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1. Introduction 

Polyurethanes are block copolymers containing segments of low molecular weight polyester 

or polyether bonded to a urethane group (-NHCO-O). Traditionally, these polymers are 

prepared by reacting three basic materials; polyisocyanates, hydroxyl-containing polymers 

(polyester or polyether polyol) and chain extender, normally low molecular weight diol or 

diamine (such as 1, 4-butanediol or 1, 4-dibutylamine).  

Polyols are generally manufactured by one or two possible chemical routes, namely 

alkoxylation and esterification. Alkoxylation, by far is the most common route, involves the 

reaction between a hydroxyl or an amine-containing initiator (such as sucrose, glycerol) and 

either propylene- or ethylene oxide. A molecular weight of up to 6000 can be obtained by 

extending the polymer chain with the addition of alkylene oxide. This product is suitable for 

more flexible polyurethanes in cushioning and elastomeric applications. The alkylene oxide 

used in this process is derived from mineral oil via the petroleum industry. Propylene for 

instance, is derived from the petroleum cracking process and is then converted to propylene 

oxide before being further converted to polyol by reaction with an amine or hydroxyl-

containing initiator such as glycerol. 

At present, most polyols used in polyurethane industry are petroleum-based where crude 

oil and coal are used as starting raw materials. However, these materials have been 

escalating in price and rate of depletion is high as well as required high technology 

processing system. This necessitates a look at utilizing plants that can serve as alternative 

feed stocks of monomers for the polymer industry. Moreover, with increasing annual 

consumption of polyurethane, its industrial waste is a serious matter. In Europe and the 

United States of America for instance, government regulations encouraged recycling of 

materials to avoid excessive usage of landfill area. However, with thermosetting behavior of 

polyurethane the recycling activity is difficult and limited. The best alternative is 
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biodegradation. Biodegradable polymers have widely been used in pharmaceutical industry 

such as suture usage, wound-dressings, surgical implants and medicine delivering system. 

But there are still some usage limitations either due to high production cost or its low 

performance. This performance can be achieved by chemical and physical modification of 

these materials through combination of biodegradable and non-biodegradable materials. 

Polyurethane based on polyester has been known to be more biodegradable than from 

polyether. Utilization of renewable resources to replace petrochemicals in polyurethane 

industry has attracted attention of many technologists. Most of these renewable resources 

are forest products. Palmeri oil, vernonia oil, castor oil and cardanol oil (extracted from the 

cashew nut shell) have been used to synthesize polyurethane polyols with multiple 

functionality to replace the petrochemical-based polyols (Pourjavadi et al. 1998 and Bhunia 

et al. 1998). Castor oil has long been used in the polyurethane industry. Relatively, it is 

stable to hydrolysis due to its long fatty acid chain but sensitive to oxidation due to the 

present of unsaturated fatty acid. Commercially, it can only be used in the coating and 

adhesive industries. 

Polyester polyols are generally consisted of adipic acid, phthalic anhydride, dimer acid 

(dimerized linoleic acid), monomeric glycol and triol. It has low acid number (normally 1-4 

mg KOH/g) and low moisture content (less than 0.1%). These properties are not easily 

achieved unless a high-technology processing method is applied. Due to these industrials 

requirements, polyester polyols are usually supplied at higher price compared to polyether 

polyols. Polyether polyols on the other hand, are commercially produced from catalytic 

reaction of alkylene oxide i.e.propylene oxide or ethylene oxide to di- or polyfunctional 

alcohol. Its functionality is four and above and is useful in the production of rigid foam. It 

can also be produced with the presence of di- or polyfunctional amine i.e. diethanolamine 

when high reactivity is required (such as laminated continuous panel production). 

Important properties specified in polyurethane industry for polyols are as summarized in 

Table 1. 

 

Classification Flexible foam / Elastomer Rigid / Structural foam 

Molecular Weight 1,000 to 6,500 400 to 1,200 

Hydroxyl value, mgKOH/g 28 to 160 250 to 1,000 

Functionality 2.0 to 3.0 3.0 to 8.0 

Table 1. Technical requirements for polyols used in polyurethane industry (Wood 1990). 

The lower the equivalent weight of polyol is, the higher the rigidity of the polyurethane. 

These contributed to higher compressive strength, modulus, thermal stability and 

dimensional stability polyurethanes. If the equivalent weight is excessively low, the 

resulting polymer becomes more friable and required more isocyanate especially for the 

production of rigid polyurethane foam (Berlin and Zhitinkina 1982).  

Natural occurring oils and fats are water-insoluble substances originated from vegetable, 

land or marine animal known as triglycerides. A triglyceride is the reaction product of one 

molecule of glycerol with three molecules of fatty acids to yield three molecules of water 
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and one molecule of a triglyceride. The molecular weight of the glycerol portion (C3H5) of a 

triglyceride molecule is 41. The combined molecular weight of the fatty acid radicals 

(RCOO-) varies. Natural oils can undergo a number of chemical reactions such as 

hydrolysis, esterification, interesterification, saponification, hydrogenation, alkoxylation, 

halogenation, hydroxylation, Diels-Alder reaction and reaction with formaldehydes. 

Polyester is a high molecular weight chemical with ester group –O-C=O- as repeating unit. It 

is achieved by polycondensation and esterification of carboxylic acid with hydroxyl-

containing compounds. 

