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1. Introduction 

1.1. History of polyurethane 

The discovery of polyurethane [PU] dates back to the year 1937 by Otto Bayer and his 

coworkers at the laboratories of I.G. Farben in Leverkusen, Germany. The initial works 

focussed on PU products obtained from aliphatic diisocyanate and diamine forming 

polyurea, till the interesting properties of PU obtained from an aliphatic diisocyanate and 

glycol, were realized. Polyisocyanates became commercially available in the year 1952, soon 

after the commercial scale production of PU was witnessed (after World War II) from 

toluene diisocyanate (TDI) and polyester polyols. In the years that followed (1952-1954), 

different polyester-polyisocyanate systems were developed by Bayer.  

Polyester polyols were gradually replaced by polyether polyols owing to their several 

advantages such as low cost, ease of handling, and improved hydrolytic stability over the 

former. Poly(tetramethylene ether) glycol (PTMG), was introduced by DuPont in 1956 by 

polymerizing tetrahydrofuran, as the first commercially available polyether polyol. Later, 

in 1957, BASF and Dow Chemical produced polyalkylene glycols. Based on PTMG and 

4,4’-diphenylmethane diisocyanate (MDI), and ethylene diamine, a Spandex fibre called 

Lycra was produced by Dupont. With the decades, PU graduated from flexible PU foams 

(1960) to rigid PU foams (polyisocyanurate foams-1967) as several blowing agents, 

polyether polyols, and polymeric isocyanate such as poly methylene diphenyl 

diisocyanate (PMDI) became available. These PMDI based PU foams showed good 

thermal resistance and flame retardance.  

In 1969, PU Reaction Injection Moulding [PU RIM] technology was introduced which 

further advanced into Reinforced Reaction Injection Moulding [RRIM] producing high 

performance PU material that in 1983 yielded the first plastic-body automobile in the 

United States. In 1990s, due to the rising awareness towards the hazards of using chloro-
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alkanes as blowing agents (Montreal protocol, 1987), several other blowing agents 

outpoured in the market (e.g., carbon dioxide, pentane, 1,1,1,2-tetrafluoroethane, 1,1,1,3,3-

pentafluoropropane). At the same time, two-pack PU, PU- polyurea spray coating 

technology came into foreplay, which bore significant advantages of being moisture 

insensitive with fast reactivity. Then blossomed the strategy of the utilization of vegetable 

oil based polyols for the development of PU. Today, the world of PU has come a long way 

from PU hybrids, PU composites, non-isocyanate PU, with versatile applications in 

several diverse fields. Interests in PU arose due to their simple synthesis and application 

protocol, simple (few) basic reactants and superior properties of the final product. The 

proceeding sections provide a brief description of raw materials required in PU synthesis 

as well as the general chemistry involved in the production of PU.  

2. Raw materials 

PU are formed by chemical reaction between a di/poly isocyanate and a diol or polyol, 

forming repeating urethane groups, generally, in presence of a chain extender, catalyst, 

and/or other additives. Often, ester, ether, urea and aromatic rings are also present along 

with urethane linkages in PU backbone. 

2.1. Isocyanates 

Isocyanates are essential components required for PU synthesis. These are di-or 

polyfunctional isocyanates containg two or more than two –NCO groups per molecule. 

These can be aliphatic, cycloaliphatic, polycyclic or aromatic in nature such as TDI, MDI, 

xylene diisocyanate (XDI), meta-tetramethylxylylene diisocyanate (TMXDI), 

hydrogenated xylene diisocyanate (HXDI), naphthalene 1,5-diisocyanate (NDI), p-

phenylene diisocyanate (PPDI), 3,3’-dimethyldiphenyl-4, 4’-diisocyanate (DDDI), 1,6 

hexamethylene diisocyanate (HDI), 2,2,4-trimethylhexamethylene diisocyanate (TMDI), 

isophorone diisocyanate (IPDI), 4,4’-dicyclohexylmethane diisocyanate (H12MDI), 

norbornane diisocyanate (NDI), 4,4’-dibenzyl diisocyanate (DBDI). Figure 1 shows 

examples of some common isocyanates.  

The isocyanate group bears cumulated double bond sequence as R-N=C=O, wherein  

the reactivity of isocyanate is governed by the positive character of the carbon atom  

(Scheme 1), which is susceptible to attack by nucleophiles, and oxygen and nitrogen by 

electrophiles. 

