointing out the quality of the presented parameters for pollen

grain classification. Moreover, these results improve those achieved by other authors such as

[10], [22], [11] and [13], even though the number of classified species was significantly larger.
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