Lauric oil or better known as lauric acid is the main source of fatty acids. The only lauric oils 

available to the world market are coconut oil and palm kernel oil. The oil palm is a 

monocotyledon belonging to the Elaeis Guiness species. Palm kernel oil (PKO) is obtained 

from the kernel part of the oil palm fruit. The percentage of unsaturated fatty acids is much 

lower compared to palm oil as shown in Table 2. PKO consist of 80 percent saturated fatty 

acid and 10% of each polyunsaturated and unsaturated fatty acid. Palm oil on the other 

hand, consist of 53% saturated fatty acid, 10% polyunsaturated and 37% unsaturated fatty 

acids. The higher the unsaturated fatty acid contents the unstable it is when exposed to heat. 

The reactivity increases substantially if the double bond are conjugated (separated by one 

single bond) or methylene-interupted (separated by a –CH2 unit). PKO contains only traces 

of carotene. 

 

Vegetable 

Oil 
Saturated Fatty Acid, % 

Unsaturated Fatty Acid, % 

Enoic Dienoic Trienoic 

Carbon 

Chain 
C8 C10 C12 C14 C16 C18 >C18 <C16 C16 C18 >C18 C18 C18 

Palm Oil    1-6 32-47 1-6    40-52  2-11  

Palm 

Kernel Oil 
2-4 3-7 45-52 14-19 6-9 1-3 1-2  0-1 10-18  1-2  

Table 2. Fatty acid contents in palm oil and palm kernel oil (Khairiah Haji Badri 2002). 

Two major reactions occurred during polymerization of polyurethane. First, the reaction of 

isocyanate with water yields a disubstituted urea and generates carbon dioxide. This is 

called the blowing reaction because the carbon dioxide is acting as an auxiliary-blowing 

agent. The second reaction is between the polyfunctional alcohol (polyol) and the isocyanate 

(Fig. 1).  

 

Figure 1. Addition polymerization of polyurethane 

R-N=C=O + R’-O-H  R-NH-C(O)-O-R 

Isocyanate    Polyol   Polyurethane 

R-N=C=O + H-O-H  R-NH-C(O)-O-R’  + R-N-H + CO2 

Isocyanate    Water   Polyurethane 

R-N=C=O + R-N-H  R-N-C-N-R   

Isocyanate  
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It generates a urethane linkage and this is referred to as the gelation reaction. The isocyanate 

reacts slowly with alcohols, water and the unstable amino products without the present of 

catalyst. However, for most commercial requirements the acceleration of these reactions is 

required.  

One characteristic of amorphous polymeric systems is the glass transition temperature, Tg 

that defines the point where the polymer undergoes a change from glassy to rubbery 

behavior. Considerable attention has been devoted over the last several years to these 

studies: synthesis of polyurethane polyol from PKO and the production of oil palm empty 

fruit bunch fiber-filled PU composites (Badri et al. 1999, 2000a, 2000b, 2001; Khairiah Haji 

Badri 2002; Badri et al. 2004a, 2004b; Badri et al. 2005; Badri & Mat Amin 2006; Badri et al. 

2006a, 2006b; Mat Amin et al. 2007, Norzali et al. 2011a, 2011b; Liow et al.; Wong & Badri 2010, 

Badri & Redhwan 2010; ). These include intensive evaluation on the chemical, mechanical, 

thermal and environmental stress on the synthesized polyol and PU foam by looking at 

various scopes: 

 Synthesis of the palm kernel oil-based polyol from refined, bleached and deodorized 

(RBD) palm kernel oil via esterification and polycondensation. 

 Preparation of the polyurethane foam from the RBD PKO-based polyol and evaluation 

of its chemical, mechanical and thermal decomposition and glass transition temperature 

of the foam. 

2. Vegetable oil-based polyurethane polyol 

Several reports have been published in producing polyurethane from vegetable oils and 

some of them have even been patented (Arnold 1983, Chittolini 1999 & Austin et al. 2000). 

Focus was given to utilization of mixture of vegetable oils in the polyurethane system and 

not as raw materials to produce the polyurethane. Vegetable oils that are frequently used 

are soybean oil, safflower oil, corn oil, sunflower seed oil, linseed oil, oititica, coconut oil, 

palm oil, cotton seed oil, peritta oil, olive oil, rape seed oil and nuts oil. Researches carried 

out using these oils were focusing on full usage of materials found abundance in certain 

area such as production of polyurethane foam from mixture of starch and triol 

polycaprolactone (Alfani et al. 1998) and mixture of starch, soybean oil and water (Fantesk) 

(Cunningham et al. 1997). Polyurethane products based on vegetable oils like nuts oil, 

soybean oil, corn oil, safflower oil, olive oil, canola oil and castor oil (Nayak et al. 1997, 

Bhunia et al. 1998, Mohapatra et al. 1998, Javni et al. 1999) exhibited high thermal stability. 

In Malaysia, the Malaysian Palm Oil Board (MPOB) has taken the initiative to produce 

polyol from the epoxidation and alcoholysis of palm oil (Ahmad et al. 1995, Siwayanan et al. 

1999). An early finding has indicated that when natural oils or fats are epoxidized, they react 

with polyhydric alcohols to produce polyols. A study by Guthrie and Tait (2000) has 

successfully produced an ultraviolet (UV) curable coating from epoxidized and unprocessed 

palm oil, and epoxidised palm olein.  

These researches however, are pointing to one direction that is synthesizing polyester. 

Polyester may be defined as heterochain macromolecules containing repeating ester groups (-
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COO-) in the main chain of their skeletal structures. Most useful routes to polyester synthesis 

of carboxylic acids are step growth or direct polyesterification (condensation polymerization) 

and ring opening polymerization of lactones. The former is suitable for synthesis of aliphatic 

polyester where it utilizes primary and secondary glycols where the primary hydroxyl groups 

being esterified more readily. The removal of liberated water from the process is carried out by 

stirring and percolation of inert gas such as nitrogen, N2. If a volatile monomer is used (i.e. 

glycol), an excess amount with respect to dicarboxylic acid (10 %w/w) should be added to 

compensate for losses caused by evaporation at high temperature. Side reactions may occur 

usually at 150°C and above which leads to changes in polymer structure and reduces 

molecular weight distribution of the polyester (Jedlinski 1992). 