If R is an aromatic group, the negative charge gets delocalized into R (Scheme 2), thus, the 

aromatic isocyanates are more reactive than aliphatic or cycloaliphatic isocyanates. In case of 

aromatic isocyanates, the nature of the substituent also determines the reactivity, i.e., 

electron attracting substituents in ortho or para position increase the reactivity and electron 

donating substituents lower the reactivity of isocyanate group. In diisocyanates, the 

presence of the electron attracting second isocyanate increases the reactivity of the first 
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isocyanate; para substituted aromatic diisocyanates are more reactive that their ortho 

analogs primarily attributed to the steric hindrance conferred by the second –NCO 

functionality. The reactivities of the two-NCO groups in isocyanates also differ with respect 

to each other, based on the position of –NCO groups. For example, the two-NCO groups in 

IPDI differ in their reactivity due to the difference in the point of location of –NCO groups. 

TMXDI serves as an aliphatic isocyanate since the two isocyanate groups are not in 

conjugation with the aromatic ring. Another isocyanate of increasing interests is vinyl 

terminated isocyanate since along with the –NCO group, the extra vinyl group provides 

sites for crosslinking (Figure 2). 

H3C

OCN NCO CH3

NCOOCN

OCN NCO

OCN

NCO

NCO

NCO

OCN NCO

NCOOCN

2,4-TDI 2,6-TDI

4, 4'-MDI

NDI

HDI

IPDI H12MDI
 

Figure 1. Common isocyanates 
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Scheme 1. Resonance in isocyanate 
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Scheme 2. Resonance in aromatic isocyanate 
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Figure 2. Other isocyanates 

Polyisocyanates such as triisocyanates derived as TDI, HDI, IPDI adducts with 

trimethylolpropane (TMP), dimerized isocyanates termed as uretdiones, polymeric MDI, 

blocked isocyanates (where alcohols, phenols, oximes, lactams, hydroxylamines are blocking 

agents) are also used in PU production. Lately, fatty acid derived isocyanates are also 

prepared via Curtius rearrangement with view to produce entirely biobased PU. The choice 

of the isocyanate for PU production is governed by the properties required for end-use 

applications. To prepare rigid PU, aromatic isocyanates are chosen, however, PU derived 

from these isocyanates show lower oxidative and ultraviolet stabilities. 

2.2. Polyols 

Substances bearing plurality of hydroxyl groups are termed as spolyols. They may also 

contain ester, ether, amide, acrylic, metal, metalloid and other functionalities, along with 

hydroxyl groups. Polyester polyols (PEP) consist of ester and hydroxylic groups in one 

backbone. They are generally prepared by the condensation reaction between glycols, i.e., 

ethylene glycol, 1,4-butane diol, 1,6-hexane diol and a dicarboxylic acid/anhydride (aliphatic 
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or aromatic). The properties of PU also depend upon the degree of cross-linking as well as 

molecular weight of the starting PEP. While highly branched PEP result in rigid PU with 

good heat and chemical resistance, less branched PEP give PU with good flexibility (at low 

temperature) and low chemical resistance. Similarly, low molecular weight polyols produce 

rigid PU while high molecular weight long chain polyols yield flexible PU. An excellent 

example of naturally occurring PEP is Castor oil. Other vegetable oils (VO) by chemical 

transformations also result in PEP. PEP are susceptible to hydrolysis due to the presence of 

ester groups, and this also leads to the deterioration of their mechanical properties. This 

problem can be overcome by the addition of little amount of carbodiimides. Polyether 

polyols (PETP) are less expensive than PEP. They are produced by addition reaction of 

ethylene or propylene oxide with alcohol or amine starters or initiators in presence of an 

acid or base catalyst. PU developed from PETP show high moisture permeability and low 

Tg, which limits their extensive use in coatings and paints. Another example of polyols is 

acrylated polyol (ACP) made by free radical polymerization of hydroxyl ethyl 

acrylate/methacrylate with other acrylics. ACP produce PU with improved thermal stability 

and also impart typical characteristics of acrylics to resultant PU. These PU find applications 

as coating materials. Polyols are further modified with metal salts (e.g., metal acetates, 

carboxylates, chlorides) forming metal containing polyols or hybrid polyols (MHP). PU 

obtained from MHP show good thermal stability, gloss and anti-microbial behavior. 