Esterification is one of many substitution reactions of carboxylic acids and their derivatives 

that involve tetrahedral addition intermediates. The extension of mechanism of carbonyl 

addition is as shown below. The best leaving group is the weakest base. In addition, reaction 

of ester with hydroxylamine (:NH2OH) gives N-hydroxyamides (known as hydroxamic 

acids). This is the point where it is vital to add some reactivities to the existing polyester by 

addition of the amide group to form polyesteramide (Loudon 1988). 

 

Polyurethanes are possible to decompose by prolonged contact with water, diluted acids or 

moist heat (causes swelling and slow hydrolysis, particularly in some ester-type 

polyurethanes), chlorine bleach solutions (may cause yellowing and decomposition) and 

prolonged exposure to light (discoloration of derivatives of aromatic isocyanates) (Roff et al. 

1971). The dimensional stability of foams is a time-dependent property that receives 

considerable attention. Disregarding cold aging at -15±2°C, humid aging (70± 2°C at 95±5% 

relative humidity) is usually a prime property. Humid aging requirements (specifications) 

are determined by the end use of the foam. A foam that has expanded and the shrunk is 

considered, as a first approximation, to be caused by the effect of plasticization by heat and 

moisture that would allow the stresses built into the foam at the gel to relax, which will then 

allow the foam to return to a lower energy state. For urethane foams specifically, high 

thermal stability results in excellent dimensional stability over a large temperature range. 

3. Green material and technology 

The RBD palm kernel oil (viscosity of 65 cps, specific gravity of 0.99 g/ml, and moisture 

content of 0.02%) was obtained from Lee Oilmill Sdn Bhd, Kapar, Klang, Malaysia and was 

used as received without further purification. Polyhydric compounds consisted of 

dietanolamine, DEA (purity of 99.8%, hydroxyl value of 1057 mg KOH/g and functionality 
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of 2, with viscosity of 236 cps and moisture content of 0.05%) and ethylene glycol, MEG 

(hydroxyl value of 1122 mg KOH/g) were supplied by Cosmopolyurethane (M) Sdn Bhd, 

Pelabuhan Klang, Malaysia with the inclusion of potassium acetate which was 

manufactured by Merck (M) Sdn Bhd, Shah Alam Malaysia. Chemicals used for the 

preparation of polyurethane foam were crude MDI (2,4-diphenylmethane diisocyanate), 

tetramethylhexanediamine (TMHDA) and pentamethyldiethyltriamine (PMDETA) 

(Cosmopolyurethane (M) Sdn Bhd, Port Klang, Malaysia) and silicon surfactant (Tegostab 

B8408, Th. Goldschmidth, Singapore). The blowing (foaming) agent used was tap water. 

DEA, MEG and potassium acetate were mixed homogeneously with a ratio of 90:7:3 to form 

the polyhydric compound. A mixture of this polyhydric compound with RBD PKO at 

stochiometric ratio was continuously stirred in a 2-L glass reactor and was reacted 

separately at three different temperature ranges: 165-175°C, 175-185°C and 185-195°C, each 

for 30 minutes. The nitrogen gas was flushed into the system throughout the process. The 

reflux flask was connected to a condenser and a vacuum pump to withdraw the water and 

excess of reagent from the system. The progress of the reaction was monitored by sampling 

at intervals. The samples collected were then analyzed. At the end of the reaction, the polyol 

produced was kept in a sealed cap glass jar for further analysis. 140 g of crude MDI was 

poured into 100 g mixture of resin (Table 3 and Appendix A).  

 

Composition Part by weight, pbw 

RBD PKO Polyol 

Tegostab B8408 

TMHDA 

PMDETA 

Water 

100 

2 

0.3 

0.15 

4.5 

Total pbw 106.95 

Ratio of 100 parts to MDI 100:140 

Table 3. Formulation of palm-based polyurethane foam system. 

The mixture was agitated vigorously using a standard propeller at a speed of 200 rpm for 10 

seconds at 20°C (Fig. 2).  

 

Figure 2. Polymerization of the palm-based polyurethane 

The reaction time: cream time (CT), fiber/gel time (FT), tack-free time (TFT) and rise time 

(RT) was noted (Appendix B). The free-rise density (FRD) was calculated using equation (1). 
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 3

3

(mass of foam and cup - mass of cup), kg
Free - rise density, FRD (kg /m )

capacity of cup, m
 (1) 

The mixture was poured into a waxed mold, covered and screwed tight. The foam was 

demolded after 10 minutes. The molded density was determined using equation (2). The 

molded foam was conditioned for 16 hours at 23 ± 2°C before further characterization of the 

polyurethane foam. 

 3

3

mass of molded foam, kg
Molded density, MD (kg/m )  

volume of molded foam, m
  (2) 

Fourier Transform Infrared analysis of the RBD PKO polyol and palm-based PU was carried 

out on the Perkin Elmer Spectrum V-2000 spectrometer by Diamond Attenuation Total 

Reflectance (DATR) method. The samples collected during the intervals were scanned 

between 4000 and 600 cm-1 wavenumbers. For the former, two selected peaks (designated as 

peaks A and B) were used to monitor the progress of the reaction (derivatization). 

Chromatography analyses were carried out on the former by thin layer chromatography 

followed by gas chromatography. A sample of 1 pph (part per hundred) by dilution in 

methanol was dropped on the silica plate with minimal diameter of about 0.5 mm and was 

applied 2 cm from the edge of the silica plate. The plate was removed once it traversed 2/3 

of the length of the plate (normal length of a silica plate is 20 cm). The plate was placed in a 

chamber containing iodine crystals (iodine reacts with organic compounds to yield dark 

stain) after the methanol has all evaporated. The molecular weight was determined using 

gas chromatography coupled with mass spectrometer, GC-MS model Bruker 200 MHz with 

splitless inlet and HP5 (polar) column with flow rates of 1.0 μl/min. The oven was 

programmed to a temperature range of 100 to 280 °C at 6 °C/min. 

Standard method ASTM D4274-88 (Standard Test Methods for Testing Polyurethane Raw 

Materials: Determination of Hydroxyl Numbers of Polyols) was used to determine the 

hydroxyl value of the polyol. The value calculated would be able to verify the FTIR peak 

ratio method for completion of derivatization process. The water content of the polyol was 

determined using the Karl Fischer Titrator model Metrohm KFT 701 series (ASTM D4672-

00(2006) e1: Standard Test Methods for Polyurethane Raw Materials: Determination of 

Water Content of Polyols) while the viscosity of the polyol was determined using the 

Brookfield digital viscometer model DV-I (ASTM D4878-88: Standard Test Methods for 

Polyurethane Raw Materials- Determination of Viscosity of Polyols). The viscosity of the 

polyol is important in determining the flowability of the polyurethane resin in the foaming 

process where it is advantageous in the material consumption. The specific gravity was 

determined following ASTM D4669–07: Standard Test Method for Polyurethane Raw 

Materials: Determination of Specific Gravity of Polyols. Other physical characterizations 

were determination of cloud point, pH and solubility of polyol in methanol, benzene, 

acetone, ether and water. 
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The PU foams were characterized for their apparent molded and core densities, 

compression strength, dimensional stability and water absorption following standard 

method BS4370: Part 1:1988 (1996) Methods 1 to 5: Methods of test for rigid cellular 

materials. Foam samples were cut using into cubes of 100 mm × 100 mm × 100 mm in 

dimensions. A replicate of five specimens were used and carefully weighed using an 

analytical balance. The dimensions were measured following BS4370: Part 1:1988 (1996): 

Method 2. The apparent molded density was determined by using a simple mathematical 

equation, mass (kg)/volume (m3). The core density is determined by the same method but 

using skinless foam. The compressive strength test was carried out on a Universal Testing 

Machine Model Testrometric Micro 350 following BS4370: Part 1:1988 (1996): Method 3 at 23 

±2°C. The specimens were cut into cubes of 50 mm × 50 mm × 50 mm in dimensions. The 

foam rise direction was marked and a crosshead speed of 50 mm/min was applied. The 

compression stress at 10% deflection, compression stress at 5% strain and compression 

modulus was noted. For the dimensional stability test, the specimens were cut into 

dimensions of 100 mm × 100 mm × 25 mm. The specimens were then put into a controlled 

temperature-humidity chamber each at –15 ± 2°C and 70 ± 2°C, 95 ± 5% relative humidity for 

24 hours. Method 5A of BS4370: Part 1:1988 (1996) standard was followed. The specimens 

were remeasured and percentage of change in dimensions was calculated. These are then 

converted to percentage in volume change. The water sorption was carried out using 

method in Annex D BS6586: Part 1:1993. The specimens were cut into dimension of 50 mm × 

50 mm × 50 mm. 

The thermal decomposition of the polyurethane foam was measured using a 

thermogravimetric analyzer model Shimadzu TGA-50 with temperature ranging from room 

temperature to 600°C at heating rate of 10°C/min under nitrogen gas atmosphere. Samples 

were placed in alumina pan holders at a mass ranging from 5 to 15mg. The thermal property 

of the foam was determined using a Perkin Elmer Model DSC-7 differential scanning 

calorimeter interfaced to the Model 1020 Controller. The samples were analyzed from room 

temperature to 200°C at a heating rate of 10°C/min. Standard aluminum pans were used to 

analyze 10 mg samples under nitrogen gas atmosphere. The insulation value (k-factor or λ-

value) of the polyurethane foam was determined using the Thermal Conductivity Analyzer 

model Anacon at testing temperature for cold plate at 25°C and hot plate at 35°C. The 

thickness of the specimens was 20-30 mm and method 7 of BS4370: Part 2: 1993 standard 

was followed. 

The RBD PKO consists of triglycerides that when undergoes esterification form by  

products such as glycerol and other possible polyester network (Loudon 1988) as shown in 

Scheme 1 and Scheme 2. During the reaction, the acetate ion forms an intermediate,  

the carboxylic acids. These acids attack the lone pair in nitrogen atom in diethanolamine, 

DEA and formed the probable structure of the esteramide with hydroxyl terminal  

(Scheme 2) 

R1, R2 and R3 generally are represented by R and it is very common to have lauric-lauric-

oleic composition of fatty acid in the carbon chains (Scheme 2). 
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Scheme 1. Probable reaction mechanism between the RBD PKO and the hydroxyl-containing 

compound 

 

Scheme 2. Conversion of RBD PKO to the esteramide (RBD PKO-based polyol) 

RBD PKO reacts with the polyhydroxyl compound in an alkaline medium (contributed by 

the potassium acetate). The alkalinity of the system ensured that the RBD PKO is fully 

reacted. The selection on polyhydroxyl compound being used is the critical part where it 

should offer highest hydroxyl value and functionality polyol possible to fully converting 

the RBD PKO into polyol (highest yield). Methods used in this study involved 

polycondensation and esterification where these are the only routes that offered low 

reaction temperature and short reaction time. It produced polyol (compound with 

functional group –OH) at high yield (almost 100%), low moisture content and no toxic 

vapor. The esteramide or PKO-based polyol is a monoester with OH terminal. 