Literature reports several examples of VO based PEP, PETP, ACP, MHP used as PU coating 

materials. Another example is VO derived fatty amide diols and polyols (described in detail 

in chapter 20 Seed oil based polyurethanes: an insight), which have served as excellent 

starting materials for the development of PU. These PU have shown good thermal stability 

and hydrolytic resistance due to the presence of amide group in the diol or polyol backbone. 

2.3. Additives 

Along with a polyol and an isocyanate, some additives may also be required during PU 

production, primarily to control the reaction, modify the reaction conditions, and also to 

finish or modify the final product. These include catalysts, chain extenders, crosslinkers, 

fillers, moisture scavengers, colourants and others. In PU production, catalysts are added to 

promote the reaction to occur at enhanced reaction rates, at lower temperatures, for 

deblocking the blocked isocyanates, for decreasing the deblocking and curing temperatures 

and times. A number of aliphatic and aromatic amines (e.g., diaminobicyclooctane-

DABCO), organometallic compounds (e.g., dibutyltin dilaurate, dibutyltin diacetate), alkali 

metal salts of carboxylic acids and phenols (calcium, magnesium, strontium, barium, salts of 

hexanoic, octanoic, naphthenic, linolenic acid) are used as catalysts. In case of tertiary 

amines, their catalytic activity is determined by their structure as well as their basicity; 

catalytic activity increases with increased basicity and decreases with the steric hindrance on 

the nitrogen atom of amine. They promote their catalytic action by complex formation 

between amine and isocyanate, by donating the electrons on nitrogen atom of tertiary amine 

to the positively charged carbon atom of the isocyanate. Metal catalysts bear superiority 
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over tertiary amines because they are comparatively less volatile and less toxic. Metals 

catalyse the isocyanate-hydroxyl reaction by complex formation with both isocyanate and 

hydroxyl groups. The positive metal centre interacts with electron rich oxygen atom of both 

the isocyanate and hydroxyl groups forming an intermediate complex, which by further 

rearrangement results in the formation of urethane bonds. Difunctional low molecual 

weight diols (ethylene glycol, 1,4-butanediol, 1,6-hexanediol), cyclohexane dimethanol, 

diamines, hydroxyl-amines (diethanolamine and triethanolamine) are used as chain 

extenders in PU synthesis while those with functionality 3 or > 3 are used as crosslinkers. 

Since isocyanates are too sensitive to moisture or water even in traces, moisture scavengers, 

which react more readily with water than an isocyanate, are incorporated to cut 

off/eliminate the involvement of water during PU synthesis, e.g., oxazolidine derivatives, 

zeolite type molecular sieves. Blowing agents are used to produce PU foams with cellular 

structures by foaming process (e.g., hydrocarbons, CO2, hydrazine). 

3. Chemistry of PU 

PU are carbonic acid derivatives. The older term for them is an ester of a substituted 

carbamic acid, polycarbamate, from carbamic acid. PU are formed by (i) the condensation 

polymerization reaction of bischloroformates with diamine (Scheme 3) and (ii) addition 

polymerization reaction of diisocyanates with di or polyfunctional hydroxy compounds, or 

other compounds having a plurality of active hydrogen atom (Scheme 4). The latter method 

is more important from the industrial point of view since in this method no by-product is 

formed.  
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Scheme 3. Reaction of bischloroformate with diamine 
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Scheme 4. Reaction of diisocyanate with di or poly hydroxy compound 

The isocyanate reaction offers the possibility of producing tailor-made polymeric product 

ranging from fibres to rubber. Generally, the isocyanate reactions are divided into two 
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classes, (a) addition (primary and secondary) reaction with compound containing active 

hydrogen (Schemes 5 and 6), (b) self-addition reaction (Scheme 7). In some of the reactions, 

CO2 is released which assists in the formation of PU foams. 

 

Scheme 5. Primary addition reactions of isocyanate with (a) amine, (b) water, (c) alcohol, (d) carboxylic 

acid, (e) urea. 
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Scheme 6. Secondary addition reactions of isocyanate with (a) polyurethane, (b) polyurea and (c) 

polyamide  

Wurts in 1848 discovered the basic reaction of isocyanate (Scheme 4). He found that 

isocyanates having the structure R-N=C=O, where R= alkyl or aryl group, react rapidly at 

room temperature with compounds containing active hydrogen atoms, like amine, water, 

alcohol, carboxylic acid, urethanes and ureas (Scheme 8).  