4. Properties of the PKO-based polyol 

The derivatised RBD PKO-based polyol is a golden yellow liquid with a cloud point of 13°C. 

It has very low moisture content of 0.09% and low viscosity of 374 cps and specific gravity of 

0.992 g/cm3 at room temperature. Low water content and liquidy nature of the polyol are 

advantageous in formulating the polyurethane system especially when processing of end 

product is concerned. Less viscous polyol offers less viscous polyol resin which leads to 

system with good flowability. The viscosity increases as the degree of polycondensation and 

branching increases (Wood 1990). The physical properties of the PKO-based polyol are 

summarized in details in Table 4. It is important to note that raw RBD PKO solidified at 

room temperature with cloud point of about 23-24°C whilst the derivatized polyol solidified 

only at 13°C (cloud point). Polyol heating system is not required here as what is being used 

by other studies (Parthiban et al. 1999 and Ahmad et al. 1995). 
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Parameters Result

State at 25°C Liquid 

Color Golden yellow 

Odor Odorless 

Density at 25°C, g/cm3 0.992 

Solubility Alcohol, Ketone, Ether, Alkane, Water 

Cloud Point, °C 13 

Viscosity at 25°C, cps 374 

pH 9-10 

Moisture content at 25°C, % 0.09 

Table 4. Physical properties of the derivatised RBD PKO-based polyol. 

4.1. Chemical analysis 

a. Fourier Transform Infrared Spectroscopy (FTIR) 

The RBD PKO, a chain of fatty acid with carboxylic acid group displays intense C=O 

stretching bands of acids absorb at 1711 cm-1 as shown in Fig. 3 (a). The C-H stretches at 2932 

and 2855 cm-1. Two bands arising from C-O stretching and O-H bending appear in the 

spectra of RBD PKO near 1320-1210 and 1440-1395 cm-1 respectively. Both of these bands 

involve some interactions between C-O stretching and in-plane C-O-H bending. The  

C-O-H bending band near 1440-1395 cm-1 is of moderate intensity and occurs in the same 

region as the CH2 scissoring vibration of the CH2 group adjacent to the carbonyl (Silverstein  

et al. 1991). 

The FTIR spectrum of the derivatized RBD PKO was obtained from samples taken at 175-

180°C (Fig. 3(b)) during the esterification process. The spectrum was evaluated at peak 3351 

cm-1 (designated as peak A) and 1622 cm-1 (designated as peak B). Peak A and B, which are 

the hydroxyl (-OH) and carbamate (O=C=N-) peaks respectively (assigned by IR Mentor Pro 

Classes, Sadtler Division Bio-Rad Laboratories 1990 and Silverstein et al. 1991). These peaks 

do not appear in the spectra of the raw RBD PKO (Fig. 3(a)). A vague trace of the hydroxyl 

peak was observed when PKO is mixed with the hydroxyl compound. Further increase in 

the reaction temperature and reaction time changed the percentage of transmittance for both 

peaks A and B significantly. It also indicated a formation of ester cleavage at 1710 cm-1. The 

sharp absorption bands in the region of 1750-1700 cm-1 are characteristic of carbonyl group 

of ester (C=O) stretching vibrations (Silverstein et al. 1991). 

Transmittance ratio of both peaks, the OH and the carbamate peaks (% transmittance of 

peak A divided by the % transmittance of peak B) was plotted as in Fig. 4. It was used to 
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identify the progress of the derivatization process (Chian and Gan 1998). Fig. 4 also showed 

that the hydroxyl value (OHV) reached to a constant at 350-370 mg KOH/g sample at 

intervals of 175-180°C for 15-30 minutes of reaction time. The FTIR spectrum and hydroxyl 

value (OHV) curves both demonstrated that 175-180°C at 15-30 minutes as optimum 

temperature and reaction time respectively. Both methods are advantageous in the 

identification of optimum processing parameters assuming that Beer’s Law is applicable 

here. However, OHV determination method is slow and time-consuming. Therefore, FTIR 

method is more preferable in determining the completion of reaction for the RBD PKO-

based polyol (Chian and Gan 1998). 

 

 

 
 

Figure 3. FTIR spectra of (a) the raw RBD PKO and (b) the palm-based esteramide  
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Note: 

25 refers to derivatized RBD PKO at ambient temperature, 25oC 

140 refers to derivatized RBD PKO at 140oC 

160 refers to derivatized RBD PKO at 160oC 

180/0 refers to derivatized RBD PKO at starting of 180oC 

180/15 refers to derivatized RBD PKO at 180oC for 15 minutes 

180/30 refers to derivatized RBD PKO at 180oC for 30 minutes 

185/0 refers to derivatized RBD PKO at starting of 180oC 

185/15 refers to derivatized RBD PKO at 185oC for 15minutes 

185/30 refers to derivatized RBD PKO at 185oC for 30 minutes 

Figure 4. Curve of ratio of OH peak to the C-N peak and the OHV curve of the blend at intervals 

b. Thin Layer Chromatography 

The thin layer chromatography (TLC) test on the desired products obtained at intervals of 

reaction time at 175-180oC (0, 15 and 30 minutes) indicated a clear qualitative separation. 

These separations were compared to TLC carried out on individual ingredients: The  

RBD PKO, diethanolamine (DEA), the catalyst-potassium acetate in monoethylene glycol 

and standard lauric acid (Athawale et al. 2000). There were three separation peaks, 

identify as the PKO, DEA and small trace of the catalyst up to 175-180oC at 0 minute. At 

175-180oC for 15 minutes, only two separation peaks were observed and finally at 175-

180oC for 30 minutes, only one separation peak was observed (Fig. 5). The result is parallel 

to the gas chromatography (GC) peaks of the final product, the RBD PKO-based polyol 

(Fig. 6)). 

c. Gas Chromatography-Mass Spectrometry (GC-MS) 

The samples collected at intervals ranging from 165-170oC, 170-175oC, 175-180oC and  

180-185oC were also evaluated for its purity using gas chromatography, GC coupled with 

mass spectrometry, GC-MS. Fig. 6 is the GC of the RBD PKO-based polyol reacted at 175-

180oC for 15-30 minutes. The signal at retention time of 31.92 min is the desired product, 

the RBD PKO-based polyol (98.24%) while signals at retention time of 13.37 (0.08%), 16.36 

(0.92%) and 27.91 (0.27%) representing small percentage traces of MEG, glycerol (by-
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product of esterification) and DEA (C:\ DATABASE\WILEY275.L). Others (0.49%) are 

traces of oligomeric polyester components from C14 and C18 chains. The GC-MS scan of  

the RBD PKO-based polyol showed an estimated molecular weight of 477. Molecular 

weight obtained at 165-170 and 170-175oC of reaction temperature was 296 and  

355 respectively. Thus, molecular weight obtained at 175-180oC is considered to be the 

most desirable molecular weight for this study. The functionality of the RBD PKO-based 

polyol derived from this molecular weight and the determined hydroxyl value (OHV of 

350 to 370 mg KOH/g) is 2.98 to 3.15 calculated using the mathematical equation in 

equation 3. 

 wFunctionality  M  OHV /  56100    (3) 

Note: Mw is the estimated molecular weight of the RBD PKO-based polyol obtained from 

GC-MS which is 477 OHV is the hydroxyl value of the RBD PKO-based polyol obtained 

using ASTM D4274-88 method, which is about 350-370 mg KOH/g sample 

 

Note: 

PEA RBD PKO-based polyol 

DEA diethanolamine 

MEG  monoethylene glycol 

STD standard lauric acid 

180/0 derivatised RBD PKO at starting of 180°C 

180/15 derivatised RBD PKO at 180°C for 15 minutes 

180/30 derivatised RBD PKO at of 180°C for 30 minutes 

Figure 5. The thin layer chromatography of the ingredients  

This range of functionality is suitable for rigid foam application (Wood 1990). 

Both FTIR (IR Mentor Pro 1990) and GC-MS approaches (Wiley MS-database) could be used 

to estimate the most probable molecular structure of the RBD PKO-based polyol at 175-

180oC/30 minutes (optimum temperature and reaction time) as 2-hydroxy-undecanoamide 

as in Scheme 2 (library search on Wiley MS-database giving 98% quality match). There is no 

intention of purification of the synthesized RBD PKO-based polyol as all these hydroxyl-

containing compounds would react with crude MDI. 
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Figure 6. GC chromatogram of the RBD PKO-based polyol obtained at 175-180ºC for 30 minutes. 

4.2. Thermal testing 

The thermogram of the resulted RBD PKO-based polyol is as shown in Figure 7. Thermally, 

it is stable up to 167.6ºC and undergoes two stages decomposition at 167.6 to 406.3ºC with 

total weight loss of 99.41%. The initial 3.34% weight loss is contributed to the moisture 

content and other volatile impurities in the RBD PKO-based polyol (Oertel 1993). The initial 

decomposition is contributed by the degradation of RBD PKO-based polyol and traces of 

glycerol supported by the DTA curve which representing the softening temperature at 

385ºC. Charred residue was obtained after testing. 

 

 
 

Figure 7. TGA thermogram of the RBD PKO-based polyol obtained at 175-180ºC for 30 minutes 
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5. Properties of the PKO-based polyurethane foam  

5.1. Physical properties 

The PKO-based polyurethane foam (PUF) produced is a light yellow solid with skin 

thickness of about 1.5 mm. It is a stiff/rigid but brittle solid at 43-44kg/m3 molded density 

and core density of 38-39 kg/m3 with average void size of 0.10-0.15 mm (Fig. 8). 

 

Figure 8. Scanning electron micrograph of the PUF at 250 magnification 

5.2. FTIR analysis 

The PUF is analysed by FTIR spectroscopy which showed the absence of the free OH groups 

and indicates a complete conversion of both –OH groups of the PEA to the urethane moiety 

(NH-C(O)-O). Typical FTIR spectrum of the PU is as shown in Fig. 9. The characteristic –NH 

stretching vibration of the –NH2- (amide) is located at 3405 cm-1, overlapping with the OH 

peak as a broad band. Bands at 2932 and 2894 cm-1 are the synchronous reflection of 

asymmetric and symmetric of CH2 bridges, from the linkage of the urethane with the PEA. 

Bands at 1650 cm-1 is the overlapping of –N=C=O (urethane) and ester linkage of the PEA. 

Obviously, bands 1550, 1650 and 3350 cm-1 indicate complete conversion to urethane moiety 

(Silverstein et al. 1991). 

 

Figure 9. FTIR spectrum of the RBD PKO polyurethane foam 
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5.3. Thermal properties 

The thermal instability of a PU may be defined as the ease by which heat produces changes 

in the chemical structure of the polymer network. These may involve simple bond-rupturing 

dissociation or reaction reversals and provide more volatile components, or they may result 

in extensive pyrolysis and fragmentation of the polymer. This characteristic provides a 

measure of fire hazard in that a more thermally stable polymer is less likely to ignite and 

contribute to a conflagration than a less stable one (Burgess, Jr. & Hilado 1973). 

Thermodynamic parameters such as decomposition temperatures, percentage of weight 

loss, melting temperature, Tm and glass transition temperature, Tg were determined by 

thermal analyses of the PU.  