It is observed that a linear PU is formed when a diisocyanate react with diol whilst  

branched or cross-linked PU results with the reaction of polyhydric compound (polyol). The 

branched or cross- linked PU are also formed when a compound containing three or more 

isocyanate groups reacts with a diol; however, this approach is of limited commercial 

importance. 
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Scheme 7. Self -addition reactions of isocyanate 
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Scheme 8. Reaction of isocyanate with active hydrogen compound 

4. Mechanism  

The reaction of an isocyanate with active hydrogen compounds is carried out with or 

without a catalyst. The self-addition reactions of isocyanates do not usually proceed as 

readily as reactions with active hydrogen compounds.  

4.1. Reaction in the absence of a catalyst 

The active compound itself acts catalytically in the reaction as follows (Scheme 9). 
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Scheme 9. Isocyanate reaction in the absence of a catalyst 

As given in Scheme 9, in the reactions proceeding in the absence of a catalyst, the 

electrophilic carbon of the isocyanate is attacked by the nucleophilic centre of the active 

hydrogen compound; hydrogen is added to –NCO group. The reactivity of the –NCO 
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groups is increased due to the presence of the electron withdrawing groups, and 

decreases by the electron donating groups. While the aromatic isocyanates are more 

reactive than the aliphatic isocyanates, steric hindrance at –NCO or HXR’ groups reduce 

the reactivity. 

The order of reactivity of active hydrogen compounds with isocyanates in uncatalyzed 

systems is as follows: 

Aliphatic amines> aromatic amines> primary alcohols> water>secondary alcohol> tertiary 

alcohol> phenol> carboxylic acid> ureas> amides>urethanes. 

4.2. Reaction in the presence of a catalyst 

The isocyanate reactions of class (a) are also extremely susceptible to catalysis. The various 

isocyanate reactions are influenced to different extents by different catalysts. Many 

commercial applications of isocyanates utilize catalysed reactions. Tertiary amines, metal 

compounds like tin compounds (as mentioned earlier in the chapter) are most widely used 

catalysts for the reaction (Schemes 10 and 11). The mechanisms are similar to that of the 

uncatalyzed reaction (Scheme 9). 

The tertiary amines and metal salts catalyse the reaction as follows:   
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Scheme 10. Tertiary amine catalysed reaction 
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Scheme 11. Metal salts catalysed reaction 

The catalytic activity of amines closely parallels to the base strength of the amines except 

when steric hindrance becomes pronounced. This catalyst is also effective for self-addition 

reactions while metal salt compounds generally have less influence; tin compounds are 

particularly poor catalysts in these reactions. 

5. Hazards  

Although PU are chemically inert in their fully reacted form , the risks of asthmatic symptoms 

arise on human exposure even in smaller concentrations due to the volatility associated with 

isocyanates arise the risk of asthmatic symptoms on 12 human exposure, even in smaller 

concentrations. On exposure to flames, hazards of ignition are feared. Isocyanates may also be 

sensitive on our skin. Some isocyanates may also be anticipated as carcinogens. Thus, persons 

working with isocyanates must be equipped with proper protection devices such as gloves, 

masks, respirators, goggles, and others, as precautionary measures. 

6. Conclusion 

PU are thermoplastic and thermoset in nature. The type, position, and structure of  

both the isocyanate and polyol determine the progress of PU forming reactions as well as 

their properties and end-use applications. Hydrogen bonding also plays a key role  

in determining the properties of final PU product. Due to the associated health hazards, 

complete precautions are necessary while working with isocyanates. PU are available  

as one-pack or two-pack PU. PU dispersions, waterborne PU, PU Interpenetrating 
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Networks PU, hybrids and composites are used in various applications such as paints and 

coatings, adhesives, sealants, foams, absorbents, flame retardants, fuel binders, in 

automobiles, in biomedical applications (urological stenting practices, carriers of 

antituberculosis drugs, orthopaedics), extraction of metals, grouting technologies, 

crashworthiness, treatment of industry wastewater, cast elastomers, and others as also 

discussed in proceeding chapters.  
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