TGA thermogram of the PU is as shown in Fig. 10. Presence of three degradation stages 

implying the presence of three thermal degradation temperatures. It was thermally stable at 

191.9ºC, a common stability temperature for PU (Hepburn 1991). The initial weight loss of 

about 41.24% commences at 191.9 to 396.9ºC. Tmax from the DTA curve occurred at 275ºC 

attributed by carbon dioxide trapped in the sample. Degradation started at 396.3 to 498.4ºC, 

which was initially a fast process. The total weight loss up to 500ºC is 74%. This second stage 

of degradation rationalized the urethane linkage reported by Hepburn (1991). 

 

Figure 10. TGA thermogram of the RBD PKO PU foam 

There is no indication of melting and crystallization temperatures curves in the DSC 

thermogram of the PU foam. Therefore, this polymer could be identified as an amorphous 

polymer (Badri et al. 2000). The glass transition temperature is 39.74ºC, a regular glass 

transition temperature for thermosetting polymers, with heat capacity of 33.0 J/g. Since the 

heat of evaporation of water is 2300J/g, moisture content of the PU was detected to be 1.43%.  
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However, the initial thermal conductivity of PU foam is found to be 0.0244 W/m-K. This is 

expected since it is a water-blown PU system where water has poor properties i.e. boiling 

point and k-factor compared to its industrial counterpart, chlorofluorocarbon, CFC 

(Crawford & Escarsega 2000). Low thermal conductivity is normally contributed by the low 

boiling point of the blowing agent such as CFC and finer cell structure of the foam 

(Hardings 1965, Frisch 1985, Hepburn 1991). However, another fact to be remembered is 

that water is a chemical blowing agent compared to CFC, a physical blowing agent. Water is 

capable of interfering in the polymerization of polyurethane by producing by-product such 

as urea and large amount of carbon dioxide when being used I larger quantity. Functionality 

of polyols also plays an important role in producing good insulated material (Wood 1990, 

Hass and Uhlig 1985).  

5.4. Mechanical properties 

The mechanical properties of the foam produced from the derivatized RBD PKO show 

comparable results (Table 5) to the British Standard requirement (practiced by industry such 

as building construction industry). It is expected for water-blown PU foam to have lower 

compressive stress at 5% strain and the compression due to irregular formation of cellular 

structure. This decreased the strength upon higher percentage of strain. Table 5 showed the 

summary of the mechanical properties of the PU foam. 

The dimensional stability which is described in percentage of volume change indicated 

changes of -0.090% and 0.012% at -15±2ºC and 70±2ºC at 95±5% relative humidity for 24 

hours respectively. A very minimum shrinkage and expansion problem was observed on 

the foam prepared from this palm oil-based polyurethane polyol in a water-borne system. 

Identical resin formulation was used using petroleum-based polyol to substitute the palm-

based polyol. Major shrinkage and expansion problems were observed. Shrinkage and 

expansion problems are normally used as indicators of how good the foam is as an 

insulator. The mechanical properties could be enhanced by using low or high pressure 

dispersing machines (Oertel 1993). Better mechanical properties could also be achieved by 

introducing filler in the PU system (Rozman et al. 2001a, 2001b, 2000, 1998). 

5.5. Rheological and kinetic properties 

The PU system is polymerized kinetically using tetramethylhexadiamine, TMHDA as a 

gel/blow catalyst and pentamethyldiethylenetetramine, PMDETA as a blow catalyst. The 

addition of both catalysts is very minimum (0.05-0.10 pbw) in achieving an optimum kinetic 

reaction time (Tamano et al. 1996) especially when reactive RBD PKO-based polyol (Scheme 

2) is used in the formulation. The cream time, gelling/fiber time, tack-free time and rise time 

(Appendix B) were 23, 71, 105 and 156 seconds respectively at 20ºC. The PUF is demolded 

after 10 minutes of mixing with skin thickness of about 1.5 mm. It has a flow index of 1.050 

cm/g, a moderate flowability PU system (Colvin 1995). This is assumed to be helpful in 

reducing the consumption of raw materials, especially the RBD PKO-based polyol. 
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5.6. Resistance to environmental stress 

The chemical resistance of the PU with normal closed-cell structures of rigid urethane foam 

prepared from the crude MDI and RBD PKO-based polyol is carried out to investigate the 

limitation of the interactions with surroundings to the surface layer in order to produce a 

chemically and physically stable material. Effects produced by chemical agents depend both 

on the chemicals and on the permeability of cell membranes. Solubility of the chemical in 

the foam affects both permeability and swelling. Results obtained are not representative of 

other temperatures, concentrations or exposure times. 

 

Parameter Method Standard Results 

*Apparent molded 

density, kg/m3 

BS 4370:Part 1:1988  

(Method 2) 

Min 38 43.6 ±0.85 

*Apparent density (core), 

kg/m3 

BS 4370:Part 1:1988  

(Method 2) 

Min 35 38.9 ±0.53 

*Compressive strength to 

foam rise at 10% 

deflection, kPa 

BS 4370:Part 1:1988  

(Method 3) 

Min 180 185.7 ±8.22 

*Compressive stress at 

5% strain, kPa 

BS 4370:Part 2: 1993  

(Method 6) 

Min 140 105.4 ±2.41 

Compressive modulus, 

N/m2 

BS 4370: Part 1: 1988 

(Appendix A) 

Not available 8.52 ±0.46 

*Dimensional stability,% BS 4370: Part 1: 1988 

(Method 5B) 

  

 At -15 ±2oC for 24h Maximum 1.0 Length: -0.151 ±0.03 

   Width: -0.433 ±0.03 

   Thickness: 1.373 

±0.06 

 At 70 ±2oC, 95 ±5% r.h. 

for 24h 

Maximum 3.0 Length: 0.359 ±0.25 

Width: 0.017 ±0.04 

   Thickness: 1.654 

±0.09 

*Apparent water 

absorption,% 

BS 6586: Part 1: 1993  

(Annex D) 

Maximum 6.5 2.25 ±0.89 

Shore A Hardness ASTM D 2240 Not Available 29.0 ±1.4 

Note: * Physical property requirements following BS6586: Part 1: 1993 industrial standard. 

Table 5. The mechanical properties of the PU foam synthesized from the RBD PKO-based polyol. 

Fig. 11 illustrates the compressive strength at 10% deflection and 5% strain as well as its 

compression modulus upon exposure to stress. All resistivity test medium being used result 
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in a major increment in the strength at 10% deflection. Readings of above 0.20MPa 

(compared to the control foam) with maximum compressive strength are observed in 

benzene at about 0.34MPa, followed by PUF at ambient temperature (0.30MPa), freeze-thaw 

condition (0.26MPa), 10% NaOH (0.25MPa), saltwater (0.20MPa) and finally 10% HNO3 

(0.19MPa). The same trend is observed in compressive strength at 5% strain where the 

maximum value is encountered at freeze-thaw condition followed by at ambient 

temperature, 10% NaOH and finally benzene. The compression modulus reaches as high as 

11.0MPa and others are in the range of 8.0 to 9.0MPa. 

 

Figure 11. Effect of various environmental stresses on the compressive strength and compression 

modulus of the RBD PKO-based PU foam 

Practically, the absorption of chemicals into the foam results in swelling of the cell  

faces, which apparently increases the compressive strength. Weathering conditions (ambient 

and freeze-thaw) however are very much dependence on the diffusion rate of carbon 

dioxide being replaced by the air which causes expansion of the foam and increases the 

compressive strength (Wood 1990). The foams are found to be unaffected by the test 

medium basically due to the mixture of organic components (RBD PKO-based polyol and 

MDI). Rigid PU foam is stable in the present of most solvents such as found in binders and 

sealers (Oertel 1993). 

Physically, the foam becomes spongy with the formation of waxy material on the surface of 

the foam, as a result of prolonged exposure to benzene as an aromatic hydrocarbon. It is 

important to note that ester-based polyurethanes are easily attacked by hot aqueous alkali or 

moderately concentrated mineral acids, swollen by aromatic hydrocarbons and decomposed 

by prolonged contact with water, diluted acids and moist heat (causes swelling and slow 

hydrolysis) (Roff et al 1971). 

The compression modulus of the PUF ranges from 7.8 to 10.8MPa. the compression modulus 

for the control PUF is at 8.5MPa which is lower compared to the modulus in 10%HNO3, 
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10%NaOH, under freeze-thaw condition, and in saltwater but higher if compared to the 

modulus of the rest of the resistivity test. 

Rigid PU prepared has high resistivity to the action of most organic solvents and are 

seriously degraded only by strong acid, oxidizing agent and corrosive chemicals. Only 

stronger polar solvents, which significantly swelled the polymer, led to shrinkage of the 

foam structure. Evaporation of the solvent normally returns the polymer to its original state 

(Oertel 1993). 

6. Conclusion 

Several advantages are foreseen from this study. Some important advantages are being 

identified through this method of polyol production. Firstly, it is attractive and economical. 

RBD PKO-based polyol is a naturally formed macromolecules found in Malaysia. It is 

extremely plentiful, easy to process and refine, capable of being cultivated with minimum 

capital investment and suitable for conversion to quality polyols using an inexpensive 

reaction process. Secondly is the simplicity of the process, which requires only a few 

reactors for producing the polyol as well as formulating the resin. Commercially, the 

process acquires only a few personnel to produce consistently good quality polyols. Thirdly, 

compare to the manufacturing of the petrochemical-based polyols, the process is relatively 

safe, where it involves the usage of hazardous chemicals. Generally, it is non-toxic and of 

low volatility.  

Two major environmental advantages can be realized. Firstly, the source of oil is truly 

renewable, where it does not lead to permanent depletion of resources which has a limited 

global availability. Secondly, the amount of energy required to convert the natural oils to 

polyol is considerably less than using the conventional process. The foam made from this 

RBD PKO-based polyol is low in density, light in color, high in strength but low in water 

sorption. The produced RBD PKO-based polyurethane foam in this study also has other 

advantages as tabulated in Table 6. 

 

Property Rating Consequence Benefit

Thermal Insulation Highest Thinnest Section Space 

Rigidity High Added Strength Structural 

Adhesion High No glue-line Manufacturing 

Dimensional Stability High Non-sag, non-heave Maintenance 

Density Low Lightweight Handling 

Water Vapor Transmission Low Less Condensation Construction 

Table 6. The advantages of producing RBD PKO-based polyurethane. 

The PUF meets the British Standard requirements in any medium of the tested 

environmental stress test. This ester-type polyurethanes are easily attacked by prolonged 

contact with water, diluted acids and moist heat (causes swelling and slow hydrolysis) and 

swollen by aromatic hydrocarbons. These rigid PUs either the PUF, are resistant to the 
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action of most organic solvents and are seriously degraded only by strong acids, oxidizing 

agents and corrosive chemicals. Only polar solvents, which significantly swell the polymer, 

lead to shrinkage of the foam structure. Evaporation of the solvent normally returns the 

polymer to its original state. 

In terms of application, these composites are most suitable in structures where stiffness and 

dimensional stability are of prime importance but is only a secondary choice to areas where 

structural strength is more vital than the component rigidity. 
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